|
PART1: 1.Kirshenbaum, L.A., Regulation of autophagy in the heart in health and disease. J Cardiovasc Pharmacol, 2012. 60(2): p. 109.
2.Rask-Madsen, C. and C.R. Kahn, Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol, 2012. 32(9): p. 2052-9.
3.Zhou, Y.T., et al., Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1784-9.
4.Buchanan, J., et al., Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology, 2005. 146(12): p. 5341-9.
5.Beeharry, N., J.A. Chambers, and I.C. Green, Fatty acid protection from palmitic acid-induced apoptosis is lost following PI3-kinase inhibition. Apoptosis, 2004. 9(5): p. 599-607.
6.Warensjo, E., et al., Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality: a population-based prospective study. Am J Clin Nutr, 2008. 88(1): p. 203-9.
7.Katsoulieris, E., et al., alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur J Pharmacol, 2009. 623(1-3): p. 107-12.
8.Sparling, P.B., B.A. Franklin, and J.O. Hill, Energy balance: the key to a unified message on diet and physical activity. J Cardiopulm Rehabil Prev, 2013. 33(1): p. 12-5.
9.Stanley, W.C. and M.P. Chandler, Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev, 2002. 7(2): p. 115-30.
10.Lopaschuk, G.D., et al., Myocardial fatty acid metabolism in health and disease. Physiol Rev, 2010. 90(1): p. 207-58.
11.Goodwin, G.W., C.S. Taylor, and H. Taegtmeyer, Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem, 1998. 273(45): p. 29530-9.
12.Perseghin, G., et al., Abnormal left ventricular energy metabolism in obese men with preserved systolic and diastolic functions is associated with insulin resistance. Diabetes Care, 2007. 30(6): p. 1520-6.
13.Sambandam, N. and G.D. Lopaschuk, AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res, 2003. 42(3): p. 238-56.
14.Aras, O. and V. Dilsizian, Targeting ischemic memory. Curr Opin Biotechnol, 2007. 18(1): p. 46-51.
15.Dolinsky, V.W. and J.R. Dyck, Role of AMP-activated protein kinase in healthy and diseased hearts. Am J Physiol Heart Circ Physiol, 2006. 291(6): p. H2557-69.
16.Samovski, D., et al., Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res, 2012. 53(4): p. 709-17.
17.Schwenk, R.W., et al., Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia, 2010. 53(10): p. 2209-19.
18.Abbott, M.J., A.M. Edelman, and L.P. Turcotte, CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 2009. 297(6): p. R1724-32.
19.Chau, M.D., et al., Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci U S A, 2010. 107(28): p. 12553-8.
20.Bogachus, L.D. and L.P. Turcotte, Genetic downregulation of AMPK-alpha isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells. Am J Physiol Cell Physiol, 2010. 299(6): p. C1549-61.
21.Dirkx, E., et al., High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids, 2011. 85(5): p. 219-25.
22.Garcia-Rua, V., et al., Increased expression of fatty-acid and calcium metabolism genes in failing human heart. PLoS One, 2012. 7(6): p. e37505.
23.Luiken, J.J., et al., Permissive action of protein kinase C-zeta in insulin-induced CD36- and GLUT4 translocation in cardiac myocytes. J Endocrinol, 2009. 201(2): p. 199-209.
24.Heather, L.C., et al., Differential translocation of the fatty acid transporter, FAT/CD36, and the glucose transporter, GLUT4, coordinates changes in cardiac substrate metabolism during ischemia and reperfusion. Circ Heart Fail, 2013. 6(5): p. 1058-66.
25.Steinbusch, L.K., et al., Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol Life Sci, 2011. 68(15): p. 2525-38.
26.Jeong, K.J., G.W. Kim, and S.H. Chung, AMP-activated protein kinase: An emerging target for ginseng. J Ginseng Res, 2014. 38(2): p. 83-88.
27.Kyriakis, J.M., At the crossroads: AMP-activated kinase and the LKB1 tumor suppressor link cell proliferation to metabolic regulation. J Biol, 2003. 2(4): p. 26.
