跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳翰
研究生(外文):Han Wu
論文名稱:以靜電紡絲製備二氧化鈦/石墨烯光觸媒及其分解有機物之研究
論文名稱(外文):Preparation of TiO2/Graphene Photocatalysts for the Application in Decomposition of Organics
指導教授:粘譽薰
指導教授(外文):Yu-Hsun Nien
口試委員:粘譽薰何志松吳知易
口試委員(外文):Yu-Hsun NienChih-Sung HoTzi-Yi Wu
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:215
中文關鍵詞:二氧化鈦氧化石墨靜電紡絲技術光降解
外文關鍵詞:titanium oxidegraphite oxidesilverelectrospinningphotodegradation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以開發新式可見光光觸媒為目標,希望藉由摻入雜質來提升光觸媒於可見光下的使用效益。在室內一般日光燈下紫外光能量僅有0.1~1μW,對於一般光觸媒,都不足以使其產生分解污染物的作用。因此如何改善上述問題是當前最重要的突破,藉由光觸媒原理來改善一般光觸媒的電子電洞快速重組問題與吸附效能以及增加在可見光區吸收效率。
  在本研究中以溶膠凝膠法搭配靜電紡絲技術製備GO/TiO2複合型超細纖維光觸媒與GO/Ag/TiO2複合型超細纖維光觸媒,其具有在可見光下降解亞甲基藍以及甲基橙的功能,並探討不同比例的GO/TiO2複合型超細纖維與GO/Ag/TiO2複合型超細纖維的性質。利用SEM、EDS、TEM、XRD、Raman、FT-IR、TGA、BET、UV-Visible DRS來檢測超細纖維的型態與分佈情形、晶相、元素組成、比表面積、可見光吸收與能隙值。最後以固-液相之亞甲基藍染料與甲基橙染料光降解,評估在可見光下降解效果。
  由SEM表面型態來觀察得知GO/TiO2與GO/Ag/TiO2都為纖維型態,而添加GO使纖維型態有類似蜘蛛網結構產生增加比表面積。TEM觀察到GO/Ag/TiO2纖維表面有Ag奈米粒子分佈。EDS顯示不同GO/Ag/TiO2纖維的Ag重量百分比例其元素比例符合預期結果。由BET可得知,添加入GO是可提高比表面積,而GO-Ag也因奈米銀粒子的導入有助於粒徑降低因而更提高纖維的比表面積。由XRD顯示所製備的TiO2複合型光觸媒主要為銳鈦型晶礦,而添加入GO時會有明顯較寬的繞射峰產生。由Raman圖譜我們可以明顯觀察到TiO2複合型光觸媒會有明顯的D band與G band產生。UV-Visible分析結果顯示GO/TiO2與GO/Ag/TiO2纖維在可見光區有大幅的吸收度以及能隙值降低的現象。
  最後本研究進行一系列亞甲基藍與甲基橙水溶液可見光降解的實驗,結果顯示在GO/TiO2超細纖維中添加20mgGO具有最佳的可見光降解效率;在GO/Ag/TiO2超細纖維中添加0.5mgGO-2wt%Ag具有最佳的可見光降解效率,這表明三效協同異質結構GO/Ag/TiO2超細纖維具有良好的可見光催化的效果。

  In this study, the development of new visible light photocatalyst target, hoping to enhance the incorporation of impurities in the photocatalyst efficiency in the use of visible light. Indoors general fluorescent lamp of UV energy is only 0.1 ~ 1μW, for the general photocatalyst are not sufficient to produce the decomposition of pollutants effect. Therefore, how to improve the above problem is the most important breakthrough in improving the general principle by the photocatalyst photocatalyst fast electron hole recombination question the effectiveness and increase the absorption and adsorption efficiency in the visible region.
  In this study, sol-gel method to prepare a spinning technique with electrostatic GO/TiO2 composite photocatalyst and microfiber GO/Ag/TiO2 composite photocatalyst microfiber, which has a visible drop of Methylene Blue and Methyl Orange features and explore the different proportions of GO/TiO2 composite microfiber and GO/Ag/TiO2 composite superfine fiber properties. The use of SEM, EDS, TEM, XRD, Raman, FT-IR, TGA, BET, UV-Visible DRS to detect patterns and distribution microfiber case, crystal, elemental composition, specific surface area, visible light absorption and energy gap . Finally, solid - liquid phase of methylene blue dye and degradation of methyl orange light, visible light degrades assessment results.
