跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 11:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳榮哲
研究生(外文):Jong-Che WU
論文名稱:都市污水厭氧生物處理之研究—探討醣類、蛋白質及脂質的降解
論文名稱(外文):Anaerobic Biotechnology for Domestic Wastewater Treatment—Explore the Degradation of Sugars, Proteins and Lipids
指導教授:林正芳林正芳引用關係
指導教授(外文):Cheng-Fang LIN
口試委員:吳忠信李建賢吳萬益
口試委員(外文):Chung-Hsin WUChien-Hsien LEEWan-I WU
口試日期:2019-01-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:62
中文關鍵詞:都市污水厭氧固定生物醣類蛋白質脂質
DOI:10.6342/NTU201900006
相關次數:
  • 被引用被引用:2
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以固定厭氧生物反應模組,採取以全實廠污水連續進流的方式進行試驗,操作溫度設定為25℃,並以水力停留時間(HRT)16、12、8及6小時等四個階段檢測分析處理成果,檢測結果為化學需氧量(TCOD)的總平均去除率為76.5%,各階段的平均去除率,HRT=16小時之平均去除率為75.5%、HRT=12小時之平均去除率為76.3%、HRT=8小時之平均去除率為78.7%,HRT=6小時之平均去除率則為74.6%。
在HRT=6小時及突增負荷的操作條件下,出流水TCOD平均值為62 mg/L (最大值77 mg/L,最小值49 mg/L),均符合放流水化學需氧量(COD)之排放標準(100 mg/L),顯示厭氧固定生物反應系統對突增負荷的穩定度及低水力停留時間(HRT)的處理能效,可滿足現階段都市污水處理的需求,而以厭氧固定生物反應系統處理,不需持續性曝氣且廢棄污泥量極低,可節省電費及污泥清理費用甚為可觀。
從醣類、蛋白質及脂質這三種都市污水中主要有機成分的檢測結果顯示,醣類及蛋白質的削減率在何種水力停留時間的操作條件下均可達80%以上,脂質則僅維持在40%~60%之間,顯見脂質的去除效能是固定厭氧生物處理的限制因子,如何利用醣類、蛋白質及脂質的共降解效應以提高脂質的降解效率,是提升厭氧固定生物處理系統的整體效能的重要課題。
This research, the fixed anaerobic biological treatment module was used to test the continuous influent of the whole domestic wastewater. The operating temperature was set to 25 °C, and the results were analyzed in four phases of hydraulic retention time (HRT) at 16, 12, 8 and 6 hours.
The results showed that the total average removal rate of chemical oxygen demand (TCOD) was 76.5% and for the average removal rate of each phase, the average removal rate at HRT of 16 hours was 75.5%, 76.3% at HRT of 12 hours, 78.7% at HRT of 8 hours and 74.6% at HRT of 6 hours.
At HRT of 6 hours and the operating condition of sudden load increase, the average TCOD of effluent was 62 mg/L (maximum 77 mg/L and minimum 49 mg/L), which was consistent with the emission standards for chemical oxygen demand of the discharged water (COD, 100mg/L), showing the stability of the fixed anaerobic biological treatment system for sudden load increase and low hydraulic retention time (HRT) that satisfied the current demand of domestic wastewater treatment via the fixed anaerobic biological treatment system. Such system does not require continuous aeration and the production of waste sludge is extremely low, which conserves electricity and tremendously reduces the sludge disposal cost.
The analytic results of major organic components in three types of domestic wastewater, such as sugars, proteins and lipids, showed that the reduction rate of sugars and proteins could achieve more than 80% under the operating condition of any hydraulic retention time, where the level of lipids could only be maintained between 40% and 60%. It was obvious that the removal efficiency of lipids was the limiting factor for the fixed anaerobic biological treatment system. The improvement to degradation efficiency of lipids in the co-degradation effect of sugars, proteins and lipids is the key issue to enhance the overall effectiveness of the fixed anaerobic biological treatment system.
