跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:屈氏青玄
研究生(外文):Khuat Thi Thanh Huyen
論文名稱:利用氧化石墨烯及鈦酸鹽奈米管增強厭氧氨氧化菌活性之研究
論文名稱(外文):Bio-augmentation of anaerobic ammonium oxidation activity supported on graphene oxide and titanium nanotubes
指導教授:董瑞安林志高林志高引用關係
指導教授(外文):Doong, Ruey-anLin, Jih-Gaw
口試委員:董瑞安林志高顧繼東陳勝一
口試委員(外文):Doong, Ruey-anLin, Jih-GawGu, Ji-DoongChen, Shen-Yi
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:78
中文關鍵詞:Graphene oxide厭氧氨氧化氮去除啟動
外文關鍵詞:Graphene oxideAnaerobic ammonium oxidationNitrogen removalStart-up
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Nitrogen removal from wastewater is gaining worldwide attention because of the potential threat of nitrogen species to the environment. Anaerobic ammonium oxidation (Anammox) is a promising method which can convert ammonium ion directly to nitrogen gas. However, Anammox still faces the difficulty in the enhancement of slow growth rate of Anammox microorganisms. Herein, we have systematically investigated the effect of graphene oxide (GO) and titanium nanotube (TNTs) on the Anammox biomass for nitrogen removal. TNTs, the 1- dimensional negatively charged nanomaterials show little effect on the enhancement of Anammox growth, presumably attributed to the strong repulsive force between TNTs and Annamox bacteria. GO makes a remarkable impact on the bacterial growth. After the batch incubation of 5h, the Anammox activity in the presence of 0.1 g/L GO is enhanced 14.2 % when compares with that in the absence of nanomaterial. The continuous experiment also proves the applicability of using GO as an effective support to improve nitrogen removal. GO utilization can enhance Anammox activity by 30% compares with that of the normal reactor after 113d of incubation. In the GO induced reactor, the effluent concentrations of ammonium and nitrite decrease steadily and reach the steady state after 80d of incubation, while it takes 127 d in the reactor without GO to achieve the steady state. These results clearly demonstrate the feasibility of utilizing GO as the support for Anammox bacteria to shorten the start-up incubation time by rapid acclimation as well as to enhance the activity of Anammox bacteria.
Nitrogen removal from wastewater is gaining worldwide attention because of the potential threat of nitrogen species to the environment. Anaerobic ammonium oxidation (Anammox) is a promising method which can convert ammonium ion directly to nitrogen gas. However, Anammox still faces the difficulty in the enhancement of slow growth rate of Anammox microorganisms. Herein, we have systematically investigated the effect of graphene oxide (GO) and titanium nanotube (TNTs) on the Anammox biomass for nitrogen removal. TNTs, the 1- dimensional negatively charged nanomaterials show little effect on the enhancement of Anammox growth, presumably attributed to the strong repulsive force between TNTs and Annamox bacteria. GO makes a remarkable impact on the bacterial growth. After the batch incubation of 5h, the Anammox activity in the presence of 0.1 g/L GO is enhanced 14.2 % when compares with that in the absence of nanomaterial. The continuous experiment also proves the applicability of using GO as an effective support to improve nitrogen removal. GO utilization can enhance Anammox activity by 30% compares with that of the normal reactor after 113d of incubation. In the GO induced reactor, the effluent concentrations of ammonium and nitrite decrease steadily and reach the steady state after 80d of incubation, while it takes 127 d in the reactor without GO to achieve the steady state. These results clearly demonstrate the feasibility of utilizing GO as the support for Anammox bacteria to shorten the start-up incubation time by rapid acclimation as well as to enhance the activity of Anammox bacteria.
