跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 09:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡佾倢
研究生(外文):Yi-Chieh Tsai
論文名稱:高密度脂蛋白藉由減少棕櫚酸在心肌細胞產生能量代謝的轉換並導致自噬性細胞死亡
論文名稱(外文):High-density lipoprotein (HDL) promotes energy metabolism by attenuating palmitic acid-induced switch CD36 to GLUT4 and autophagic cell death in H9c2 cardiomyoblast cells
指導教授:黃志揚黃志揚引用關係
指導教授(外文):Chih-Yang Huang
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:基礎醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:83
中文關鍵詞:棕櫚酸心臟能量代謝肥胖自噬作用細胞凋亡自噬性細胞死亡高密度脂蛋白
外文關鍵詞:palmitic acidenergy metabolismcardiomyoblastCD36GLUT4autophagyapoptosisautophagic cell deathHDL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:627
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
PART1: 人體攝取過多的脂肪酸會導致代謝症候群的產生,高血壓、高血糖、高血脂、高密度膽固醇過低以及肥胖都是造成心血管疾病的危險因子,在心臟中飽和脂肪酸的攝取量過多時有助於增加心血管疾病,並且導致心臟產生脂毒性。於先前文獻中指出,脂毒性造成心臟能量代謝異常,並且引起心臟收縮功能異常進而導致心臟衰竭。心臟的能量主要是利用脂肪酸(50-70%)和葡萄糖(20-30%)做為能量代謝來源。脂肪酸是透過Cluster of Differentiation 36 (CD36)進到細胞;葡糖糖則是透過Glucose transporter type 4 (GLUT4)進到細胞。正常心肌細胞中能量代謝有胰島素路徑和肌肉收縮路徑,這兩條途徑分別會影響CD36和GLUT4易位到細胞膜上攝取脂肪酸和葡萄糖,並且已有文獻指出,脂肪酸在心肌細胞中的累積會抑制胰島素路徑Akt/CD36脂肪酸代謝路徑。因此本論文希望研究心肌細胞攝取過多棕櫚酸對於CD36和GLUT4間轉換和代謝的關係。研究中,我們採用了老鼠心臟衍生的H9c2肌原母細胞以及新生鼠初代培養的心室細胞,將其給予長時間的棕櫚酸,結果顯示在心肌細胞脂肪酸累積過多形成脂毒性後,細胞膜上CD36蛋白表現量減少,反之GLUT4則是在細胞膜上大量累積,從不同時間點上也顯示能量代謝從六小時開始從脂肪酸轉為使用葡萄糖,並且影響CD36蛋白表現量下降,而不是影響mRNA。另一方面,我們給予細胞高密度脂蛋白模擬運動是否可以抑制棕櫚酸產生的脂毒性,並且能使已產生毒性的心肌細胞從利用葡萄糖轉回使用脂肪酸,恢復正常能量代謝功能。
PART2: 代謝症候群是指代謝層面的心血管危險因子聚集的現象,已有文獻指出,脂肪酸累積過多會導致心肌細胞產生損傷使心臟衰竭,這樣的現象稱為脂毒性。脂毒性會導致心臟能量帶謝的不平衡,而自噬作用存在細胞產生能量危機的時候,在心臟中,自噬作用扮演非常重要的角色,失調時會牽連許多心血管疾病。AMP-activated protein kinase (AMPK)和自噬作用也有密切的關聯,AMPK是一個energy-sensing kinase,在能量不足的時候會被活化,他會調控自噬作用。已有文獻指出,棕櫚酸會造成心肌細胞產生自噬作用,因此本論文研究棕櫚酸是否透過AMPK調控自噬作用,並且和細胞凋亡間的關係為何。研究中,給予心肌細胞長時間的棕櫚酸,結果顯示在心肌細胞脂肪酸累積過多形成脂毒性並活化自噬作用,Puncta實驗中進一步證明棕櫚酸增加自噬體膜上蛋白LC3的聚集,磷酸化AMPK、自噬作用相關蛋白都有高度表現,並且自噬作用受到抑制劑LY294002、3MA,自噬作用和凋亡相關蛋白皆受到抑制,意外的是,再加入溶酶體的抑制劑BaFA1後,凋亡蛋白Cleavage caspase 3卻大量累積,同樣在溶酶體染劑Lysotracker和流式細胞分析實驗中可以得到相同的結果。綜合上述結果發現,長期攝取脂肪酸的心肌細胞產生脂毒性並導致能量代謝失衡,影響下游AMPK活化mTOR訊息路徑負調控,造成粒線體依賴型細胞凋亡。已有文獻指出,高密度脂蛋白透過活化PI3K/AKT/mTOR訊息傳遞路徑抑制自噬作用並且有抗凋亡的功能。研究中,給予細胞不同濃度的高密度脂蛋白,結果顯示高密度脂蛋白可以抑制棕櫚酸產生的自噬作用和粒線體依賴型細胞凋亡,使用高密度脂蛋白的受體SR-B1的抑制劑證實是透過PI3K/AKT/mTOR訊息傳遞路徑抑制自噬作用和粒線體依賴型細胞凋亡。