28.Kim, A.S., E.J. Miller, and L.H. Young, AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf), 2009. 196(1): p. 37-53.
29.Nagendran, J., T.J. Waller, and J.R. Dyck, AMPK signalling and the control of substrate use in the heart. Mol Cell Endocrinol, 2013. 366(2): p. 180-93.
30.Viollet, B. and F. Andreelli, AMP-activated protein kinase and metabolic control. Handb Exp Pharmacol, 2011(203): p. 303-30.
31.Neculai, D., et al., Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature, 2013. 504(7478): p. 172-6.
32.Koonen, D.P., et al., Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta, 2005. 1736(3): p. 163-80.
33.Koonen, D.P., et al., Different mechanisms can alter fatty acid transport when muscle contractile activity is chronically altered. Am J Physiol Endocrinol Metab, 2004. 286(6): p. E1042-9.
34.Scheepers, A., H.G. Joost, and A. Schurmann, The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr, 2004. 28(5): p. 364-71.
35.Piper, R.C., et al., GLUT-4 NH2 terminus contains a phenylalanine-based targeting motif that regulates intracellular sequestration. J Cell Biol, 1993. 121(6): p. 1221-32.
36.Al-Hasani, H., et al., Roles of the N- and C-termini of GLUT4 in endocytosis. J Cell Sci, 2002. 115(Pt 1): p. 131-40.
37.Martinez-Arca, S., V.S. Lalioti, and I.V. Sandoval, Intracellular targeting and retention of the glucose transporter GLUT4 by the perinuclear storage compartment involves distinct carboxyl-tail motifs. J Cell Sci, 2000. 113 ( Pt 10): p. 1705-15.
38.Garippa, R.J., et al., The carboxyl terminus of GLUT4 contains a serine-leucine-leucine sequence that functions as a potent internalization motif in Chinese hamster ovary cells. J Biol Chem, 1996. 271(34): p. 20660-8.
39.Corvera, S., et al., A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal. J Cell Biol, 1994. 126(4): p. 979-89.
40.Zhu, X. and J.S. Parks, New roles of HDL in inflammation and hematopoiesis. Annu Rev Nutr, 2012. 32: p. 161-82.
41.Mooradian, A.D., M.J. Haas, and N.C. Wong, The effect of select nutrients on serum high-density lipoprotein cholesterol and apolipoprotein A-I levels. Endocr Rev, 2006. 27(1): p. 2-16.
42.Mooradian, A.D., M.J. Haas, and N.C. Wong, Transcriptional control of apolipoprotein A-I gene expression in diabetes. Diabetes, 2004. 53(3): p. 513-20.
43.Forti, N. and J. Diament, High-density lipoproteins: metabolic, clinical, epidemiological and therapeutic intervention aspects. An update for clinicians. Arq Bras Cardiol, 2006. 87(5): p. 671-9.
44.Berrougui, H., C.N. Momo, and A. Khalil, Health benefits of high-density lipoproteins in preventing cardiovascular diseases. J Clin Lipidol, 2012. 6(6): p. 524-33.
45.Rader, D.J., Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest, 2006. 116(12): p. 3090-100.
46.Chapman, M.J., et al., Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid--a position paper developed by the European Consensus Panel on HDL-C. Curr Med Res Opin, 2004. 20(8): p. 1253-68.
47.Adams, V., et al., Exercise training in patients with chronic heart failure promotes restoration of high-density lipoprotein functional properties. Circ Res, 2013. 113(12): p. 1345-55.
48.Churchill, E.N., et al., Reperfusion-induced translocation of deltaPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation. Circ Res, 2005. 97(1): p. 78-85.
49.Young, L.H., et al., Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation, 1997. 95(2): p. 415-22.
50.Schaffer, J.E. and H.F. Lodish, Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell, 1994. 79(3): p. 427-36.
51.Martin, C., et al., CD36 as a lipid sensor. Physiol Behav, 2011. 105(1): p. 36-42.
52.Chabowski, A., et al., Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids, 2007. 77(5-6): p. 345-53.