  Observed by the SEM surface patterns that GO/TiO2 and GO/Ag/TiO2 are fiber patterns, and add fiber patterns GO has a similar structure to produce more than the surface area of the cobwebs. TEM observation GO/Ag/TiO2 fiber surface distribution of Ag nanoparticles. EDS shows the percentage by weight of Ag different GO/Ag/TiO2 fibers in line with the proportion of cases expected results of its elements. BET can be made that, added to the GO is the specific surface area can be increased, but also because the import GO-Ag nano silver particles help to reduce the particle size and thus more surface area to improve the fiber. TiO2 composite photocatalyst prepared by the XRD show mainly anatase crystal mine, and added the GO will significantly wider diffraction peak production. The Raman spectra, we can clearly observe TiO2 composite photocatalyst have significant D band and G band production. UV-Visible analysis showed that the GO/TiO2 and GO/Ag/TiO2 fibers in the visible region of the absorption of a substantial energy gap and reduce the phenomenon.
  Finally, this study conducted a series of aqueous methylene blue and methyl orange visible degradation experiments showed that adding GO/TiO2 superfine fiber 20mgGO has the best visible degradation efficiency; add in GO/Ag/TiO2 superfine fiber 0.5mgGO -2wt% Ag has the best degradation efficiency of visible light, which indicates that three-way co-heterostructure GO/Ag/TiO2 visible light microfiber with good catalytic effect.

摘 要 I
ABSTRACT III
致 謝 V
目 錄 VI
表目錄 XII
圖目錄 XIV
符號說明 XXII
第一章 緒論 1
1-1 前言 1
1-2 研究背景 2
1-3 研究動機與目的 4
第二章 文獻回顧 7
2-1 半導體介紹 7
2-1.1 半導體定義 7
2-1.2 摻雜型半導體 8
2-1.3 半導體光觸媒 11
2-2 奈米材料 12
2-2.1 奈米材料與複合材料定義 12
2-2.2 奈米材料特殊效應 14
2-2.3 奈米纖維 16
2-3 石墨烯、氧化石墨稀簡介 16
2-3.1石墨烯介紹 16
2-3.2改質材料特性 17
2-3.2.1石墨烯(Graphene)之特性 17
2-3.2.2 氧化石墨稀(Graphene oxide) 19
2-3.3石墨烯與氧化石墨稀製備方法 20
2-3.3.1 石墨稀(Graphene)之製備 20
2-3.3.2 氧化石墨稀(Graphene oxide) 21
2-4 光觸媒與二氧化鈦介紹 22
2-4.1 光觸媒簡述與應用特性【54】 22
2-4.2 二氧化鈦基本性質介紹 23
2-4.2.1 二氧化鈦構造及其特性 23
2-4.2.2 二氧化鈦光催化的機制 26
2-4.2.3 TiO2製備方法 28
2-4.2.4 影響光催化效率之因素 30
2-4.2.5 添加物對二氧化鈦光催化效率的影響 31
2-4.2.5.1 非金屬類原子與二氧化鈦的摻雜 31
2-4.2.5.2金屬類原子與二氧化鈦的摻雜 35
2-5 靜電紡絲技術 37
2-5.1電紡絲原理與介紹 37
2-5.2影響靜電紡絲技術之參數 38
2-5.2.1流速( Flow Rate )參數 39
2-5.2.2 電壓(Voltage)參數 39
2-5.2.3 分子量(Molecular Weight)與濃度(Concentration)參數 40
2-5.2.4 濃度(Concentration)與黏度(Viscosity)參數 41
