|
1. D. Chatterjee and S. Dasgupta, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005, 6, 186-205. 2. L. Zhao, S. Mei, W. Wang, P. K. Chu, Z. Wu and Y. Zhang, Biomaterials, 2010, 31, 2055-2063. 3. S. Bauer, J. Park, J. Faltenbacher, S. Berger, K. von der Mark and P. Schmuki, Integrative Biology, 2009, 1, 525-532. 4. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay and Y. Lin, Electroanalysis, 2010, 22, 1027-1036. 5. G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth and R. Mülhaupt, Journal of the American Chemical Society, 2009, 131, 8262-8270. 6. W. Mi, S.-W. Chiu, T. Xue, Y. Chen, H. Qi, Y. Yang, K.-T. Tang and T.-L. Ren, Tsinghua Science and Technology, 2016, 21, 435-441. 7. E. C. Salas, Z. Sun, A. Lüttge and J. M. Tour, ACS Nano, 2010, 4, 4852-4856. 8. O. N. Ruiz, K. S. Fernando, B. Wang, N. A. Brown, P. G. Luo, N. D. McNamara, M. Vangsness, Y.-P. Sun and C. E. Bunker, ACS Nano, 2011, 5, 8100-8107. 9. S.-Y. Wu, S. S. A. An and J. Hulme, International Journal of Nanomedicine, 2015, 10, 9. 10. R. Herbert, FEMS Microbiology Reviews, 1999, 23, 563-590. 11. C. Sparacino-Watkins, J. F. Stolz and P. Basu, Chemical Society Reviews, 2014, 43, 676-706. 12. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 1998, 14, 3160-3163. 13. L. van Niftrik and M. S. Jetten, Microbiology and Molecular Biology Reviews, 2012, 76, 585-596. 14. B. Kartal, J. T. Keltjens and M. S. Jetten, American Society of Microbiology, 2011, pp. 181-200. 15. C. Fux, M. Boehler, P. Huber, I. Brunner and H. Siegrist, Journal of Biotechnology, 2002, 99, 295-306. 16. M. S. Jetten, L. v. Niftrik, M. Strous, B. Kartal, J. T. Keltjens and H. J. Op den Camp, Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 65-84. 17. M. Strous, J. Heijnen, J. G. Kuenen and M. Jetten, Applied microbiology and biotechnology, 1998, 50, 589-596. 18. L. van Niftrik, W. J. Geerts, E. G. van Donselaar, B. M. Humbel, R. I. Webb, J. A. Fuerst, A. J. Verkleij, M. S. Jetten and M. Strous, Journal of Bacteriology, 2008, 190, 708-717. 19. R. Zhao, H. Zhang, Y. Li, T. Jiang and F. Yang, Current microbiology, 2014, 69, 880-887. 20. J. Zhang, Y. Zhang, Y. Li, L. Zhang, S. Qiao, F. Yang and X. Quan, Bioresource Technology, 2012, 114, 102-108. 21. L. v. Niftrik, W. Geerts, E. van Donselaar, B. Humbel, A. Yakushevska, A. Verkleij, M. Jetten and M. Strous, 2007. 22. Y. Hong, H. Cao, M. Li and J.-D. Gu, American Journal of Current Microbiology, 2014, 2, 18-40. 23. A. Meibom, N. H. Sleep, C. P. Chamberlain, R. G. Coleman, R. Frei, M. T. Hren and J. L. Wooden, Nature, 2002, 419, 705-708. 24. L. A. van Niftrik, J. A. Fuerst, J. S. S. Damsté, J. G. Kuenen, M. S. Jetten and M. Strous, FEMS Microbiology Letters, 2004, 233, 7-13. 25. B. Kartal, L. Van Niftrik, J. Rattray, J. L. Van De Vossenberg, M. C. Schmid, J. S. Damsté, M. S. Jetten and M. Strous, FEMS Microbiology Ecology, 2008, 63, 46-55. 26. B. Kartal, W. J. Maalcke, N. M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. J. O. den Camp, H. R. Harhangi, E. M. Janssen-Megens and K.-J. Francoijs, Nature, 2011, 479, 127-130. 