53.Wu, Q., et al., FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol, 2006. 26(9): p. 3455-67.
54.Coburn, C.T., et al., Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem, 2000. 275(42): p. 32523-9.
55.Xu, S., et al., CD36 enhances fatty acid uptake by increasing the rate of intracellular esterification but not transport across the plasma membrane. Biochemistry, 2013. 52(41): p. 7254-61.
56.Cheon, H.G. and Y.S. Cho, Protection of palmitic acid-mediated lipotoxicity by arachidonic acid via channeling of palmitic acid into triglycerides in C2C12. J Biomed Sci, 2014. 21: p. 13.
57.Cho, Y.S., et al., Protective effects of arachidonic acid against palmitic acid-mediated lipotoxicity in HIT-T15 cells. Mol Cell Biochem, 2012. 364(1-2): p. 19-28.
58.Estadella, D., et al., Lipotoxicity: effects of dietary saturated and transfatty acids. Mediators Inflamm, 2013. 2013: p. 137579.
59.Stanley, W.C., et al., Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ Res, 2012. 110(5): p. 764-76.
60.de Vries, J.E., et al., Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res, 1997. 38(7): p. 1384-94.
61.van der Lee, K.A., et al., Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res, 2000. 41(1): p. 41-7.
62.van den Brom, C.E., et al., Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats: studies using positron emission tomography. Cardiovasc Diabetol, 2009. 8: p. 39.
63.Severson, D.L., Diabetic cardiomyopathy: recent evidence from mouse models of type 1 and type 2 diabetes. Can J Physiol Pharmacol, 2004. 82(10): p. 813-23.
64.Nichols, G.A., et al., The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care, 2004. 27(8): p. 1879-84.
65.Grundy, S.M., et al., Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation, 1999. 100(10): p. 1134-46.
66.Holland, W.L., et al., Lipid mediators of insulin resistance. Nutr Rev, 2007. 65(6 Pt 2): p. S39-46.
67.DeFronzo, R.A., Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia, 2010. 53(7): p. 1270-87.
68.Brundert, M., et al., Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. J Lipid Res, 2011. 52(4): p. 745-58.
69.Vaziri, N.D., Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. J Ren Nutr, 2010. 20(5 Suppl): p. S35-43.
70.Koozehchian, M.S., et al., The role of exercise training on lipoprotein profiles in adolescent males. Lipids Health Dis, 2014. 13(1): p. 95.
71.Labonte, M.E., et al., Adding MUFA to a dietary portfolio of cholesterol-lowering foods reduces apoAI fractional catabolic rate in subjects with dyslipidaemia. Br J Nutr, 2013. 110(3): p. 426-36.
72.Gilmore, L.A., et al., Exercise attenuates the increase in plasma monounsaturated fatty acids and high-density lipoprotein cholesterol but not high-density lipoprotein 2b cholesterol caused by high-oleic ground beef in women. Nutr Res, 2013. 33(12): p. 1003-11.
73.Niesor, E.J., et al., Xanthophylls, phytosterols and pre-beta1-HDL are differentially affected by fenofibrate and niacin HDL-raising in a cross-over study. Lipids, 2013. 48(12): p. 1185-96.
74.Yamashita, S. and K. Yamashita, Effect of high-fiber diet on plasma high density lipoprotein (HDL) cholesterol level in streptozotocin-induced diabetic rats. Endocrinol Jpn, 1980. 27(5): p. 671-3.
75.Mietus-Snyder, M.L., et al., A nutrient-dense, high-fiber, fruit-based supplement bar increases HDL cholesterol, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-wk trial. Faseb j, 2012. 26(8): p. 3515-27.
76.Guetta, V. and R.O. Cannon, 3rd, Cardiovascular effects of estrogen and lipid-lowering therapies in postmenopausal women. Circulation, 1996. 93(10): p. 1928-37.
77.Nofer, J.R., Estrogens and atherosclerosis: insights from animal models and cell systems. J Mol Endocrinol, 2012. 48(2): p. R13-29.
PART2: 1.Kirshenbaum, L.A., Regulation of autophagy in the heart in health and disease. J Cardiovasc Pharmacol, 2012. 60(2): p. 109.