2-5.2.5 溶劑參數 42
2-5.2.6 針頭至收集板距離(Distance)參數 44
2-5.2.7 收集方式(Collector) 44
2-6 固-液光催化反應 45
2-6.1 亞甲基藍光分解反應 45
2-6.2 甲基橙光分解反應 46
第三章 實驗內容及方法 50
3-1 實驗藥品與實驗儀器 50
3-1.1 實驗藥品 50
3-1.2 實驗儀器 53
3-1.2.1 實驗設備 53
3-1.2.2 分析儀器 55
3-2 實驗流程 57
3-3實驗溶液配製流程 58
3-3.1 GO/TiO2 Sol-Gel溶液配製流程 58
3-3.2 GO/Ag/TiO2 Sol-Gel溶液配製流程 59
3-4實驗溶液配製的最佳比例及步驟 60
3-5靜電紡絲及實驗參數 63
3-6纖維鍛燒 64
3-7纖維型光觸媒基本性質檢測 65
3-7.1 X光粉末繞射儀(X-ray Diffractometer) 65
3-7.2顯微拉曼光譜(Microscopes Raman Spectrometer)分析 66
3-7.3傅立葉轉換紅外線光譜儀(FT-IR) 67
3-7.4熱重分析儀(TGA) 67
3-7.5場發射掃描電子顯微鏡(SEM) 68
3-7.6 X光能量散佈光譜儀(EDS) 69
3-7.7穿透式電子顯微鏡(TEM) 69
3-7.8比表面積測定儀(BET) 70
3-7.9紫外光/可見光吸收光譜儀(UV-Visible) 72
3-8光降解示性實驗 73
3-8.1最佳鍛燒溫度實驗 73
3-8.2亞甲基藍染料示性光分解實驗流程 73
3-8.3甲基橙染料pH值示性光分解實驗流程 74
3-9光降解示量效率實驗 75
3-9.1亞甲基藍染料示量光分解實驗流程 75
3-9.2甲基橙染料示量光分解實驗流程 76
3-9.3光降解效率規劃 77
第四章 數據分析與討論 79
4-1 TIO2 /GO/AG複合超細纖維光觸媒基本性質檢測 79
4-1.1 Sol-Gel溶液黏度與靜電紡絲參數分析 79
4-1.2 鍛燒溫度分析 82
4-1.3 SEM檢測分析 85
4-1.3.1 TiO2超細纖維的SEM圖分析 85
4-1.3.2 不同比例的GO超細纖維的SEM圖分析 86
4-1.3.3 不同比例的GO-Ag超細纖維的SEM圖分析 90
4-1.4 EDS檢測分析 94
4-1.5 TEM檢測分析 97
4-1.6 XRD檢測分析 102
4-1.6.1 自製的氧化石墨XRD分析 102
4-1.6.2 TiO2複合型纖維XRD分析 103
4-1.7 Raman檢測分析 107
4-1.7.1 Graphite與GO的Raman分析 107
4-1.7.2 TiO2複合型超細纖維的Raman分析 107
4-1.8 反射式UV-Vis光譜檢測分析 109
4-1.8.1 紫外光與可見光區的吸收強度以及吸收範圍分析 109
4-1.8.2 不同比例的複合型光觸媒能隙值分析 110
4-1.9 TGA檢測分析 113
4-1.9.1 基本材料的TGA分析 113
4-1.9.2 未鍛燒GO超細纖維光觸媒的TGA分析 114
4-1.9.3鍛燒450℃後超細纖維光觸媒的TGA分析 115
4-1.10 FT-IR檢測分析 117
4-1.10.1 基本材料FT-IR檢測分析 117
4-1.10.2 複合材料FT-IR檢測分析 118
4-1.11 BET檢測分析 119
4-2 TIO2/GO/AG複合超細纖維光觸媒光降解定量檢測 120
4-2.1 染料亞甲基藍光降解分析實驗 120
4-2.1.1 純可見光的光降解定性實驗 120
4-2.1.2 亞甲基藍(MB)的光降解與暗吸附定量分析實驗 124
4-2.1.2.1 TiO2超細纖維對亞甲基藍光降解與暗吸附分析 125
4-2.1.2.2 ATZ超細纖維對亞甲基藍光降解與暗吸附分析 127
4-2.1.2.3 不同比例GO超細纖維對亞甲基藍光降解與暗吸附分析 130
4-2.1.2.4 不同GO-Ag超細纖維對亞甲基藍光降解與暗吸附分析 139
4-2.1.2.5 亞甲基藍水溶液光降解統整比較分析 148
4-2.2 染料甲基橙光降解分析實驗 149
4-2.2.1 甲基橙初始降解pH值的影響 150
4-2.2.2 甲基橙(MO)的光降解與暗吸附定量分析實驗 151
4-2.2.2.1 TiO2超細纖維對甲基橙光降解與暗吸附分析 151
4-2.2.2.2 ATZ超細纖維對甲基橙光降解與暗吸附分析 154
4-2.2.2.3 不同比例GO超細纖維對甲基橙光降解與暗吸附分析 156
4-2.2.2.4 不同GO-Ag超細纖維對甲基橙光降解與暗吸附分析 165
4-2.2.2.5 甲基橙水溶液光降解統整比較分析 174
第五章 結論 176
參考文獻 180


[1] G.Crini, “Non-conventional low-cost adsorbents for dye removal: a review” ,Bioresur. Technol. 97 (2006) 1061-1085.
[2] Bauer, C., “Photooxidation of an azo dye induced by visible light incident on the surface of TiO2” ,Journal of Photochemistry and Photobiology A: Chemistry,Vol.140,No.1,pp.(2001)87-92.