PART1: Metabolic syndrome is a group of risk factors that increase heart disease and other health problems. The risk factors for development of metabolic syndrome include hyperglycemia, hyperlipidemia, hypertension, low levels of HDL and high levels of triglyceride. Acute toxicity from accumulation of long-chain fatty acids lead to cardiovascular diseases, a phenomenon known as lipotoxicity. Lipoptoxicity leads to imbalance of energy metabolism and result in cardiac dysfunction and contractile dysfunction. Cardiomyocytes use fatty acid (50-70%) and glucose (20-30%) for ATP production. Fatty acids and glucose are uptake by cells through via cluster of differentiation 36 (CD36) and glucose transporter type 4 (GLUT4). In health cardiomyocyte, there are two metabolic pathways, one is muscle contraction pathway and the other one is insulin pathways. They affect CD36 and GLUT4 translocated to cell membrane. In addition, there is convincing evidence that when fatty acids accumulate, the pathway from Akt to CD36 would be inhibited. In this study, we aim to investigate the effect of CD36 and GLUT4 switch and metabolism. In the present study, heart-derived H9c2 cells and neonatal rat ventricular myocytes (NRVMs) were treated with palmitic acid for 24 h. Results showed that CD36 was decreased in cell membrane. Conversely, GLUT4 was accumulated. Palmitic acid also affects energy to switch from CD36 (fatty acid) to GLUT4 (glucose) in a time dependent manner and only affects CD36 protein level but not transcription level. On the other hand, exercise can increase level of high-density lipoprotein (HDL). We want to know whether HDL could inhibit palmitic acid-induced lipoptoxicity and energy switch.
PART2:Metabolic syndrome is a group of risk factors that increase heart disease and other health problems. Recent study showed that acute toxicity from accumulation of long-chain fatty acids lead to cardiovascular diseases and result in heart failure, a phenomenon known as lipotoxicity. Lipoptoxicity leads to imbalance of energy metabolism. Autophagy is critical for cell survival during energy crisis state. Its dysregulation has been implicated in a wide variety of cardiovascular pathologies. AMPK related with autophagy. AMPK is an energy-sensing kinase which was activated by metabolism stress. It can regulate autophagy. Recent study showed that palmitic acid-induced autophagy in H9c2 cell, but mechanism still unclear. Our aim to know whether the palmitic acid-induced autophagy via AMPK regulated and the relationship with apoptosis. The H9c2 cardiomyoblast cells were treated with palmitic acid. The result showed that palmitic acid-induced lipoptoxicity and autophagy, and further, we founded that palmitic acid increased LC3 in autophagosome by puncta assay. In western blot, PT172AMPK and other autophagy-related proteins were increased. After added LY294002 and 3-MA, autophagy and apoptosis-related proteins were inhibited. Specially, after added BaFA1 which was lysosome inhibitor, cleavage caspase 3 was accumulated. The same result showed in lysotracker assay and flow cytometry. Taken together, our present results confirmed that palmitic acid-induced lipotoxicity and result in energy imbalance to activate AMPK, mTOR-indepentent signaling pathway which caused autophagic cell death. Recent study showed that high-density lipoprotein inhibited autophagy via PI3K/Akt/mTOR signaling pathway and had anti-apoptosis. The H9c2 cardiomyoblast cells were treated with different dosage of HDL. The result showed that HDL could inhibit palmitic acid-induced autophagy and autophagic cell death. After combined with BLT-1 which was inhibitor of HDL receptor SR-B1, we proved that HDL inhibited autophagy and autophagic cell death via PI3K/Akt/mTOR signaling pathway.