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Objective 2
Chapter 2. Background and theory 4
2.1 Nitrogen cycle 4
2.2 Anaerobic ammonium oxidation 5
2.3 Cell structure and metabolism of Anammox 6
Figure 2.2 Anammox cell with different compartments and three surrounding membranes. 7
2.4 Reactor system used for enrichment of Anammox bacteria 9
2.5 Nanomaterials 12
2.5.1 Definition 12
2.5.2 Properties 12
2.6. Graphene material 12
2.6.1 Concepts and properties 12
2.6.2 Bacterial interaction with Graphene Oxide and surfaces 15
2.6.3 Anammox bacteria interact with different Graphene family materials 19
2.7 Titanium nanotubes (TNTs) 20
2.7.1 Concepts and properties 20
2.7.2 Photochemical Properties and Photocatalytic Functions 23
2.7.3 Parameters influencing the morphology of titanate nanotubes 25
2.7.4 Bacteria and cell interaction with titanium nanotubes 28
2.8 Interaction between bacteria and surface 29
Chapter 3. Materials and methods 31
3.1. Synthesis 31
3.1.1 Synthesis of GO 31
3.1.2 Synthesis of TNT 33
3.2 Instrumentations 34
3.2.1 X-ray diffraction (XRD) 34
3.2.2 Raman spectroscopy 34
3.2.3 Fourier transform infrared spectroscopy (FTIR) 35
3.2.4 Transmission electron microscope (TEM) 35
3.2.5 Scanning electron microscope (SEM) 35
3.2.6 Brunauer–Emmett–Teller (BET) 36
3.2.7 UV-visible spectrometer (UV-Vis) 37
3.3 Specific Anammox activity test 37
3.3.1 Materials and Equipemnt 37
3.3.2 Theory of Specific Anammox Activity (SAA) test 38
3.4 Long-term effects of GO on Anammox activity 39
3.4.1 Microorganisms and feeding medium 39
3.4.2 Reactor start-up 41
3.4.3 Operational strategy 42
3.4.4. Chemical analysis 43
3.4.5. Monitoring 44
3.5 Molecular analysis 44
3.5.1. DNA extraction, PCR amplification and clone libraries construction 44
3.5.2. Phylogenetic analysis 45
Chapter 4. Results and discussion 45
4.1. Characterization of Graphene Oxide 45
4.1.1 XRD spectra of GO 45
4.1.2 Raman spectra of GO 46
4.1.3 FTIR spectra of GO 47
4.1.4 TEM image of GO 48
4.1.5 BET surface area of GO 49
4.1.6 Testing the vaporization of GO 50
4.2 Effect of GO on Anammox activity 51
4.2.1 Specific Anammox Activity test 51
4.2.2 Long-term effect of GO on Anammox activity 52
4.3 Characterization of TNTs 64
4.3.1 Scanning electron microscope of TNTs 64
4.3.2 BET surface area of TNTs 65
4.4 Long-term effect of TNT on Anammox activity 66
4.5. Phylogenetic tree of anammox bacteria 67
4.6. Compared two kinds of nano materials in experimental operation 68
Chapter 5. Conclusions 70
1. D. Chatterjee and S. Dasgupta, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005, 6, 186-205.
2. L. Zhao, S. Mei, W. Wang, P. K. Chu, Z. Wu and Y. Zhang, Biomaterials, 2010, 31, 2055-2063.
3. S. Bauer, J. Park, J. Faltenbacher, S. Berger, K. von der Mark and P. Schmuki, Integrative Biology, 2009, 1, 525-532.
4. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay and Y. Lin, Electroanalysis, 2010, 22, 1027-1036.
5. G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth and R. Mülhaupt, Journal of the American Chemical Society, 2009, 131, 8262-8270.
6. W. Mi, S.-W. Chiu, T. Xue, Y. Chen, H. Qi, Y. Yang, K.-T. Tang and T.-L. Ren, Tsinghua Science and Technology, 2016, 21, 435-441.