27. J. G. Kuenen, Nature Reviews Microbiology, 2008, 6, 320-326. 28. D.-W. Gao and Y. Tao, Applied Microbiology and Biotechnology, 2011, 91, 887-894. 29. A. A. Van de Graaf, P. de Bruijn, L. A. Robertson, M. S. Jetten and J. G. Kuenen, Microbiology, 1996, 142, 2187-2196. 30. G. Lettinga, L. H. Pol, I. Koster, W. Wiegant, W. De Zeeuw, A. Rinzema, P. Grin, R. Roersma and S. Hobma, Biotechnology and Genetic Engineering Reviews, 1984, 2, 253-284. 31. J. E. Schmidt, D. J. Batstone and I. Angelidaki, Water Science and Technology, 2004, 49, 69-76. 32. B. Ma, Y. Peng, S. Zhang, J. Wang, Y. Gan, J. Chang, S. Wang, S. Wang and G. Zhu, Bioresource technology, 2013, 129, 606-611. 33. M. Strous, E. Van Gerven, P. Zheng, J. G. Kuenen and M. S. Jetten, Water Research, 1997, 31, 1955-1962. 34. A. Mulder, A. A. van de Graaf, L. Robertson and J. Kuenen, FEMS Microbiology Ecology, 1995, 16, 177-183. 35. A. A. Van de Graaf, A. Mulder, P. de Bruijn, M. Jetten, L. A. Robertson and J. G. Kuenen, Applied and Environmental Microbiology, 1995, 61, 1246-1251. 36. H. H. Ngo, W. Guo, R. Y. Surampalli and T. C. Zhang, Green Technologies for Sustainable Water Management, 2016. 37. S. Wyffels, P. Boeckx, K. Pynaert, D. Zhang, O. Van Cleemput, G. Chen and W. Verstraete, Water Science and Technology, 2004, 49, 57-64. 38. H.-g. Zhang and S.-q. Zhou, Journal of Central South University of Technology, 2006, 13, 663-667. 39. Z. Liang and J. Liu, Journal of Hazardous Materials, 2008, 151, 202-212. 40. T. Yamamoto, S. Wakamatsu, S. Qiao, D. Hira, T. Fujii and K. Furukawa, Bioresource Technology, 2011, 102, 2342-2347. 41. J. Liu, J. e. Zuo, Y. Yang, S. Zhu, S. Kuang and K. Wang, Journal of Environmental Sciences, 2010, 22, 777-783. 42. D. Akgul, C. K. Aktan, K. Yapsakli and B. Mertoglu, Biodegradation, 2013, 24, 399-412. 43. C.-C. Wang, P.-H. Lee, M. Kumar, Y.-T. Huang, S. Sung and J.-G. Lin, Journal of Hazardous Materials, 2010, 175, 622-628. 44. M. Figueroa, J. R. Vázquez-Padín, A. Mosquera-Corral, J. L. Campos and R. Méndez, Biochemical Engineering Journal, 2012, 65, 23-29. 45. Z. Zhang, Y. Li, S. Chen, S. Wang and X. Bao, Bioresource Technology, 2012, 114, 84-89. 46. L.-d. Shen, A.-h. Hu, R.-c. Jin, D.-q. Cheng, P. Zheng, X.-y. Xu and B.-l. Hu, Journal of Hazardous Materials, 2012, 199, 193-199. 47. A. Daverey, N.-T. Hung, K. Dutta and J.-G. Lin, Bioresource Technology, 2013, 141, 191-198. 48. A. Daverey, S.-H. Su, Y.-T. Huang, S.-S. Chen, S. Sung and J.-G. Lin, Water Research, 2013, 47, 2929-2937. 49. P. T. Nhat, H. N. Biec, N. T. T. Mai, B. X. Thanh and N. P. Dan, International Biodeterioration & Biodegradation, 2014, 95, 144-150. 50. K. J. Klabunde, Nanoscale Materials in Chemistry, 2001, 1-13. 51. W. L. Wilson, P. Szajowski and L. Brus, Science-New York Then Washington-, 1993, 262, 1242-1242. 52. J. D. Moras, B. Strandberg, D. Suc and K. Wilson, Science, 1996, 271, 933. 53. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Advanced Materials, 2010, 22, 3906-3924. 54. C. Hontoria-Lucas, A. López-Peinado, J. d. D. López-González, M. Rojas-Cervantes and R. Martin-Aranda, Carbon, 1995, 33, 1585-1592. 