學位考試委員審定書 I
誌謝 II
Contents V

Part I:
中文摘要 2
Abstract 4
Abbreviation 5
Introduction 7
1. Metabolic Syndrome 7
2. Cardiac energy metabolism pathways 8
3. AMP-activated kinase (AMPK) 10
4. Cluster of differentiation 36 (CD36) 12
5. Glucose transporter type 4 (GLUT4) 13
6. High-density lipoprotein (HDL) 13
Aims 15
Materials and Methods 16
1. Cell culture 16
2. Western blot 16
3. ELISA assay of membrane protein 17
4. Semi quantitative RT-PCR 17
5. Co-immunoprecipitation (Co-IP) 18
6. Lipoprotein separation 19
7. MTT assay 19
8. Primary cardiomyocytsotrlture 19
9. Statistical analysis 20
Results 21
Discussion 24
Reference 27
Figures 35

Part II:
中文摘要 43
Abstract 45
Abbreviation 47
Introduction 49
1. Metabolic Syndrome 49
2. Autophagy 49
3. Role of autophagy in heart 52
4. Autophagic cell death (ACD) 52
5. AMP-activated kinase (AMPK) and autophagy 53
6. High-density lipoprotein (HDL) 55
Aims 57
Materials and Methods 58
1. Cell culture 58
2. Western blot 58
3. Transient-transfected GFP-LC3 and autophagy detection 59
4. Annexin V-FITC/PI staining 59
5. Lysosome staining 60
6. Animals model 60
7. Lipoprotein separation 61
8. Statistical analysis 61
Results 62
Discussion 66
References 68
Figures 76


PART1:
1.Kirshenbaum, L.A., Regulation of autophagy in the heart in health and disease. J Cardiovasc Pharmacol, 2012. 60(2): p. 109.

2.Rask-Madsen, C. and C.R. Kahn, Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol, 2012. 32(9): p. 2052-9.

3.Zhou, Y.T., et al., Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1784-9.

4.Buchanan, J., et al., Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology, 2005. 146(12): p. 5341-9.

5.Beeharry, N., J.A. Chambers, and I.C. Green, Fatty acid protection from palmitic acid-induced apoptosis is lost following PI3-kinase inhibition. Apoptosis, 2004. 9(5): p. 599-607.

6.Warensjo, E., et al., Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality: a population-based prospective study. Am J Clin Nutr, 2008. 88(1): p. 203-9.

7.Katsoulieris, E., et al., alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur J Pharmacol, 2009. 623(1-3): p. 107-12.

8.Sparling, P.B., B.A. Franklin, and J.O. Hill, Energy balance: the key to a unified message on diet and physical activity. J Cardiopulm Rehabil Prev, 2013. 33(1): p. 12-5.

9.Stanley, W.C. and M.P. Chandler, Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev, 2002. 7(2): p. 115-30.

10.Lopaschuk, G.D., et al., Myocardial fatty acid metabolism in health and disease. Physiol Rev, 2010. 90(1): p. 207-58.

11.Goodwin, G.W., C.S. Taylor, and H. Taegtmeyer, Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem, 1998. 273(45): p. 29530-9.

12.Perseghin, G., et al., Abnormal left ventricular energy metabolism in obese men with preserved systolic and diastolic functions is associated with insulin resistance. Diabetes Care, 2007. 30(6): p. 1520-6.

13.Sambandam, N. and G.D. Lopaschuk, AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res, 2003. 42(3): p. 238-56.

14.Aras, O. and V. Dilsizian, Targeting ischemic memory. Curr Opin Biotechnol, 2007. 18(1): p. 46-51.

15.Dolinsky, V.W. and J.R. Dyck, Role of AMP-activated protein kinase in healthy and diseased hearts. Am J Physiol Heart Circ Physiol, 2006. 291(6): p. H2557-69.

16.Samovski, D., et al., Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res, 2012. 53(4): p. 709-17.

17.Schwenk, R.W., et al., Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia, 2010. 53(10): p. 2209-19.

18.Abbott, M.J., A.M. Edelman, and L.P. Turcotte, CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 2009. 297(6): p. R1724-32.

19.Chau, M.D., et al., Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci U S A, 2010. 107(28): p. 12553-8.