7. E. C. Salas, Z. Sun, A. Lüttge and J. M. Tour, ACS Nano, 2010, 4, 4852-4856.
8. O. N. Ruiz, K. S. Fernando, B. Wang, N. A. Brown, P. G. Luo, N. D. McNamara, M. Vangsness, Y.-P. Sun and C. E. Bunker, ACS Nano, 2011, 5, 8100-8107.
9. S.-Y. Wu, S. S. A. An and J. Hulme, International Journal of Nanomedicine, 2015, 10, 9.
10. R. Herbert, FEMS Microbiology Reviews, 1999, 23, 563-590.
11. C. Sparacino-Watkins, J. F. Stolz and P. Basu, Chemical Society Reviews, 2014, 43, 676-706.
12. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 1998, 14, 3160-3163.
13. L. van Niftrik and M. S. Jetten, Microbiology and Molecular Biology Reviews, 2012, 76, 585-596.
14. B. Kartal, J. T. Keltjens and M. S. Jetten, American Society of Microbiology, 2011, pp. 181-200.
15. C. Fux, M. Boehler, P. Huber, I. Brunner and H. Siegrist, Journal of Biotechnology, 2002, 99, 295-306.
16. M. S. Jetten, L. v. Niftrik, M. Strous, B. Kartal, J. T. Keltjens and H. J. Op den Camp, Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 65-84.
17. M. Strous, J. Heijnen, J. G. Kuenen and M. Jetten, Applied microbiology and biotechnology, 1998, 50, 589-596.
18. L. van Niftrik, W. J. Geerts, E. G. van Donselaar, B. M. Humbel, R. I. Webb, J. A. Fuerst, A. J. Verkleij, M. S. Jetten and M. Strous, Journal of Bacteriology, 2008, 190, 708-717.
19. R. Zhao, H. Zhang, Y. Li, T. Jiang and F. Yang, Current microbiology, 2014, 69, 880-887.
20. J. Zhang, Y. Zhang, Y. Li, L. Zhang, S. Qiao, F. Yang and X. Quan, Bioresource Technology, 2012, 114, 102-108.
21. L. v. Niftrik, W. Geerts, E. van Donselaar, B. Humbel, A. Yakushevska, A. Verkleij, M. Jetten and M. Strous, 2007.
22. Y. Hong, H. Cao, M. Li and J.-D. Gu, American Journal of Current Microbiology, 2014, 2, 18-40.
23. A. Meibom, N. H. Sleep, C. P. Chamberlain, R. G. Coleman, R. Frei, M. T. Hren and J. L. Wooden, Nature, 2002, 419, 705-708.
24. L. A. van Niftrik, J. A. Fuerst, J. S. S. Damsté, J. G. Kuenen, M. S. Jetten and M. Strous, FEMS Microbiology Letters, 2004, 233, 7-13.
25. B. Kartal, L. Van Niftrik, J. Rattray, J. L. Van De Vossenberg, M. C. Schmid, J. S. Damsté, M. S. Jetten and M. Strous, FEMS Microbiology Ecology, 2008, 63, 46-55.
26. B. Kartal, W. J. Maalcke, N. M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. J. O. den Camp, H. R. Harhangi, E. M. Janssen-Megens and K.-J. Francoijs, Nature, 2011, 479, 127-130.
27. J. G. Kuenen, Nature Reviews Microbiology, 2008, 6, 320-326.
28. D.-W. Gao and Y. Tao, Applied Microbiology and Biotechnology, 2011, 91, 887-894.
29. A. A. Van de Graaf, P. de Bruijn, L. A. Robertson, M. S. Jetten and J. G. Kuenen, Microbiology, 1996, 142, 2187-2196.
30. G. Lettinga, L. H. Pol, I. Koster, W. Wiegant, W. De Zeeuw, A. Rinzema, P. Grin, R. Roersma and S. Hobma, Biotechnology and Genetic Engineering Reviews, 1984, 2, 253-284.
