跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張俊喜
研究生(外文):Jun-Hei Chang
論文名稱:兒茶素對左心房電生理特性及心律不整調控機制的探討
論文名稱(外文):Study of Epigallocatechin-3-gallate on the electrophysiological characteristics and the regulation mechanisms of arrhythmogenic activity on left atrium
指導教授:洪伯達陳耀昌陳耀昌引用關係
指導教授(外文):Po-Da HongYao-Chang Chen
口試委員:許維君白孟宜朱紀洪林永國
口試委員(外文):Wei-Chun HsuMeng-Yi BaiChi-Hong ChuYung-Kuo Lin
口試日期:2017-7-17
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:兒茶素電生理心律不整
外文關鍵詞:Epigallocatechin-3-gallateelectrophysiologicalarrhythmogenic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
心房顫動是最常見的持續性心律不整,且會增加中風、心衰竭和死亡的風險。心房顫動的危險因子包括鈣離子過載和氧化壓力等。研究顯示兒茶素(表沒食子兒茶素-3-沒食子酸酯,EGCG)具有抗氧化作用,且有益於保護心血管健康。然而,EGCG保護心血管健康的作用機轉及如何調節心臟的電生理特性並不清楚。本研究使用玻璃微電極、全細胞膜電位箝定和Fluo-3熒光計比率技術,來研究及記錄在兔子左心房組織或心肌細胞給予兒茶素EGCG前後動作電位、離子電流和細胞內鈣離子的變化。研究兒茶素EGCG(0.01,0.1,1和10μM)等4種濃度分別和縮短動作電位作用時間有正相關性,分別降低APD20 13±8%,25±5%,31±6%和37±5%,APD50降低9±8%,22± 6%,32±7%和40±4%,APD90為2±12%,9±8%,24±10%和34±5%。另外,兒茶素EGCG(0.1μM)會降低晚期鈉離子電流(INa-Late),L型鈣離子電流(ICa-L)和鈉-鈣離子交換電流(NCX),但不會改變左心房心肌細胞中的鈉電流(INa)。兒茶素EGCG(0.1μM)也會減少左心房心肌細胞中的細胞內鈣離子和肌漿網鈣離子含量。兒茶素EGCG可抑制利用異丙腎上腺素(ISO,1μM)誘發的心房顫動,給予兒茶素EGCG(0.1μM)治療前和同時給予KT5823(1μM,PKG抑制劑)或KN93(1μM,CaM激酶抑制劑)也都抑制了ISO(1μM)誘發的心房顫動的發生率,但單獨使用H89(10μM,PKA抑制劑)或PKI抑制劑都不會抑制ISO(1μM)誘發的心房顫動的發生率。然而,在H89或PKI抑制劑存在下,兒茶素EGCG(0.1μM)仍然抑制了ISO(1μM)誘發的心房顫動的發生率。
結論,兒茶素EGCG可能透過直接調節左心房電生理特性和鈣離子調控,並通過抑制鈣調蛋白或cGMP依賴性蛋白激酶抑制異丙腎上腺素誘導的心房心律不整。
Atrial fibrillation (AF) is the commonest sustained arrhythmia, and gives rise to the risk of stroke, heart failure, and mortality. Many factors are considered to participate in the pathogenesis of AF, including calcium (Ca2+) overload and oxidative stress. Epigallocatechin-3-gallate (EGCG) has a well-know clinical effectiveness, such as an antioxidative potential to medical care, and has been shown to be beneficial in promoting cardiovascular health. However, it is still unclear whether EGCG directly modulates the electrophysiological characteristics and Ca2+ homeostasis of the left atrium (LA). Conventional microelectrodes, whole-cell patch-clamp, and the Fluo-3 fluorometric ratio technique were applied to record action potentials (APs), ionic currents and intracellular Ca2+ within isolated rabbit LA preparations or isolated single LA myocytes before and after the administration of EGCG. EGCG (0.01, 0.1, 1, and 10 μM) which concentration-dependence decreased the APD20 by 13±8%, 25±5%, 31±6%, and 37±5%, APD50 by 9±8%, 22±6%, 32±7%, and 40±4%, and APD90 by 2±12%, 9±8%, 24±10%, and 34±5% in LA cardiomyocytes. EGCG (0.1 μM) decreased the late sodium (Na+) current, L-type Ca2+ current, and nickel-sensitive Na+-Ca2+ exchanger current, but did not change the Na+ current in LA cardiomyocytes. EGCG (0.1 μM) decreased intracellular Ca2+ transient and sarcoplasmic reticulum Ca2+ content in LA cardiomyocytes. Furthermore, EGCG decreased isoproterenol (ISO, 1 μM)-induced burst firing. KT5823 (1 μM, a PKG inhibitor) or KN93 (1 µM, a CaM kinase inhibitor) decreased the incidences of ISO (1 μM)-induced LA burst firing, which became lower with EGCG (0.1 μM) treatment. H89 (10 µM, a PKA inhibitor) did not suppressed the incidence of ISO (1 μM)-induced LA burst firing. However, EGCG (0.1 μM) decreased the incidences of ISO (1 μM)-induced LA burst firing in the presence of H89.