20.Bogachus, L.D. and L.P. Turcotte, Genetic downregulation of AMPK-alpha isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells. Am J Physiol Cell Physiol, 2010. 299(6): p. C1549-61.

21.Dirkx, E., et al., High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids, 2011. 85(5): p. 219-25.

22.Garcia-Rua, V., et al., Increased expression of fatty-acid and calcium metabolism genes in failing human heart. PLoS One, 2012. 7(6): p. e37505.

23.Luiken, J.J., et al., Permissive action of protein kinase C-zeta in insulin-induced CD36- and GLUT4 translocation in cardiac myocytes. J Endocrinol, 2009. 201(2): p. 199-209.

24.Heather, L.C., et al., Differential translocation of the fatty acid transporter, FAT/CD36, and the glucose transporter, GLUT4, coordinates changes in cardiac substrate metabolism during ischemia and reperfusion. Circ Heart Fail, 2013. 6(5): p. 1058-66.

25.Steinbusch, L.K., et al., Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol Life Sci, 2011. 68(15): p. 2525-38.

26.Jeong, K.J., G.W. Kim, and S.H. Chung, AMP-activated protein kinase: An emerging target for ginseng. J Ginseng Res, 2014. 38(2): p. 83-88.

27.Kyriakis, J.M., At the crossroads: AMP-activated kinase and the LKB1 tumor suppressor link cell proliferation to metabolic regulation. J Biol, 2003. 2(4): p. 26.

28.Kim, A.S., E.J. Miller, and L.H. Young, AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf), 2009. 196(1): p. 37-53.

29.Nagendran, J., T.J. Waller, and J.R. Dyck, AMPK signalling and the control of substrate use in the heart. Mol Cell Endocrinol, 2013. 366(2): p. 180-93.

30.Viollet, B. and F. Andreelli, AMP-activated protein kinase and metabolic control. Handb Exp Pharmacol, 2011(203): p. 303-30.

31.Neculai, D., et al., Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature, 2013. 504(7478): p. 172-6.

32.Koonen, D.P., et al., Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta, 2005. 1736(3): p. 163-80.

33.Koonen, D.P., et al., Different mechanisms can alter fatty acid transport when muscle contractile activity is chronically altered. Am J Physiol Endocrinol Metab, 2004. 286(6): p. E1042-9.

34.Scheepers, A., H.G. Joost, and A. Schurmann, The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr, 2004. 28(5): p. 364-71.

35.Piper, R.C., et al., GLUT-4 NH2 terminus contains a phenylalanine-based targeting motif that regulates intracellular sequestration. J Cell Biol, 1993. 121(6): p. 1221-32.

36.Al-Hasani, H., et al., Roles of the N- and C-termini of GLUT4 in endocytosis. J Cell Sci, 2002. 115(Pt 1): p. 131-40.

37.Martinez-Arca, S., V.S. Lalioti, and I.V. Sandoval, Intracellular targeting and retention of the glucose transporter GLUT4 by the perinuclear storage compartment involves distinct carboxyl-tail motifs. J Cell Sci, 2000. 113 ( Pt 10): p. 1705-15.

38.Garippa, R.J., et al., The carboxyl terminus of GLUT4 contains a serine-leucine-leucine sequence that functions as a potent internalization motif in Chinese hamster ovary cells. J Biol Chem, 1996. 271(34): p. 20660-8.

39.Corvera, S., et al., A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal. J Cell Biol, 1994. 126(4): p. 979-89.

40.Zhu, X. and J.S. Parks, New roles of HDL in inflammation and hematopoiesis. Annu Rev Nutr, 2012. 32: p. 161-82.

41.Mooradian, A.D., M.J. Haas, and N.C. Wong, The effect of select nutrients on serum high-density lipoprotein cholesterol and apolipoprotein A-I levels. Endocr Rev, 2006. 27(1): p. 2-16.

42.Mooradian, A.D., M.J. Haas, and N.C. Wong, Transcriptional control of apolipoprotein A-I gene expression in diabetes. Diabetes, 2004. 53(3): p. 513-20.

43.Forti, N. and J. Diament, High-density lipoproteins: metabolic, clinical, epidemiological and therapeutic intervention aspects. An update for clinicians. Arq Bras Cardiol, 2006. 87(5): p. 671-9.

44.Berrougui, H., C.N. Momo, and A. Khalil, Health benefits of high-density lipoproteins in preventing cardiovascular diseases. J Clin Lipidol, 2012. 6(6): p. 524-33.