2.Rask-Madsen, C. and C.R. Kahn, Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol, 2012. 32(9): p. 2052-9.
3.Zhou, Y.T., et al., Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1784-9.
4.Buchanan, J., et al., Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology, 2005. 146(12): p. 5341-9.
5.Beeharry, N., J.A. Chambers, and I.C. Green, Fatty acid protection from palmitic acid-induced apoptosis is lost following PI3-kinase inhibition. Apoptosis, 2004. 9(5): p. 599-607.
6.Warensjo, E., et al., Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality: a population-based prospective study. Am J Clin Nutr, 2008. 88(1): p. 203-9.
7.Katsoulieris, E., et al., alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur J Pharmacol, 2009. 623(1-3): p. 107-12.
8.Sparling, P.B., B.A. Franklin, and J.O. Hill, Energy balance: the key to a unified message on diet and physical activity. J Cardiopulm Rehabil Prev, 2013. 33(1): p. 12-5.
9.Stanley, W.C. and M.P. Chandler, Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev, 2002. 7(2): p. 115-30.
10.Lopaschuk, G.D., et al., Myocardial fatty acid metabolism in health and disease. Physiol Rev, 2010. 90(1): p. 207-58. 11.Goodwin, G.W., C.S. Taylor, and H. Taegtmeyer, Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem, 1998. 273(45): p. 29530-9.
12.Cetrullo, S., et al., Antiapoptotic and antiautophagic effects of eicosapentaenoic acid in cardiac myoblasts exposed to palmitic acid. Nutrients, 2012. 4(2): p. 78-90.
13.Terman, A. and U.T. Brunk, Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res, 2005. 68(3): p. 355-65.
14.Rubinstein, A.D. and A. Kimchi, Life in the balance - a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci, 2012. 125(Pt 22): p. 5259-68.
15.Mizushima, N., et al., Autophagy fights disease through cellular self-digestion. Nature, 2008. 451(7182): p. 1069-75.
16.Baehrecke, E.H., Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 2005. 6(6): p. 505-10.
17.Edinger, A.L. and C.B. Thompson, Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol, 2004. 16(6): p. 663-9.
18.Feng, Y., et al., The machinery of macroautophagy. Cell Res, 2014. 24(1): p. 24-41.
19.Yang, Z. and D.J. Klionsky, Eaten alive: a history of macroautophagy. Nat Cell Biol, 2010. 12(9): p. 814-22.
20.Esclatine, A., M. Chaumorcel, and P. Codogno, Macroautophagy signaling and regulation. Curr Top Microbiol Immunol, 2009. 335: p. 33-70.
21.Li, W.W., J. Li, and J.K. Bao, Microautophagy: lesser-known self-eating. Cell Mol Life Sci, 2012. 69(7): p. 1125-36.
22.Cuervo, A.M. and E. Wong, Chaperone-mediated autophagy: roles in disease and aging. Cell Res, 2014. 24(1): p. 92-104. 23.Gump, J.M. and A. Thorburn, Autophagy and apoptosis: what is the connection? Trends Cell Biol, 2011. 21(7): p. 387-92.
24.Pyo, J.O., J. Nah, and Y.K. Jung, Molecules and their functions in autophagy. Exp Mol Med, 2012. 44(2): p. 73-80.
25.Hou, X., et al., Advanced glycation endproducts trigger autophagy in cadiomyocyte Via RAGE/PI3K/AKT/mTOR pathway. Cardiovasc Diabetol, 2014. 13(1): p. 78.
26.Klionsky, D.J., The molecular machinery of autophagy: unanswered questions. J Cell Sci, 2005. 118(Pt 1): p. 7-18.
27.Maiuri, M.C., et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007. 8(9): p. 741-52.
28.Wang, Z.V., A. Ferdous, and J.A. Hill, Cardiomyocyte autophagy: metabolic profit and loss. Heart Fail Rev, 2013. 18(5): p. 585-94.