31. J. E. Schmidt, D. J. Batstone and I. Angelidaki, Water Science and Technology, 2004, 49, 69-76.
32. B. Ma, Y. Peng, S. Zhang, J. Wang, Y. Gan, J. Chang, S. Wang, S. Wang and G. Zhu, Bioresource technology, 2013, 129, 606-611.
33. M. Strous, E. Van Gerven, P. Zheng, J. G. Kuenen and M. S. Jetten, Water Research, 1997, 31, 1955-1962.
34. A. Mulder, A. A. van de Graaf, L. Robertson and J. Kuenen, FEMS Microbiology Ecology, 1995, 16, 177-183.
35. A. A. Van de Graaf, A. Mulder, P. de Bruijn, M. Jetten, L. A. Robertson and J. G. Kuenen, Applied and Environmental Microbiology, 1995, 61, 1246-1251.
36. H. H. Ngo, W. Guo, R. Y. Surampalli and T. C. Zhang, Green Technologies for Sustainable Water Management, 2016.
37. S. Wyffels, P. Boeckx, K. Pynaert, D. Zhang, O. Van Cleemput, G. Chen and W. Verstraete, Water Science and Technology, 2004, 49, 57-64.
38. H.-g. Zhang and S.-q. Zhou, Journal of Central South University of Technology, 2006, 13, 663-667.
39. Z. Liang and J. Liu, Journal of Hazardous Materials, 2008, 151, 202-212.
40. T. Yamamoto, S. Wakamatsu, S. Qiao, D. Hira, T. Fujii and K. Furukawa, Bioresource Technology, 2011, 102, 2342-2347.
41. J. Liu, J. e. Zuo, Y. Yang, S. Zhu, S. Kuang and K. Wang, Journal of Environmental Sciences, 2010, 22, 777-783.
42. D. Akgul, C. K. Aktan, K. Yapsakli and B. Mertoglu, Biodegradation, 2013, 24, 399-412.
43. C.-C. Wang, P.-H. Lee, M. Kumar, Y.-T. Huang, S. Sung and J.-G. Lin, Journal of Hazardous Materials, 2010, 175, 622-628.
44. M. Figueroa, J. R. Vázquez-Padín, A. Mosquera-Corral, J. L. Campos and R. Méndez, Biochemical Engineering Journal, 2012, 65, 23-29.
45. Z. Zhang, Y. Li, S. Chen, S. Wang and X. Bao, Bioresource Technology, 2012, 114, 84-89.
46. L.-d. Shen, A.-h. Hu, R.-c. Jin, D.-q. Cheng, P. Zheng, X.-y. Xu and B.-l. Hu, Journal of Hazardous Materials, 2012, 199, 193-199.
47. A. Daverey, N.-T. Hung, K. Dutta and J.-G. Lin, Bioresource Technology, 2013, 141, 191-198.
48. A. Daverey, S.-H. Su, Y.-T. Huang, S.-S. Chen, S. Sung and J.-G. Lin, Water Research, 2013, 47, 2929-2937.
49. P. T. Nhat, H. N. Biec, N. T. T. Mai, B. X. Thanh and N. P. Dan, International Biodeterioration & Biodegradation, 2014, 95, 144-150.
50. K. J. Klabunde, Nanoscale Materials in Chemistry, 2001, 1-13.
51. W. L. Wilson, P. Szajowski and L. Brus, Science-New York Then Washington-, 1993, 262, 1242-1242.
52. J. D. Moras, B. Strandberg, D. Suc and K. Wilson, Science, 1996, 271, 933.
53. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Advanced Materials, 2010, 22, 3906-3924.
54. C. Hontoria-Lucas, A. López-Peinado, J. d. D. López-González, M. Rojas-Cervantes and R. Martin-Aranda, Carbon, 1995, 33, 1585-1592.