45.Rader, D.J., Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest, 2006. 116(12): p. 3090-100.

46.Chapman, M.J., et al., Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid--a position paper developed by the European Consensus Panel on HDL-C. Curr Med Res Opin, 2004. 20(8): p. 1253-68.

47.Adams, V., et al., Exercise training in patients with chronic heart failure promotes restoration of high-density lipoprotein functional properties. Circ Res, 2013. 113(12): p. 1345-55.

48.Churchill, E.N., et al., Reperfusion-induced translocation of deltaPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation. Circ Res, 2005. 97(1): p. 78-85.

49.Young, L.H., et al., Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation, 1997. 95(2): p. 415-22.

50.Schaffer, J.E. and H.F. Lodish, Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell, 1994. 79(3): p. 427-36.

51.Martin, C., et al., CD36 as a lipid sensor. Physiol Behav, 2011. 105(1): p. 36-42.

52.Chabowski, A., et al., Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids, 2007. 77(5-6): p. 345-53.

53.Wu, Q., et al., FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol, 2006. 26(9): p. 3455-67.

54.Coburn, C.T., et al., Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem, 2000. 275(42): p. 32523-9.

55.Xu, S., et al., CD36 enhances fatty acid uptake by increasing the rate of intracellular esterification but not transport across the plasma membrane. Biochemistry, 2013. 52(41): p. 7254-61.

56.Cheon, H.G. and Y.S. Cho, Protection of palmitic acid-mediated lipotoxicity by arachidonic acid via channeling of palmitic acid into triglycerides in C2C12. J Biomed Sci, 2014. 21: p. 13.

57.Cho, Y.S., et al., Protective effects of arachidonic acid against palmitic acid-mediated lipotoxicity in HIT-T15 cells. Mol Cell Biochem, 2012. 364(1-2): p. 19-28.

58.Estadella, D., et al., Lipotoxicity: effects of dietary saturated and transfatty acids. Mediators Inflamm, 2013. 2013: p. 137579.

59.Stanley, W.C., et al., Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ Res, 2012. 110(5): p. 764-76.

60.de Vries, J.E., et al., Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res, 1997. 38(7): p. 1384-94.

61.van der Lee, K.A., et al., Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res, 2000. 41(1): p. 41-7.

62.van den Brom, C.E., et al., Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats: studies using positron emission tomography. Cardiovasc Diabetol, 2009. 8: p. 39.

63.Severson, D.L., Diabetic cardiomyopathy: recent evidence from mouse models of type 1 and type 2 diabetes. Can J Physiol Pharmacol, 2004. 82(10): p. 813-23.

64.Nichols, G.A., et al., The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care, 2004. 27(8): p. 1879-84.

65.Grundy, S.M., et al., Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation, 1999. 100(10): p. 1134-46.

66.Holland, W.L., et al., Lipid mediators of insulin resistance. Nutr Rev, 2007. 65(6 Pt 2): p. S39-46.

67.DeFronzo, R.A., Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia, 2010. 53(7): p. 1270-87.

68.Brundert, M., et al., Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. J Lipid Res, 2011. 52(4): p. 745-58.

69.Vaziri, N.D., Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. J Ren Nutr, 2010. 20(5 Suppl): p. S35-43.

70.Koozehchian, M.S., et al., The role of exercise training on lipoprotein profiles in adolescent males. Lipids Health Dis, 2014. 13(1): p. 95.

71.Labonte, M.E., et al., Adding MUFA to a dietary portfolio of cholesterol-lowering foods reduces apoAI fractional catabolic rate in subjects with dyslipidaemia. Br J Nutr, 2013. 110(3): p. 426-36.

72.Gilmore, L.A., et al., Exercise attenuates the increase in plasma monounsaturated fatty acids and high-density lipoprotein cholesterol but not high-density lipoprotein 2b cholesterol caused by high-oleic ground beef in women. Nutr Res, 2013. 33(12): p. 1003-11.

73.Niesor, E.J., et al., Xanthophylls, phytosterols and pre-beta1-HDL are differentially affected by fenofibrate and niacin HDL-raising in a cross-over study. Lipids, 2013. 48(12): p. 1185-96.