55. T. Sreeprasad and V. Berry, Small, 2013, 9, 341-350. 56. K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. Stormer, Solid State Communications, 2008, 146, 351-355. 57. A. K. Geim and K. S. Novoselov, Nature materials, 2007, 6, 183-191. 58. Q. Xiang, J. Yu and M. Jaroniec, Chemical Society Reviews, 2012, 41, 782-796. 59. W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding and F. Braet, Angewandte Chemie International Edition, 2010, 49, 2114-2138. 60. G. Zhao, T. Wen, C. Chen and X. Wang, Rsc Advances, 2012, 2, 9286-9303. 61. Y. Sun, Q. Wu and G. Shi, Energy & Environmental Science, 2011, 4, 1113-1132. 62. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 2008, 321, 385-388. 63. J. R. Potts, D. R. Dreyer, C. W. Bielawski and R. S. Ruoff, Polymer, 2011, 52, 5-25. 64. W. Humers and R. Offeman, J Am Chem Soc, 1958, 80, 1339. 65. J. L. Sabourin, D. M. Dabbs, R. A. Yetter, F. L. Dryer and I. A. Aksay, ACS nano, 2009, 3, 3945-3954. 66. A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo and H. Boehm, Journal of Physics and Chemistry of Solids, 2006, 67, 1106-1110. 67. C. K. Chua and M. Pumera, Chemical Society Reviews, 2014, 43, 291-312. 68. S. Pei and H.-M. Cheng, Carbon, 2012, 50, 3210-3228. 69. C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern and U. Kaiser, Nano letters, 2010, 10, 1144-1148. 70. A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, Nature Chemistry, 2010, 2, 581-587. 71. S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Nature, 2006, 442, 282-286. 72. F. Perreault, A. F. De Faria and M. Elimelech, Chemical Society Reviews, 2015, 44, 5861-5896. 73. W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang and C. Fan, ACS nano, 2010, 4, 4317-4323. 74. K. J. Gilmore, G. G. Wallace, H. Chen, M. B. Muller and D. Li, 2008. 75. S. Agarwal, X. Zhou, F. Ye, Q. He, G. C. Chen, J. Soo, F. Boey, H. Zhang and P. Chen, Langmuir, 2010, 26, 2244-2247. 76. S. Park, N. Mohanty, J. W. Suk, A. Nagaraja, J. An, R. D. Piner, W. Cai, D. R. Dreyer, V. Berry and R. S. Ruoff, Advanced Materials, 2010, 22, 1736-1740. 77. M. R. Das, R. K. Sarma, R. Saikia, V. S. Kale, M. V. Shelke and P. Sengupta, Colloids and Surfaces B: Biointerfaces, 2011, 83, 16-22. 78. O. Akhavan and E. Ghaderi, ACS nano, 2010, 4, 5731-5736. 79. T. Sreeprasad, M. S. Maliyekkal, K. Deepti, K. Chaudhari, P. L. Xavier and T. Pradeep, ACS Applied Materials & Interfaces, 2011, 3, 2643-2654. 80. X. Zou, L. Zhang, Z. Wang and Y. Luo, Journal of the American Chemical Society, 2016, 138, 2064-2077. 81. C. M. Santos, M. C. R. Tria, R. A. M. V. Vergara, F. Ahmed, R. C. Advincula and D. F. Rodrigues, Chemical Communications, 2011, 47, 8892-8894. 82. S. Some, S.-M. Ho, P. Dua, E. Hwang, Y. H. Shin, H. Yoo, J.-S. Kang, D.-k. Lee and H. Lee, ACS Nano, 2012, 6, 7151-7161. 83. S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong and Y. Chen, ACS Nano, 2011, 5, 6971-6980. 84. D. Zhang, X. Liu and X. Wang, Journal of Inorganic Biochemistry, 2011, 105, 1181-1186. 85. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey and H. Zhang, Small, 2011, 7, 1876-1902. 86. S. Qiao, X. Yin and J. Zhou, RSC Advances, 2016, 6, 97208-97215. 87. X. Yin, S. Qiao, C. Yu, T. Tian and J. Zhou, Chemical Engineering Journal, 2015, 276, 106-112. 88. G. Wang, X. Xu, F. Yang, H. Zhang and D. Wang, Journal of Environmental Chemical Engineering, 2014, 2, 974-980. 89. X. Yin, S. Qiao, J. Zhou and X. Tang, Chemical Engineering Journal, 2016, 283, 160-166. 90. J. L. G. Fierro, Metal Oxides: Chemistry and Applications, CRC press, 2005. 91. A. Ghicov and P. Schmuki, Chemical Communications, 2009, 2791-2808. 92. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Advanced materials, 2003, 15, 353-389. 93. C. R. Sides, N. Li, C. J. Patrissi, B. Scrosati and C. R. Martin, Mrs Bulletin, 2002, 27, 604-607. 94. C. W. Lai, J. C. Juan, W. B. Ko and S. Bee Abd Hamid, International Journal of Photoenergy, 2014, 2014. 95. S. Sreekantan, L. C. Wei and Z. Lockman, Journal of the Electrochemical Society, 2011, 158, C397-C402. 96. G. K. Mor, O. K. Varghese, M. Paulose and C. A. Grimes, Advanced Functional Materials, 2005, 15, 1291-1296. 97. C. W. Lai, S. Sreekantan and Z. Lockman, Journal of Nanoscience and Nanotechnology, 2012, 12, 4057-4066. 98. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Advanced Materials, 1999, 11, 1307-1311. 99. D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen and N. Ming, Chemistry of Materials, 2006, 18, 547-553. 100. Y. Wang and N. Herron, The Journal of Physical Chemistry, 1991, 95, 525-532. 101. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, science, 2001, 293, 269-271. 102. T. Tachikawa, S. Tojo, M. Fujitsuka and T. Majima, The Journal of Physical Chemistry B, 2004, 108, 5859-5866. 103. Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida, Physical Chemistry Chemical Physics, 2005, 7, 4157-4163. 104. T. Sekino, in Inorganic and Metallic Nanotubular Materials, Springer, 2010, pp. 17-32. 105. D. V. Bavykin, V. N. Parmon, A. A. Lapkin and F. C. Walsh, Journal of Materials Chemistry, 2004, 14, 3370-3377. 106. Z.-Y. Yuan and B.-L. Su, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 173-183. 107. Q. Chen and L. Peng, International Journal of Nanotechnology, 2007, 4, 44-65. 108. Y. Suzuki and S. Yoshikawa, Journal of Materials Research, 2004, 19, 982-985. 109. R.-a. Doong and I.-l. Kao, Recent Patents on Nanotechnology, 2008, 2, 84-102. 110. E. Horváth, Á. Kukovecz, Z. Kónya and I. Kiricsi, Chemistry of Materials, 2007, 19, 927-931. 111. Q. Chen, W. Zhou, G. Du and L.-M. Peng, Advanced Materials, 2002, 14, 1208-1211. 112. E. Morgado, M. A. de Abreu, G. T. Moure, B. A. Marinkovic, P. M. Jardim and A. S. Araujo, Chemistry of Materials, 2007, 19, 665-676. 113. E. Morgado, M. A. de Abreu, O. R. Pravia, B. A. Marinkovic, P. M. Jardim, F. C. Rizzo and A. S. Araújo, Solid State Sciences, 2006, 8, 888-900. 114. C. Moseke, F. Hage, E. Vorndran and U. Gbureck, Applied Surface Science, 2012, 258, 5399-5404. 115. L. Zhao, H. Wang, K. Huo, X. Zhang, W. Wang, Y. Zhang, Z. Wu and P. K. Chu, Biomaterials, 2013, 34, 19-29. 