[3] 蘇弘毅、張明琴, “以零價鐵與奈米鐵還原脫色與礦化染料廢水之探討” ,第二十八屆廢水處理技術研討會論文集,(2004)。
[4] Lin, S.H., “Adsorption of disperse dye by powdered activated carbon” ,Journal of Chemical Technology and Biotechnology, Vol.57, No.4,pp.(1993)387-391.
[5] Destaillats, “Synergistic effect of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange” ,Journal of Physical Chemistry A,Vol.104,No.39,pp.(2000)8930-8935.
[6] Herrera F, Lopez A. “Catalytic decomposition of the reactive dye uniblue A on hematite. Modeling of the reactive surface” , Water research.(2001);35:750-60.
[7] Matos CT, Velizarov S. “Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept” , Water Research.(2006);40:231-40.
[8] Maree JP, Strydom WF. “Integrated iron(II) oxidation and limestone neutralisation of acid mine water” , Water Science and Technology.(1999);39:231-8.
[9] Doh SJ, Kim C. “Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants” , Journal of hazardous materials.(2008);154:118-27.
[10] Wang HY, Yang Y. “Preparation and characterization of porous TiO2/ZnO composite nanofibers via electrospinning” , Chinese Chemical Letters.(2010);21:1119-23.
[11] Pant B, Pant HR,et al. “Carbon nanofibers decorated with binary semiconductor(TiO2/ZnO)nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities” , Ceramics International.(2013).
[12] Nakata K, Fujishima A. “TiO2 photocatalysis:Design and applications” , Journal of Photochemistry and Photobiology C:Photochemistry Reviews.(2012);13:169-89.
[13] Alves AK, Berutti FA. “ Photocatalytic activity of titania fibers obtained by electrospinning” , Materials Research Bulletin.(2009);44:312-7.
[14] Tekmen C, Suslu A.“Titania nanofibers prepared by electrospinning. Materials Letters” ,(2008);62:4470-2.
[15] Fujishima A. “ Electrochemical photolysis of water at a semiconductor electrode” , nature.(1972);238:37-8.
[16] Kumar SG, “Devi LG.Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics” ,The journal of physical chemistry A.(2011);115:13211-41.
[17] 呂宗昕、吳偉宏, “奈米科技與二氧化鈦光觸媒”,科學發展 ,(2004).04. p.77.
[18] Kim CH, Kim B-H. “Visible light-induced photocatalytic activity of Ag-containing TiO2/carbon nanofibers composites” ,Synthetic Metals.(2011);161:1068-72.
[19] Park J-Y, Yun J-J. “Influence of silver doping on the phase transformation and crystallite growth of electrospun TiO2 nanofibers” ,Materials Letters.(2010);64:2692-5.
[20] Barakat NAM, Kanjwal MA. “Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers” ,Journal of Molecular Catalysis A: Chemical.(2013);366:333-40.
[21] J.Magdalena,T.Masahiro. “Carbon-modified TiO2 photocatalyst by ethanol carbonization” , J. Adv. Oxid. Technol.(2007)260-266.
[22] C.He,Y.Yu,X.Hu,A.Larbot. “Influence of silver doping on the photocatalytic activity of titania films” ,Appl. Surf. Sci.(2002)239-247.
[23] 陳宏昌,“複合光觸媒材料之製備及其對有機物降解之研究”,國立雲林科技大學化學工程與材料工程所碩士論文,(2013)。
[24] 陳富亮,最新奈米光觸媒應用技術,普林斯頓國際有限公司; (2003)。
[25] Stumm W, “Chemistry of the Solid-Water Interface” ,John Wiley and Sons, New Yourk.(1992).
[26] Linsebigler AL, Lu G, Yates Jr JT. “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results” ,Chemical Reviews.(1995);95:735-58.
[27] Frank SN, Bard AJ. “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders” ,The Journal of Physical Chemistry.(1977);81:1484-8.
[28] Journal of Photochemistry and Photobiology C:Photochemistry Reviews 1(2000)1-21.
[29] Xia Y, Yang P, Sun Y, Wu Y. “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications.Adv” ,Mater.(2003);15.
[30] 吳大誠、杜仲良、高緒珊,“奈米纖維”,五南圖書,(2003)。
[31] 徐國財、張立德,“奈米複合材料”,五南圖書出版公司,(2004)。
[32] 吳大誠、杜仲良、高緒珊,“奈米纖維”,(2004)。
[33] Lim SH, Hudson SM. “Application of a fiber-reactive chitosan derivative tocotton fabric as an antimicrobial textile finish” ,Carbohydr. Polym.(2004);56:227-34.