74.Yamashita, S. and K. Yamashita, Effect of high-fiber diet on plasma high density lipoprotein (HDL) cholesterol level in streptozotocin-induced diabetic rats. Endocrinol Jpn, 1980. 27(5): p. 671-3.

75.Mietus-Snyder, M.L., et al., A nutrient-dense, high-fiber, fruit-based supplement bar increases HDL cholesterol, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-wk trial. Faseb j, 2012. 26(8): p. 3515-27.

76.Guetta, V. and R.O. Cannon, 3rd, Cardiovascular effects of estrogen and lipid-lowering therapies in postmenopausal women. Circulation, 1996. 93(10): p. 1928-37.

77.Nofer, J.R., Estrogens and atherosclerosis: insights from animal models and cell systems. J Mol Endocrinol, 2012. 48(2): p. R13-29.

PART2:
1.Kirshenbaum, L.A., Regulation of autophagy in the heart in health and disease. J Cardiovasc Pharmacol, 2012. 60(2): p. 109.

2.Rask-Madsen, C. and C.R. Kahn, Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol, 2012. 32(9): p. 2052-9.

3.Zhou, Y.T., et al., Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1784-9.

4.Buchanan, J., et al., Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology, 2005. 146(12): p. 5341-9.

5.Beeharry, N., J.A. Chambers, and I.C. Green, Fatty acid protection from palmitic acid-induced apoptosis is lost following PI3-kinase inhibition. Apoptosis, 2004. 9(5): p. 599-607.

6.Warensjo, E., et al., Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality: a population-based prospective study. Am J Clin Nutr, 2008. 88(1): p. 203-9.

7.Katsoulieris, E., et al., alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur J Pharmacol, 2009. 623(1-3): p. 107-12.

8.Sparling, P.B., B.A. Franklin, and J.O. Hill, Energy balance: the key to a unified message on diet and physical activity. J Cardiopulm Rehabil Prev, 2013. 33(1): p. 12-5.

9.Stanley, W.C. and M.P. Chandler, Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev, 2002. 7(2): p. 115-30.

10.Lopaschuk, G.D., et al., Myocardial fatty acid metabolism in health and disease. Physiol Rev, 2010. 90(1): p. 207-58.
11.Goodwin, G.W., C.S. Taylor, and H. Taegtmeyer, Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem, 1998. 273(45): p. 29530-9.

12.Cetrullo, S., et al., Antiapoptotic and antiautophagic effects of eicosapentaenoic acid in cardiac myoblasts exposed to palmitic acid. Nutrients, 2012. 4(2): p. 78-90.

13.Terman, A. and U.T. Brunk, Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res, 2005. 68(3): p. 355-65.

14.Rubinstein, A.D. and A. Kimchi, Life in the balance - a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci, 2012. 125(Pt 22): p. 5259-68.

15.Mizushima, N., et al., Autophagy fights disease through cellular self-digestion. Nature, 2008. 451(7182): p. 1069-75.

16.Baehrecke, E.H., Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 2005. 6(6): p. 505-10.

17.Edinger, A.L. and C.B. Thompson, Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol, 2004. 16(6): p. 663-9.

18.Feng, Y., et al., The machinery of macroautophagy. Cell Res, 2014. 24(1): p. 24-41.

19.Yang, Z. and D.J. Klionsky, Eaten alive: a history of macroautophagy. Nat Cell Biol, 2010. 12(9): p. 814-22.

20.Esclatine, A., M. Chaumorcel, and P. Codogno, Macroautophagy signaling and regulation. Curr Top Microbiol Immunol, 2009. 335: p. 33-70.

21.Li, W.W., J. Li, and J.K. Bao, Microautophagy: lesser-known self-eating. Cell Mol Life Sci, 2012. 69(7): p. 1125-36.

22.Cuervo, A.M. and E. Wong, Chaperone-mediated autophagy: roles in disease and aging. Cell Res, 2014. 24(1): p. 92-104.
23.Gump, J.M. and A. Thorburn, Autophagy and apoptosis: what is the connection? Trends Cell Biol, 2011. 21(7): p. 387-92.

24.Pyo, J.O., J. Nah, and Y.K. Jung, Molecules and their functions in autophagy. Exp Mol Med, 2012. 44(2): p. 73-80.

25.Hou, X., et al., Advanced glycation endproducts trigger autophagy in cadiomyocyte Via RAGE/PI3K/AKT/mTOR pathway. Cardiovasc Diabetol, 2014. 13(1): p. 78.