29.Mellor, K.M., M.E. Reichelt, and L.M. Delbridge, Autophagy anomalies in the diabetic myocardium. Autophagy, 2011. 7(10): p. 1263-7.
30.Ahn, J. and J. Kim, Nutritional status and cardiac autophagy. Diabetes Metab J, 2013. 37(1): p. 30-5.
31.Marino, G., et al., Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol, 2014. 15(2): p. 81-94.
32.Lee, Y., H.Y. Lee, and A.B. Gustafsson, Regulation of autophagy by metabolic and stress signaling pathways in the heart. J Cardiovasc Pharmacol, 2012. 60(2): p. 118-24.
33.Giricz, Z., R.M. Mentzer, Jr., and R.A. Gottlieb, Autophagy, myocardial protection, and the metabolic syndrome. J Cardiovasc Pharmacol, 2012. 60(2): p. 125-32.
34.Mellor, K.M., M.E. Reichelt, and L.M. Delbridge, Autophagic predisposition in the insulin resistant diabetic heart. Life Sci, 2013. 92(11): p. 616-20. 35.Beer, M., et al., Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol, 2002. 40(7): p. 1267-74.
36.Egan, D.F., et al., Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 2011. 331(6016): p. 456-61.
37.Matsui, Y., et al., Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res, 2007. 100(6): p. 914-22.
38.Yan, L., et al., Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A, 2005. 102(39): p. 13807-12.
39.Wang, Z.V., B.A. Rothermel, and J.A. Hill, Autophagy in hypertensive heart disease. J Biol Chem, 2010. 285(12): p. 8509-14.
40.Gottlieb, R.A. and R.M. Mentzer, Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol, 2010. 72: p. 45-59.
41.Kroemer, G., et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ, 2009. 16(1): p. 3-11.
42.Ryter, S.W. and K. Mizumura, The Impact of Autophagy on Cell Death Modalities. 2014. 2014: p. 502676.
43.Galluzzi, L., et al., Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ, 2009. 16(8): p. 1093-107.
44.Kroemer, G., G. Marino, and B. Levine, Autophagy and the integrated stress response. Mol Cell, 2010. 40(2): p. 280-93.
45.Shen, H.M. and P. Codogno, Autophagic cell death: Loch Ness monster or endangered species? Autophagy, 2011. 7(5): p. 457-65. 46.Shen, S., O. Kepp, and G. Kroemer, The end of autophagic cell death? Autophagy, 2012. 8(1): p. 1-3.
47.Galluzzi, L., et al., Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ, 2012. 19(1): p. 107-20.
48.Young, M.M., et al., Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem, 2012. 287(15): p. 12455-68.
49.Kyriakis, J.M., At the crossroads: AMP-activated kinase and the LKB1 tumor suppressor link cell proliferation to metabolic regulation. J Biol, 2003. 2(4): p. 26.
50.Kim, A.S., E.J. Miller, and L.H. Young, AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf), 2009. 196(1): p. 37-53.
51.Roach, P.J., AMPK -> ULK1 -> autophagy. Mol Cell Biol, 2011. 31(15): p. 3082-4.
52.Kim, J., et al., AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 2011. 13(2): p. 132-41.
53.Di Nardo, A., et al., Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Hum Mol Genet, 2014.
54.Zheng, Q., et al., Inhibition of AMPK Accentuates Prolonged Caloric Restriction-Induced Change in Cardiac Contractile Function through Disruption of Compensatory Autophagy. Biochim Biophys Acta, 2014.
55.Zhu, X. and J.S. Parks, New roles of HDL in inflammation and hematopoiesis. Annu Rev Nutr, 2012. 32: p. 161-82.
56.Mooradian, A.D., M.J. Haas, and N.C. Wong, The effect of select nutrients on serum high-density lipoprotein cholesterol and apolipoprotein A-I levels. Endocr Rev, 2006. 27(1): p. 2-16.
57.Mooradian, A.D., M.J. Haas, and N.C. Wong, Transcriptional control of apolipoprotein A-I gene expression in diabetes. Diabetes, 2004. 53(3): p. 513-20.