[34] Ryu YJ, Kim HY, Lee KH, Park HC, Lee DR. “Transport properties ofelectrospun nylon 6 nonwoven mats” ,European Polymer Journal.(2003);39:1883-9.
[35] Cheruvally G, Kim JK, Choi JW. “Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries. J” ,Power Sources.(2007);172:863-9.
[36] Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. “Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers” ,ACS Appl Mater Interfaces.(2009);1:1140-3.
[37] Balamurugan R, Sundarrajan S, Ramakrishna S. “Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations” ,Membranes.(2011);1:232-48.
[38] Liu T, Burger C, Chu B. “Nanofabrication in polymer matrices” ,Prog. Polym. Sci.(2003);28:5-26.
[39] Burger C, Hsiao BS, Chu B. “Nanofibrous Materials and Their Applications” , Annu. Rev. Mater. Res.(2006);36:333-68.
[40] Reneker DH, Chun I. “Nanometre diameter fibres of polymer, produced by electrospinning” ,Nanotechnology.(1996)7 216–23.
[41] Huang ZM, Zhang YZ, Kotaki M. “A review on polymer nanofibers by electrospinning and their applications in nanocomposites” ,Compos. Sci.Technol.(2003);63:2223-53.
[42] Feng C, Khulbe KC, Matsuura T. “Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization” ,Journal of Applied Polymer Science.(2010);115:756-76.
[43] Gomez-Navarro, Burghard, M., Kern, K. “Elastic properties of chemically derived single graphene sheets” ,Nano Lett.(2008), 8(7), 2045-2049.
[44] Rafiee M. A, Rafiee J, Wang Z, Song. “Enhanced mechanical properties of nanocomposites at low graphene content” ,ACS Nano(2009), 3(12), 3884-3890.
[45] K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. “ Electric Field Effect in Atomically ” ,Thin Carbon FilmsScience(2004)vol.306 pp.666-669.
[46] C. Berger , Z. Song, X. Li , X. Wu , N. Brown, C. Naud, D. Mayou, T. Li , J. Hass. “Electronic confinement and coherence in patterned epitaxial grapheme” ,Science vol. 312 No.5777 pp.1191-1196.
[47] Baji A, Mai YW, Wong SC, Abtahi M, Chen P. “Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties” ,Composites Science and Technology.(2010);70:703-18.
[48] Tan SH, Inai R, Kotaki M, Ramakrishna S. “Systematic parameter study for ultra-fine fiber fabrication via electrospinning process” ,Polymer.(2005);46:6128-34.
[49] Gupta P, Elkins C, Long TE, Wilkes GL. “Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent” ,Polymer.(2005);46:4799-810.
[50] Tao J, Shivkumar S. “Molecular weight dependent structural regimes during the electrospinning of PVA” ,Materials Letters.(2007);61:2325-8.
[51] Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. “Characterization of gelatin nanofiber prepared from gelatin–formic acid solution” ,Polymer.(2005);46:5094-102.
[52] Haghi AK, Akbari M. “Trends in electrospinning of natural nano fibers” ,Phys Status Solidi.(2007);204:1830-4.
[53] Shalumon KT, Anulekha KH, Girish CM, Prasanth R, Nair SV, Jayakumar R. “Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture” ,Carbohydr. Polym.(2010);80:413-9.
[54] 化工資訊月刊,第十六卷第五期以及第十二期
[55] Akira Fujishima,Kenichi Honda. “Photocatalyst” ,Nature 238, p.37(1972).
[56] 諸柏仁、楊德敏,“二氧化鈦改質”,國立中央大學化學系碩士論文,(2011)
[57] 陳永芳,“以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦”,國立交通大學應用化學研究所博士論文,(2003)。
[58] Park N-G, Van de Lagemaat J, Frank A. “Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells” ,The Journal of Physical Chemistry B.(2000);104:8989-94.
[59] Sun B, Smirniotis PG. “Interaction of anatase and rutile TiO2 particles in aqueous photooxidation” ,Catalysis Today.(2003);88:49-59.
[60] Bo Sun AVV, and Panagiotis G. “Smirniotis. Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation” ,Langmuir.(2003);19:3151 - 6.
[61] Augustynski. Electrochim Acta.(1993);38:43.
[62] Sopyan I, Watanabe M, Murasawa S, Hashimoto K, Fujishima A. “An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation” ,Journal of Photochemistry and Photobiology A: Chemistry.(1996);98:79-86.