55. T. Sreeprasad and V. Berry, Small, 2013, 9, 341-350.
56. K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. Stormer, Solid State Communications, 2008, 146, 351-355.
57. A. K. Geim and K. S. Novoselov, Nature materials, 2007, 6, 183-191.
58. Q. Xiang, J. Yu and M. Jaroniec, Chemical Society Reviews, 2012, 41, 782-796.
59. W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding and F. Braet, Angewandte Chemie International Edition, 2010, 49, 2114-2138.
60. G. Zhao, T. Wen, C. Chen and X. Wang, Rsc Advances, 2012, 2, 9286-9303.
61. Y. Sun, Q. Wu and G. Shi, Energy & Environmental Science, 2011, 4, 1113-1132.
62. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 2008, 321, 385-388.
63. J. R. Potts, D. R. Dreyer, C. W. Bielawski and R. S. Ruoff, Polymer, 2011, 52, 5-25.
64. W. Humers and R. Offeman, J Am Chem Soc, 1958, 80, 1339.
65. J. L. Sabourin, D. M. Dabbs, R. A. Yetter, F. L. Dryer and I. A. Aksay, ACS nano, 2009, 3, 3945-3954.
66. A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo and H. Boehm, Journal of Physics and Chemistry of Solids, 2006, 67, 1106-1110.
67. C. K. Chua and M. Pumera, Chemical Society Reviews, 2014, 43, 291-312.
68. S. Pei and H.-M. Cheng, Carbon, 2012, 50, 3210-3228.
69. C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern and U. Kaiser, Nano letters, 2010, 10, 1144-1148.
70. A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, Nature Chemistry, 2010, 2, 581-587.
71. S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Nature, 2006, 442, 282-286.
72. F. Perreault, A. F. De Faria and M. Elimelech, Chemical Society Reviews, 2015, 44, 5861-5896.
73. W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang and C. Fan, ACS nano, 2010, 4, 4317-4323.
74. K. J. Gilmore, G. G. Wallace, H. Chen, M. B. Muller and D. Li, 2008.
75. S. Agarwal, X. Zhou, F. Ye, Q. He, G. C. Chen, J. Soo, F. Boey, H. Zhang and P. Chen, Langmuir, 2010, 26, 2244-2247.
76. S. Park, N. Mohanty, J. W. Suk, A. Nagaraja, J. An, R. D. Piner, W. Cai, D. R. Dreyer, V. Berry and R. S. Ruoff, Advanced Materials, 2010, 22, 1736-1740.
77. M. R. Das, R. K. Sarma, R. Saikia, V. S. Kale, M. V. Shelke and P. Sengupta, Colloids and Surfaces B: Biointerfaces, 2011, 83, 16-22.
78. O. Akhavan and E. Ghaderi, ACS nano, 2010, 4, 5731-5736.
79. T. Sreeprasad, M. S. Maliyekkal, K. Deepti, K. Chaudhari, P. L. Xavier and T. Pradeep, ACS Applied Materials & Interfaces, 2011, 3, 2643-2654.
80. X. Zou, L. Zhang, Z. Wang and Y. Luo, Journal of the American Chemical Society, 2016, 138, 2064-2077.
81. C. M. Santos, M. C. R. Tria, R. A. M. V. Vergara, F. Ahmed, R. C. Advincula and D. F. Rodrigues, Chemical Communications, 2011, 47, 8892-8894.
82. S. Some, S.-M. Ho, P. Dua, E. Hwang, Y. H. Shin, H. Yoo, J.-S. Kang, D.-k. Lee and H. Lee, ACS Nano, 2012, 6, 7151-7161.
83. S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong and Y. Chen, ACS Nano, 2011, 5, 6971-6980.
84. D. Zhang, X. Liu and X. Wang, Journal of Inorganic Biochemistry, 2011, 105, 1181-1186.
85. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey and H. Zhang, Small, 2011, 7, 1876-1902.