116. R. Narayanan, T.-Y. Kwon and K.-H. Kim, Materials Chemistry and Physics, 2009, 117, 460-464. 117. D. Kowalski, D. Kim and P. Schmuki, Nano Today, 2013, 8, 235-264. 118. H. Zhou, X. Gan, J. Wang, X. Zhu and G. Li, Analytical chemistry, 2005, 77, 6102-6104. 119. G. Colon, B. C. Ward and T. J. Webster, Journal of Biomedical Materials Research Part A, 2006, 78, 595-604. 120. S. D. Puckett, E. Taylor, T. Raimondo and T. J. Webster, Biomaterials, 2010, 31, 706-713. 121. S. Bauer, J. Park, K. von der Mark and P. Schmuki, Acta Biomaterialia, 2008, 4, 1576-1582. 122. J. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, Current Opinion in Solid State and Materials Science, 2007, 11, 3-18. 123. J. Ji and W. Zhang, Journal of Biomedical Materials Research Part A, 2009, 88, 448-453. 124. J. H. Lee, S. J. Lee, G. Khang and H. B. Lee, Journal of Biomaterials Science, Polymer Edition, 1999, 10, 283-294. 125. S. Kang, M. Pinault, L. D. Pfefferle and M. Elimelech, Langmuir, 2007, 23, 8670-8673. 126. Y. J. Tang, J. M. Ashcroft, D. Chen, G. Min, C.-H. Kim, B. Murkhejee, C. Larabell, J. D. Keasling and F. F. Chen, Nano Letters, 2007, 7, 754-760. 127. S. Grigorescu, C. Ungureanu, R. Kirchgeorg, P. Schmuki and I. Demetrescu, Applied Surface Science, 2013, 270, 190-196. 128. H. H. Rijnaarts, W. Norde, E. J. Bouwer, J. Lyklema and A. J. Zehnder, Colloids and Surfaces B: Biointerfaces, 1995, 4, 5-22. 129. B. Gottenbos, H. Busscher, H. Van Der Mei and P. Nieuwenhuis, Journal of Materials Science: Materials in Medicine, 2002, 13, 717-722. 130. J. E. Duddridge, C. Kent and J. Laws, Biotechnology and Bioengineering, 1982, 24, 153-164. 131. R. B. Dickinson and S. L. Cooper, AIChE Journal, 1995, 41, 2160-2174. 132. P. Stoodley, Z. Lewandowski, J. D. Boyle and H. M. Lappin-Scott, Biotechnology and Bioengineering, 1999, 65, 83-92. 133. I. Klapper, C. Rupp, R. Cargo, B. Purvedorj and P. Stoodley, Biotechnology and Bioengineering, 2002, 80, 289-296. 134. T. R. Scheuerman, A. K. Camper and M. A. Hamilton, Journal of Colloid and Interface Science, 1998, 208, 23-33. 135. K. Vacheethasanee, J. S. Temenoff, J. M. Higashi, A. Gary, J. M. Anderson, R. Bayston and R. E. Marchant, Journal of Biomedical Materials Research Part A, 1998, 42, 425-432. 136. Y. H. An and R. J. Friedman, Journal of Biomedical Materials Research, 1998, 43, 338-348. 137. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva and A. D. Gorchinskiy, Chemistry of Materials, 1999, 11, 771-778. 138. A. Dapena-Mora, I. Fernandez, J. Campos, A. Mosquera-Corral, R. Mendez and M. Jetten, Enzyme and Microbial Technology, 2007, 40, 859-865. 139. X. Shi, Q. Xu, A. Tian, Y. Tian, X. Xue, H. Sun, H. Yang and C. Dong, RSC Advances, 2015, 5, 34237-34242. 140. N. Hansen, Berichte der Bunsengesellschaft für physikalische Chemie, 1967, 71, 929-929. 141. M. M. Stevens and J. H. George, Science, 2005, 310, 1135-1138. 142. S. Zhang, Nature Biotechnology, 2003, 21, 1171-1178. 143. K. Das, A. Bandyopadhyay and S. Bose, Journal of the American Ceramic Society, 2008, 91, 2808-2814.
|