[63] 胡毅、蔡瑞文,“染料敏化二氧化鈦電極特性之研究”,大同大學材料工程研究所碩論,(2006)。
[64] .Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev.(1995), 95, 69.
[65] 林榮良,“TiO2光催化原理和應用例子”,國立成功大學化學系專題報導,Chemistry(The Chinese Chem. SOC., Taipei)SEP.(2002)Vol. 60, No. 3, pp.457~461.
[66] Kiyoshi Kanie and Tadao Sugimoto. “Shape control of anatase TiO2 nanoparticles by amino acids in a gel-sol system” ,Chem Commun,(2004)1584-1585.
[67] Thammanoon Sreethawong, Yoshikazu Suzuki. “Synthesis, Characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted temolating sol-gel process” ,Journal of Solid state Chemistry 178(2005)329-338.
[68] Ling Wu, Jimmy C. Yu, Xinchen Wang, Lizhi Zhang, Jiaguo Yu. “Characterization of mesoporous nanocrystalline TiO2 Photocatalysts synthesized via a sol-solvothermal process at a low temperature” ,Journal of Solid state Chemistry178(2005)321-328.
[69] A.I. Kontos, I.M. Arabatzis, D.S. Tsoukleris. “Efficient photocatalysts by hydrothermal treated of TiO2” ,Catalysis Today 101(2005)275-281.
[70] 藤嶋昭、橋本和仁、渡部俊也,“圖解光觸媒”,世茂出版有限公司,(2006)。
[71] Li Q, Sun D, Kim H. “Fabrication of porous TiO2 nanofiber and its photocatalytic activity” ,Materials Research Bulletin.(2011);46:2094-9.
[72] Cai Z, Li J, Wang Y. “Fabrication of zinc titanate nanofibers by electrospinning technique” ,Journal of Alloys and Compounds.(2010);489:167-9.
[73] 劉媛媛、潘網,“吸附模式對有機物光催化降解的影響,H-酸在TiO2表面的吸附模式”, Environmental Chemistry 第1期 25卷,中國科學院生態環境研究中心,(2006)。
[74] S. Sato, “Photocatalytic activity of NOx -doped TiO2 in the visible light region” ,Chem. Phy. Lett., 123(1986)126-128.
[75] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui. “Preparation of S-doped TiO2 Photocatalysts and their. Photocatalytic Activities under Visible Light” ,Appl. Catal., 265(2004)115-121.
[76] J. Magdalena, T. Masahiro, I. Michio, T. Beata. “Carbon-modified TiO2 photocatalyst by ethanol carbonization ” ,J. Adv. Oxid. Technol., 10(2) (2007)260-266.
[77] Y. Suda, H. Kawasaki, T. Ueda, T. Ohshima. “Preparation of high quality nitrogen doped thin film as a photocatalyst using a pulse laser deposition method” ,Thin Solid Films, 453-454(2004)162-166.
[78] Y. Suda, H. Kawasaki, T. Ueda, T. Ohshima. “Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture” ,Thin Solid Films, 475(2005)337-341.
[79] G. S. Shao, X. J. Zhang, Z. Y. Yuan. “Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-x Nx ” ,Appl. Catal. B: Environ., 82(2008)208-218.
[80] J. H. Xu, J. Li, W. L. Dai, Y. Cao, H. Li, K. Fan. “Simple fabrication of twist-like helix N,S-codoped titania photocatalyst with visible-light response” ,Appl. Catal. B: Environ., 79(2008)72–80.
[81] M. Sathish, B. Viswanathan, R. P. Viswanath. “Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti–melamine complex” ,Appl. Catal. B: Environ.,74(2007)307–312.
[82] Qiang Dong, Gang Wang, Han Hu, Juan Yang. “Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors” , Journal of Power Sources 243(2013)350-353.
[83] Jingxia Qiu, Chao Lai, Yazhou Wang, Sheng Li. “Resilient mesoporous TiO2 /graphene nanocomposite for high rate performance lithium-ion batteries” , Chemical Engineering Journal 256(2014)247–254.
[84] Yanan Liu, Mira Park, Hye Kyoung Shin, Bishweshwar Pant. “Facile preparation and characterization of poly(vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers” , Journal of Industrial and Engineering Chemistry,(2014).
[85] Hem Raj Pant, Chan Hee Park , Leonard D. Tijing , Altangerel Amarjargal. “Bimodal fiber diameter distributed graphene oxide/nylon-6 composite nanofibrous mats via electrospinning” , Colloids and Surfaces A: Physicochem. Eng. Aspects 407(2012)121–125.