86. S. Qiao, X. Yin and J. Zhou, RSC Advances, 2016, 6, 97208-97215.
87. X. Yin, S. Qiao, C. Yu, T. Tian and J. Zhou, Chemical Engineering Journal, 2015, 276, 106-112.
88. G. Wang, X. Xu, F. Yang, H. Zhang and D. Wang, Journal of Environmental Chemical Engineering, 2014, 2, 974-980.
89. X. Yin, S. Qiao, J. Zhou and X. Tang, Chemical Engineering Journal, 2016, 283, 160-166.
90. J. L. G. Fierro, Metal Oxides: Chemistry and Applications, CRC press, 2005.
91. A. Ghicov and P. Schmuki, Chemical Communications, 2009, 2791-2808.
92. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Advanced materials, 2003, 15, 353-389.
93. C. R. Sides, N. Li, C. J. Patrissi, B. Scrosati and C. R. Martin, Mrs Bulletin, 2002, 27, 604-607.
94. C. W. Lai, J. C. Juan, W. B. Ko and S. Bee Abd Hamid, International Journal of Photoenergy, 2014, 2014.
95. S. Sreekantan, L. C. Wei and Z. Lockman, Journal of the Electrochemical Society, 2011, 158, C397-C402.
96. G. K. Mor, O. K. Varghese, M. Paulose and C. A. Grimes, Advanced Functional Materials, 2005, 15, 1291-1296.
97. C. W. Lai, S. Sreekantan and Z. Lockman, Journal of Nanoscience and Nanotechnology, 2012, 12, 4057-4066.
98. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Advanced Materials, 1999, 11, 1307-1311.
99. D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen and N. Ming, Chemistry of Materials, 2006, 18, 547-553.
100. Y. Wang and N. Herron, The Journal of Physical Chemistry, 1991, 95, 525-532.
101. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, science, 2001, 293, 269-271.
102. T. Tachikawa, S. Tojo, M. Fujitsuka and T. Majima, The Journal of Physical Chemistry B, 2004, 108, 5859-5866.
103. Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida, Physical Chemistry Chemical Physics, 2005, 7, 4157-4163.
104. T. Sekino, in Inorganic and Metallic Nanotubular Materials, Springer, 2010, pp. 17-32.
105. D. V. Bavykin, V. N. Parmon, A. A. Lapkin and F. C. Walsh, Journal of Materials Chemistry, 2004, 14, 3370-3377.
106. Z.-Y. Yuan and B.-L. Su, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 173-183.
107. Q. Chen and L. Peng, International Journal of Nanotechnology, 2007, 4, 44-65.
108. Y. Suzuki and S. Yoshikawa, Journal of Materials Research, 2004, 19, 982-985.
109. R.-a. Doong and I.-l. Kao, Recent Patents on Nanotechnology, 2008, 2, 84-102.
110. E. Horváth, Á. Kukovecz, Z. Kónya and I. Kiricsi, Chemistry of Materials, 2007, 19, 927-931.
111. Q. Chen, W. Zhou, G. Du and L.-M. Peng, Advanced Materials, 2002, 14, 1208-1211.
112. E. Morgado, M. A. de Abreu, G. T. Moure, B. A. Marinkovic, P. M. Jardim and A. S. Araujo, Chemistry of Materials, 2007, 19, 665-676.
113. E. Morgado, M. A. de Abreu, O. R. Pravia, B. A. Marinkovic, P. M. Jardim, F. C. Rizzo and A. S. Araújo, Solid State Sciences, 2006, 8, 888-900.