26.Klionsky, D.J., The molecular machinery of autophagy: unanswered questions. J Cell Sci, 2005. 118(Pt 1): p. 7-18.

27.Maiuri, M.C., et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007. 8(9): p. 741-52.

28.Wang, Z.V., A. Ferdous, and J.A. Hill, Cardiomyocyte autophagy: metabolic profit and loss. Heart Fail Rev, 2013. 18(5): p. 585-94.

29.Mellor, K.M., M.E. Reichelt, and L.M. Delbridge, Autophagy anomalies in the diabetic myocardium. Autophagy, 2011. 7(10): p. 1263-7.

30.Ahn, J. and J. Kim, Nutritional status and cardiac autophagy. Diabetes Metab J, 2013. 37(1): p. 30-5.

31.Marino, G., et al., Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol, 2014. 15(2): p. 81-94.

32.Lee, Y., H.Y. Lee, and A.B. Gustafsson, Regulation of autophagy by metabolic and stress signaling pathways in the heart. J Cardiovasc Pharmacol, 2012. 60(2): p. 118-24.

33.Giricz, Z., R.M. Mentzer, Jr., and R.A. Gottlieb, Autophagy, myocardial protection, and the metabolic syndrome. J Cardiovasc Pharmacol, 2012. 60(2): p. 125-32.

34.Mellor, K.M., M.E. Reichelt, and L.M. Delbridge, Autophagic predisposition in the insulin resistant diabetic heart. Life Sci, 2013. 92(11): p. 616-20.
35.Beer, M., et al., Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol, 2002. 40(7): p. 1267-74.

36.Egan, D.F., et al., Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 2011. 331(6016): p. 456-61.

37.Matsui, Y., et al., Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res, 2007. 100(6): p. 914-22.

38.Yan, L., et al., Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A, 2005. 102(39): p. 13807-12.

39.Wang, Z.V., B.A. Rothermel, and J.A. Hill, Autophagy in hypertensive heart disease. J Biol Chem, 2010. 285(12): p. 8509-14.

40.Gottlieb, R.A. and R.M. Mentzer, Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol, 2010. 72: p. 45-59.

41.Kroemer, G., et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ, 2009. 16(1): p. 3-11.

42.Ryter, S.W. and K. Mizumura, The Impact of Autophagy on Cell Death Modalities. 2014. 2014: p. 502676.

43.Galluzzi, L., et al., Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ, 2009. 16(8): p. 1093-107.

44.Kroemer, G., G. Marino, and B. Levine, Autophagy and the integrated stress response. Mol Cell, 2010. 40(2): p. 280-93.

45.Shen, H.M. and P. Codogno, Autophagic cell death: Loch Ness monster or endangered species? Autophagy, 2011. 7(5): p. 457-65.
46.Shen, S., O. Kepp, and G. Kroemer, The end of autophagic cell death? Autophagy, 2012. 8(1): p. 1-3.

47.Galluzzi, L., et al., Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ, 2012. 19(1): p. 107-20.

48.Young, M.M., et al., Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem, 2012. 287(15): p. 12455-68.

49.Kyriakis, J.M., At the crossroads: AMP-activated kinase and the LKB1 tumor suppressor link cell proliferation to metabolic regulation. J Biol, 2003. 2(4): p. 26.

50.Kim, A.S., E.J. Miller, and L.H. Young, AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf), 2009. 196(1): p. 37-53.

51.Roach, P.J., AMPK -> ULK1 -> autophagy. Mol Cell Biol, 2011. 31(15): p. 3082-4.

52.Kim, J., et al., AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 2011. 13(2): p. 132-41.

53.Di Nardo, A., et al., Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Hum Mol Genet, 2014.

54.Zheng, Q., et al., Inhibition of AMPK Accentuates Prolonged Caloric Restriction-Induced Change in Cardiac Contractile Function through Disruption of Compensatory Autophagy. Biochim Biophys Acta, 2014.

55.Zhu, X. and J.S. Parks, New roles of HDL in inflammation and hematopoiesis. Annu Rev Nutr, 2012. 32: p. 161-82.

56.Mooradian, A.D., M.J. Haas, and N.C. Wong, The effect of select nutrients on serum high-density lipoprotein cholesterol and apolipoprotein A-I levels. Endocr Rev, 2006. 27(1): p. 2-16.