[86] Hem Raj Pant, Bishweshwar Pant, Pashupati Pokharel, Han Joo Kim. “Photocatalytic TiO2 –RGO/nylon-6 spider-wave-like nano-nets via electrospinning and hydrothermal treatment” , Journal of Membrane Science 429(2013)225–234.
[87] C. He, Y. Yu, X. Hu, A. Larbot. “Influence of silver doping on the photocatalytic activity of titania films” , Appl. Surf. Sci., 200(2002)239-247.
[88] H. W. Chen, Y. Ku, Y. L. Kuo. “Photodegradation of o-cresol with Ag Deposited on TiO2 under Visible and UV Light Irradiation” ,Chem. Eng. Technol., 30(9)(2007)1242-1247.
[89] H. W. Chen, Y. Ku, Y. L. Kuo. “Effect of Pt/TiO2 Characteristics on Temporal Behavior of o-Cresol Decomposition by Visible Light Induced Photocatalysis” ,Water Res., 41(2007)2069-2078.
[90] H. Nakajima, T. Mori. “Influence of platinum loading on photoluminescence of TiO2 powder” ,J. Appl. Phy., 96(2004)925-927.
[91] K. M. Beck, T. Sasaki, N. Koshizaki. “Characterization of nanocomposite materials prepared via laser ablation of Pt/TiO2 bicombinant targets” ,Chem. Phy. Lett., 301(1999)336-342.
[92] C. M. Ma, Y. Ku, F. T. Jeng, Y. L. Kuo. “Effect of Platinum on the Decomposition Efficiency and Apparent Quantum Yield of Photocatalysis of Isopropanol in an Annular Photoreactor” ,J. Adv. Oxid. Technol., 10(2)(2007)361-368.
[93] I. H. Tseng, W. C. Chang, J. C.S. Wu. “Photoreduction of CO2 Using Sol-Gel Derived Titania and Titania-Supported Copper Catalysts” ,Appl. Catal. B: Environ., 37(2002), 37–48.
[94] X. Z. Li, F. B. Li, C. L. Yang, W. K. Ge. “Photocatalytic activity of WOx -TiO2 under visible light irradiation” ,Chemistry., A 141(2001)209-217.
[95] Xin B, Jing L, Ren Z, Wang B, Fu H. “Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2” ,The Journal of Physical Chemistry B.(2005);109:2805-9.
[96] He C, Yu Y, Hu X, Larbot A. “Influence of silver doping on the photocatalytic activity of titania films” ,Applied Surface Science.(2002);200:239-47.
[97] Li X, Wang F, Qian Q, Liu X, Xiao L, Chen Q. “Ag/ TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion” ,Materials Letters.(2012);66:370-3.
[98] Formhals A. US Patent(1975)1934:504.
[99] Aryal S, Kim CK, Kim K-W, Khil MS, Kim HY. “Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning” ,Materials Science and Engineering: C.(2008);28:75-9.
[100] 呂倩如,“以三維具方向性奈米纖維製備細胞導管及其性質研究”,國立雲林科技大學化學工程與材料工程所碩士論文,(2013)。
[101] Yan S, Xiaoqiang L, Lianjiang T, Chen H, Xiumei M. “Poly (l-lactide-co-ɛ-caprolactone)electrospun nanofibers for encapsulating and sustained releasing proteins” ,Polymer.(2009);50:4212-9.
[102] Katti DS, Robinson KW, Ko FK, Laurencin CT. “Bioresorbable nanofiber‐based systems for wound healing and drug delivery: Optimization of fabrication parameters” ,Journal of Biomedical Materials Research Part B: Applied Biomaterials.(2004);70:286-96.
[103] Geng X, Kwon O, Jang J. “Electrospinning of chitosan dissolved in concentrated acetic acid solution” ,Biomaterials.(2005);26:5427-32.
[104] Koski A, Yim K, Shivkumar S. “Effect of molecular weight on fibrous PVA produced by electrospinning” ,Materials Letters.(2004);58:493-7.
[105] Tao J, Shivkumar S. “Molecular weight dependent structural regimes during the electrospinning of PVA” ,Materials Letters.(2007);61:2325-8.
[106] Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. “Characterization of gelatin nanofiber prepared from gelatin–formic acid solution” ,Polymer.(2005);46:5094-102.
[107] H. Fong IC, D.H. Reneker. “Beaded nanofibers formed during electrospinning” ,Polymer.(1999);40:4585-92.