58.Forti, N. and J. Diament, High-density lipoproteins: metabolic, clinical, epidemiological and therapeutic intervention aspects. An update for clinicians. Arq Bras Cardiol, 2006. 87(5): p. 671-9.
59.Berrougui, H., C.N. Momo, and A. Khalil, Health benefits of high-density lipoproteins in preventing cardiovascular diseases. J Clin Lipidol, 2012. 6(6): p. 524-33.
60.Rader, D.J., Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest, 2006. 116(12): p. 3090-100.
61.Wang, S. and D. Peng, Regulation of adipocyte autophagy--the potential anti-obesity mechanism of high density lipoprotein and ApolipoproteinA-I. Lipids Health Dis, 2012. 11: p. 131.
62.Tao, R., et al., High-density lipoprotein determines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate. Am J Physiol Heart Circ Physiol, 2010. 298(3): p. H1022-8.
63.Pagler, T.A., et al., SR-BI-mediated high density lipoprotein (HDL) endocytosis leads to HDL resecretion facilitating cholesterol efflux. J Biol Chem, 2006. 281(16): p. 11193-204.
64.Zhang, Q., et al., High density lipoprotein (HDL) promotes glucose uptake in adipocytes and glycogen synthesis in muscle cells. PLoS One, 2011. 6(8): p. e23556.
65.Rigotti, A., H.E. Miettinen, and M. Krieger, The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr Rev, 2003. 24(3): p. 357-87.
66.Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-73.
67.Rikiishi, H., Novel Insights into the Interplay between Apoptosis and Autophagy. Int J Cell Biol, 2012. 2012: p. 317645.
68.Paumen, M.B., et al., Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem, 1997. 272(6): p. 3324-9.
69.Kong, J.Y. and S.W. Rabkin, Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: prevention by cyclosporin A. Biochim Biophys Acta, 2000. 1485(1): p. 45-55.
70.Fleming, A., et al., Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol, 2011. 7(1): p. 9-17.
71.Brundert, M., et al., Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. J Lipid Res, 2011. 52(4): p. 745-58.
72.Vaziri, N.D., Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. J Ren Nutr, 2010. 20(5 Suppl): p. S35-43.
73.Adams, V., et al., Exercise training in patients with chronic heart failure promotes restoration of high-density lipoprotein functional properties. Circ Res, 2013. 113(12): p. 1345-55.
74.Koozehchian, M.S., et al., The role of exercise training on lipoprotein profiles in adolescent males. Lipids Health Dis, 2014. 13(1): p. 95.
75.Labonte, M.E., et al., Adding MUFA to a dietary portfolio of cholesterol-lowering foods reduces apoAI fractional catabolic rate in subjects with dyslipidaemia. Br J Nutr, 2013. 110(3): p. 426-36.
76.Gilmore, L.A., et al., Exercise attenuates the increase in plasma monounsaturated fatty acids and high-density lipoprotein cholesterol but not high-density lipoprotein 2b cholesterol caused by high-oleic ground beef in women. Nutr Res, 2013. 33(12): p. 1003-11.
77.Niesor, E.J., et al., Xanthophylls, phytosterols and pre-beta1-HDL are differentially affected by fenofibrate and niacin HDL-raising in a cross-over study. Lipids, 2013. 48(12): p. 1185-96.
78.Yamashita, S. and K. Yamashita, Effect of high-fiber diet on plasma high density lipoprotein (HDL) cholesterol level in streptozotocin-induced diabetic rats. Endocrinol Jpn, 1980. 27(5): p. 671-3.
79.Mietus-Snyder, M.L., et al., A nutrient-dense, high-fiber, fruit-based supplement bar increases HDL cholesterol, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-wk trial. Faseb j, 2012. 26(8): p. 3515-27.
80.Guetta, V. and R.O. Cannon, 3rd, Cardiovascular effects of estrogen and lipid-lowering therapies in postmenopausal women. Circulation, 1996. 93(10): p. 1928-37.
81.Nofer, J.R., Estrogens and atherosclerosis: insights from animal models and cell systems. J Mol Endocrinol, 2012. 48(2): p. R13-29.
|