57.Mooradian, A.D., M.J. Haas, and N.C. Wong, Transcriptional control of apolipoprotein A-I gene expression in diabetes. Diabetes, 2004. 53(3): p. 513-20.

58.Forti, N. and J. Diament, High-density lipoproteins: metabolic, clinical, epidemiological and therapeutic intervention aspects. An update for clinicians. Arq Bras Cardiol, 2006. 87(5): p. 671-9.

59.Berrougui, H., C.N. Momo, and A. Khalil, Health benefits of high-density lipoproteins in preventing cardiovascular diseases. J Clin Lipidol, 2012. 6(6): p. 524-33.

60.Rader, D.J., Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest, 2006. 116(12): p. 3090-100.

61.Wang, S. and D. Peng, Regulation of adipocyte autophagy--the potential anti-obesity mechanism of high density lipoprotein and ApolipoproteinA-I. Lipids Health Dis, 2012. 11: p. 131.

62.Tao, R., et al., High-density lipoprotein determines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate. Am J Physiol Heart Circ Physiol, 2010. 298(3): p. H1022-8.

63.Pagler, T.A., et al., SR-BI-mediated high density lipoprotein (HDL) endocytosis leads to HDL resecretion facilitating cholesterol efflux. J Biol Chem, 2006. 281(16): p. 11193-204.

64.Zhang, Q., et al., High density lipoprotein (HDL) promotes glucose uptake in adipocytes and glycogen synthesis in muscle cells. PLoS One, 2011. 6(8): p. e23556.

65.Rigotti, A., H.E. Miettinen, and M. Krieger, The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr Rev, 2003. 24(3): p. 357-87.

66.Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-73.

67.Rikiishi, H., Novel Insights into the Interplay between Apoptosis and Autophagy. Int J Cell Biol, 2012. 2012: p. 317645.

68.Paumen, M.B., et al., Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem, 1997. 272(6): p. 3324-9.

69.Kong, J.Y. and S.W. Rabkin, Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: prevention by cyclosporin A. Biochim Biophys Acta, 2000. 1485(1): p. 45-55.

70.Fleming, A., et al., Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol, 2011. 7(1): p. 9-17.

71.Brundert, M., et al., Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. J Lipid Res, 2011. 52(4): p. 745-58.

72.Vaziri, N.D., Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. J Ren Nutr, 2010. 20(5 Suppl): p. S35-43.

73.Adams, V., et al., Exercise training in patients with chronic heart failure promotes restoration of high-density lipoprotein functional properties. Circ Res, 2013. 113(12): p. 1345-55.

74.Koozehchian, M.S., et al., The role of exercise training on lipoprotein profiles in adolescent males. Lipids Health Dis, 2014. 13(1): p. 95.

75.Labonte, M.E., et al., Adding MUFA to a dietary portfolio of cholesterol-lowering foods reduces apoAI fractional catabolic rate in subjects with dyslipidaemia. Br J Nutr, 2013. 110(3): p. 426-36.

76.Gilmore, L.A., et al., Exercise attenuates the increase in plasma monounsaturated fatty acids and high-density lipoprotein cholesterol but not high-density lipoprotein 2b cholesterol caused by high-oleic ground beef in women. Nutr Res, 2013. 33(12): p. 1003-11.

77.Niesor, E.J., et al., Xanthophylls, phytosterols and pre-beta1-HDL are differentially affected by fenofibrate and niacin HDL-raising in a cross-over study. Lipids, 2013. 48(12): p. 1185-96.

78.Yamashita, S. and K. Yamashita, Effect of high-fiber diet on plasma high density lipoprotein (HDL) cholesterol level in streptozotocin-induced diabetic rats. Endocrinol Jpn, 1980. 27(5): p. 671-3.

79.Mietus-Snyder, M.L., et al., A nutrient-dense, high-fiber, fruit-based supplement bar increases HDL cholesterol, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-wk trial. Faseb j, 2012. 26(8): p. 3515-27.

80.Guetta, V. and R.O. Cannon, 3rd, Cardiovascular effects of estrogen and lipid-lowering therapies in postmenopausal women. Circulation, 1996. 93(10): p. 1928-37.

81.Nofer, J.R., Estrogens and atherosclerosis: insights from animal models and cell systems. J Mol Endocrinol, 2012. 48(2): p. R13-29.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