114. C. Moseke, F. Hage, E. Vorndran and U. Gbureck, Applied Surface Science, 2012, 258, 5399-5404.
115. L. Zhao, H. Wang, K. Huo, X. Zhang, W. Wang, Y. Zhang, Z. Wu and P. K. Chu, Biomaterials, 2013, 34, 19-29.
116. R. Narayanan, T.-Y. Kwon and K.-H. Kim, Materials Chemistry and Physics, 2009, 117, 460-464.
117. D. Kowalski, D. Kim and P. Schmuki, Nano Today, 2013, 8, 235-264.
118. H. Zhou, X. Gan, J. Wang, X. Zhu and G. Li, Analytical chemistry, 2005, 77, 6102-6104.
119. G. Colon, B. C. Ward and T. J. Webster, Journal of Biomedical Materials Research Part A, 2006, 78, 595-604.
120. S. D. Puckett, E. Taylor, T. Raimondo and T. J. Webster, Biomaterials, 2010, 31, 706-713.
121. S. Bauer, J. Park, K. von der Mark and P. Schmuki, Acta Biomaterialia, 2008, 4, 1576-1582.
122. J. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, Current Opinion in Solid State and Materials Science, 2007, 11, 3-18.
123. J. Ji and W. Zhang, Journal of Biomedical Materials Research Part A, 2009, 88, 448-453.
124. J. H. Lee, S. J. Lee, G. Khang and H. B. Lee, Journal of Biomaterials Science, Polymer Edition, 1999, 10, 283-294.
125. S. Kang, M. Pinault, L. D. Pfefferle and M. Elimelech, Langmuir, 2007, 23, 8670-8673.
126. Y. J. Tang, J. M. Ashcroft, D. Chen, G. Min, C.-H. Kim, B. Murkhejee, C. Larabell, J. D. Keasling and F. F. Chen, Nano Letters, 2007, 7, 754-760.
127. S. Grigorescu, C. Ungureanu, R. Kirchgeorg, P. Schmuki and I. Demetrescu, Applied Surface Science, 2013, 270, 190-196.
128. H. H. Rijnaarts, W. Norde, E. J. Bouwer, J. Lyklema and A. J. Zehnder, Colloids and Surfaces B: Biointerfaces, 1995, 4, 5-22.
129. B. Gottenbos, H. Busscher, H. Van Der Mei and P. Nieuwenhuis, Journal of Materials Science: Materials in Medicine, 2002, 13, 717-722.
130. J. E. Duddridge, C. Kent and J. Laws, Biotechnology and Bioengineering, 1982, 24, 153-164.
131. R. B. Dickinson and S. L. Cooper, AIChE Journal, 1995, 41, 2160-2174.
132. P. Stoodley, Z. Lewandowski, J. D. Boyle and H. M. Lappin-Scott, Biotechnology and Bioengineering, 1999, 65, 83-92.
133. I. Klapper, C. Rupp, R. Cargo, B. Purvedorj and P. Stoodley, Biotechnology and Bioengineering, 2002, 80, 289-296.
134. T. R. Scheuerman, A. K. Camper and M. A. Hamilton, Journal of Colloid and Interface Science, 1998, 208, 23-33.
135. K. Vacheethasanee, J. S. Temenoff, J. M. Higashi, A. Gary, J. M. Anderson, R. Bayston and R. E. Marchant, Journal of Biomedical Materials Research Part A, 1998, 42, 425-432.
136. Y. H. An and R. J. Friedman, Journal of Biomedical Materials Research, 1998, 43, 338-348.
137. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva and A. D. Gorchinskiy, Chemistry of Materials, 1999, 11, 771-778.
138. A. Dapena-Mora, I. Fernandez, J. Campos, A. Mosquera-Corral, R. Mendez and M. Jetten, Enzyme and Microbial Technology, 2007, 40, 859-865.
139. X. Shi, Q. Xu, A. Tian, Y. Tian, X. Xue, H. Sun, H. Yang and C. Dong, RSC Advances, 2015, 5, 34237-34242.
140. N. Hansen, Berichte der Bunsengesellschaft für physikalische Chemie, 1967, 71, 929-929.
141. M. M. Stevens and J. H. George, Science, 2005, 310, 1135-1138.
142. S. Zhang, Nature Biotechnology, 2003, 21, 1171-1178.
143. K. Das, A. Bandyopadhyay and S. Bose, Journal of the American Ceramic Society, 2008, 91, 2808-2814.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top