[108] Merih Zeynep Avcı, A. Sezai Sarac. “Transparent Poly(methyl methacrylate-co-butyl acrylate)Nanofibers” , Journal of applied polymer science.(2013).
[109] Murugan R, Ramakrishna S. “Nano-featured scaffolds for tissue engineering: a review of spinning methodologies” ,Tissue engineering.(2006);12:435-47.
[110] Cooper A, Bhattarai N, Zhang M. “Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration” ,Carbohydrate Polymers.(2011);85:149-56.
[111] Murugan R, Ramakrishna S. “Nano-Featured Scaffolds for Tissue Engineering A Review of Spinning Methodologies” ,Tissue Engineering.(2006);12:435-47.
[112] 章裕民,“環境化學工程”,文京圖書有限公司,大揚出版社,民國 87。
[113] 劉凡新、崔作林、張志琨,“奈米TiO2複合薄膜光催化降解甲基橙的研究”, Photographic Science And Photochemistry(青島科技大學奈米材料研究所碩士論文),(2003)。
[114] 高磊、陳宏、李立青,“Fenton 氧化法降解甲基橙之研究”, Journal of Southwest University(Natural Science Edition),西南大學資源環境學院,(2010)。
[115] 王怡中、符雁、湯鴻霄,“甲基橙溶液多相光催化降解研究”, Environmental Science(中國科學院生態環境研究中心),(1998)。
[116] 林麗娟,“X光繞射原理及其應用”,工業材料 86 期,(1994)。
[117] 羅聖全,“研發奈米科技基本工具之-電子顯微鏡-SEM”,小奈米大世界,(2004)。
[118] 科儀新知,第十七卷三期,(1995)。
[119] 馬振基,“奈米材料科技原理與應用”,全華科技,(2003)。
[120] 曹明禮、曹明賀,“非金屬納米礦物材料”,北京化學工業出版社,(2005)。
[121] A. Lerf,H.He,“ Structure of Graphite Oxide Revisited”,The Journal of Physical Chemistry B. vol.102, pp :4477-4482(1998)。
[122] Suwanchawalit C,Wongnawa S,“ Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light”,Ceramics International,(2012)。
[123] A.C. Ferrari,J. Robertson,“ nterpretation of Raman spectra of disordered and amorphous carbon ”,Phys. Rev. B vol. 61 pp.14095–14107,(2000)。
[124] Bin Wang,Huolin Xin,Xiaodong Li,“Mesoporous CNT@TiO2-C Nanocable with Extremely Durable High Rate Capability for Lithium-Ion Battery Anodes ”,Scienrific Reports,(2014)。
[125] Prof. Yu-Lin Kuo,Bo-Kai Chao,“Materials Characteristics, Photodegradation and Electrical Properties of CuOx /TiO2 Composite Photocatalysts”,Thesis for Master of Science Department of Materials Engineering Tatung University,(2009)。
[126] Fei-Fei Cao,Yu-Guo Guo,Shu-Fa Zheng,“Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem”,Chemistry of Materisls Article,(2010)。
[127] Epifani M,Giannini C,Tapfer L,“Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2 , TiO2 , and ZrO2 thin films”,Journal of the American Ceramic Society,(2000)。
[128] 魏玉麟、張碩修,“具可見光吸收之銅、鉻、鐵改質型TiO2奈米光觸媒”, 東海大學環境科學與工程系研究所碩士論文,(2008)。
[129] B. Zhao,P. Liu,Y. Jiang,D. Pan,“Supercapacitor performances of thermally reduced graphene oxide”,J. Power Sources, vol. 198, pp.423–427,(2012)。
[130] A.M. Abdelghany,E.M. Abdelrazek,D.S. Rashad,“Impact of in situ preparation of CdS filled PVP nano-composite”,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,(2014)。
[131] S. Prasanth,P. Irshad,D. Rithesh Raj,“Nonlinear optical property and fluorescence quenching behavior of PVP capped ZnS nanoparticles co-doped with Mn2+ and Sm3+”,Journal of Luminescence,(2015)。
[132] Xin Huang,Weiping Wang,Yaodong Liu,“Treatment of oily waste water by PVP grafted PVDF ultrafiltration membranes”,Chemical Engineering Journal,(2015)。
[133] Mohammad Taghi Taghizadeh,Reza Abdollahi,“Crystallization behavior, thermal property and enzymatic degradation of PVP/amylose in the presence of graphene oxide nanosheets”, Polymer Degradation and Stability,(2015)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top