口試委員審定書 I
致謝 II
摘要 III
ABSTRACT IV
目錄 1
圖目錄 3
表目錄 4
第一章 前言 5
1.1研究緣起 5
1.2研究目的及項目 6
第二章 文獻回顧 8
2.1台灣都市污水處理現況 8
2.1.1都市污水處理廠分布 10
2.1.2都市進流污水水質 12
2.2 厭氧生物處理 13
2.3 都市污水中的有機成分 15
2.4厭氧生物處理醣類、蛋白質及脂質 18
第三章 實驗方法與材料 20
3.1實驗內容與架構 20
3.2實驗方法與流程 22
3.3進流水來源及水質 24
3.4水質分析方法 26
3.4.1化學需氧量(COD) 26
3.4.2三成分分析-醣類(蔥酮法) 27
3.4.3三成分分析-蛋白質(莫瑞法) 28
3.4.4三成分分析-脂質(紅外線分析法) 29
3.5實驗材料與設備 31
3.5.1實驗藥品 31
3.5.2實驗設備 32
3.6效能評估 33
3.6.1去除率 33
3.6.2進流有機負荷率 33
3.6.3單位反應槽體積削減率 34
3.6.4單位質量(微生物)削減率 34
第四章 結果與討論 35
4.1化學需氧量(COD)檢測結果 35
4.1.1檢測數據 35
4.1.2化學需氧量(COD)去除率 37
4.1.3進流有機物(COD)負荷率 39
4.1.4單位反應槽體積COD削減率 42
4.1.5單位質量(微生物)對COD削減率 44
4.2三成分(醣類、蛋白質、脂質)檢測結果 46
4.2.1檢測數據 46
4.2.2三成分去除率 47
4.2.3進流有機物(三成分)負荷率 49
4.2.4單位反應槽體積(三成分)削減率 50
4.2.5單位質量(微生物)對三成分削減率 52
4.3討論 53
第五章 結論與建議 58
5.1結論 58
5.2建議 59
參考文獻 60
Abdelgadir, A., Chen, X., Liu, J., Xie, X., Zhang, J., Zhang, K.,& Liu, N. (2014). Characteristics, process parameters, and inner components of anaerobic bioreactors.
Breure, A., Mooijman, K., & Andel, J. v. (1986). Protein degradation in anaerobic digestion: influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatin. Applied microbiology and biotechnology.
Chungheon Shin, Perry L. McCarty, Jeonghwan Kim, Jaeho Bae (2014). Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR).
Cirne, D., Paloumet, X., Björnsson, L., Alves, M., & Mattiasson, B. (2007). Anaerobic digestion of lipid-rich waste—effects of lipid concentration.
Elbeshbishy, E., & Nakhla, G. (2012). Batch anaerobic co-digestion of proteins and carbohydrates.
Herbert H. P. Fang, Member, ASCE, and H. Q. Yu (2000). Effect of HRT on mesophilic acidogenesis of dairy wastewater.
Liu, D. H., & Lipták, B. G. (2000). Wastewater treatment.
Man-hong Huang, Yong-mei Li, Guo-wei Gu (2010). Chemical composition of organic matters in domestic wastewater.
Pei-Hsun Wu, Kok Kwang Ng, Pui-Kwan Andy Hong, Ping-Yi Yang, Cheng-Fang Lin (2017). Treatment of low-strength wastewater at mesophilic and psychrophilic conditions using immobilized anaerobic biomass.
Perry L. McCarty, Jaeho Bae, and Jeonghwan Kim (2011). Domestic Wastewater Treatment as a Net Energy Producer—Can This be Achieved?
Raunkjaer, K., Hvitved-Jacobsen, T., & Nielsen, P. H. (1994). Measurement of pools of protein, carbohydrate and lipid in domestic wastewater.
R. H. Yoo, J. H. Kim, P. L. McCarty and J. H. Bae (2014). Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor.
Rihye Yoo a, Jeonghwan Kim a, Perry L. McCarty, Jaeho Bae (2012). Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system.
Sophonsiri, C., & Morgenroth, E. (2004). Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters.
Wang, H., Fotidis, I. A., & Angelidaki, I. (2016). Ammonia–LCFA synergetic co-inhibition effect in manure-based continuous biomethanation process.
Xiaodi Yue, Yoong Keat Kelvin Koh, How Yong Ng (2015). Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.
Zhi Huang, Say L. Ong, How Y. Ng (2011). Submerged anaerobic membrane bioreactor for low-strengthwastewater treatment : Effect of HRT and SRT on treatmentperformance and membrane fouling.
Zhi Huang, Say L. Ong, How Y. Ng (2013). Performance of submerged anaerobic membrane bioreactor at different SRTs for domestic wastewater treatment.
田俊彥 (2016)。厭氧固定生物技術處理低強度合成污水:水力停留時間與進流濃度之影響。國立台灣大學工學院環境工程研究所碩士論文。
陳昶瑞(2017)。厭氧生物處理都市污水:醣類、脂質與蛋白質定量定性分析研究。國立台灣大學工學院環境工程研究所碩士論文。
內政部營建署(2009)。下水道工程設施標準。
內政部營建署(2016)。污水下水道工程設計指針與解說。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