In conclusion, EGCG directly regulates LA electrophysiological characteristics and Ca2+ homeostasis, and suppresses isoproterenol-induced atrial arrhythmogenesis through inhibiting Ca2+/calmodulin or cGMP-dependent protein kinases.
第一章 前言-------------------------------------------------------------------------------------1
1.1 兒茶素 (Epigallocatechin-3-gallate)---------------------------------------------1
1.2 心律不整(arrhythmia)--------------------------------------------------------------3
1.3 心房顫動(atrial fibrillation) -------------------------------------------------------6
1.4 心臟肥大(cardiac hypertrophy)---------------------------------------------------7
1.5 左心房(left atrium, LA)------------------------------------------------------------8
1.6 心肌細胞電生理學之簡介--------------------------------------------------------9
1.7 動作電位與離子電流之簡介----------------------------------------------------10
1.8 活性氧分子(Reactive oxygen species, ROS)------------ ---------------------13
1.9 研究目的---------------------------------------------------------------------------15
第二章 材料與方法-------------------------------------------------------------------------16
2.1 實驗動物---------------------------------------------------------------------------16
2.2 實驗藥物及溶液的配製---------------------------------------------------------17
2.3 玻璃微電極與細胞膜電位箝定實驗-------------------------------------------17
2.4傳統電生理實驗-------------------------------------------------------------------19
2.5 鈣離子測定------------------------------------------------------------------------20
2.6 Langendorff 離體心臟實驗------------------------------------------------------22
2.7 電生理及藥理學的研究---------------------------------------------------------22
2.8 實驗數據與統計------------------------------------------------------------------21
第三章 結果------------------------------------------------------------------------------------24
3.1兒茶素EGCG對左心房組織電生理特性的影響---------------------------24
3.2兒茶素EGCG對左心房心肌細胞膜離子通道的影響-------------------- 26
3.3兒茶素EGCG對左心房鈣離子的調控----------------------------------------30
3.4兒茶素EGCG對異丙腎上腺素誘發的左心房心律不整的影響----------32
3.5兒茶素與KN93、KN92、 KT5823、H89、PKI等抑制劑對異丙腎上腺素誘發左心房顫動的影響------------------------------------------------------------34
第四章 討論------------------------------------------------------------------------------------41
4.1 兒茶素EGCG對左心房組織電生理特性的影響----------------------------41
4.2 兒茶素EGCG對左心房細胞電生理、離子流特性的影響----------------41
4.3 兒茶素EGCG對左心房作用機轉研究----------------------------------------44
4.4 研究限制----------------------------------------------------------------------------45
第五章 結論------------------------------------------------------------------------------------46
參考文獻----------------------------------------------------------------------------------------47
[1] Ali-Hassan-Sayegh, S., Mirhosseini, S. J., Rezaeisadrabadi, M., Dehghan, H. R., Sedaghat-Hamedani, F., Kayvanpour, E., . . . Liakopoulos, O. J. (2014). Antioxidant supplementations for prevention of atrial fibrillation after cardiac surgery: an updated comprehensive systematic review and meta-analysis of 23 randomized controlled trials. Interact Cardiovasc Thorac Surg, 18(5), 646-654. doi: 10.1093/icvts/ivu020
[2] Andrade, J., Khairy, P., Dobrev, D., & Nattel, S. (2014). The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res, 114(9), 1453-1468. doi: 10.1161/circresaha.114.303211
[3] Beavers, D. L., Wang, W., Ather, S., Voigt, N., Garbino, A., Dixit, S. S., . . . Wehrens, X. H. (2013). Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J Am Coll Cardiol, 62(21), 2010-2019. doi: 10.1016/j.jacc.2013.06.052
[4] Beinart, R., Boyko, V., Schwammenthal, E., Kuperstein, R., Sagie, A., Hod, H., . . . Feinberg, M. S. (2004). Long-term prognostic significance of left atrial volume in acute myocardial infarction. J Am Coll Cardiol, 44(2), 327-334. doi: 10.1016/j.jacc.2004.03.062
[5] Bell, R. M., Mocanu, M. M., & Yellon, D. M. (2011). Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol, 50(6), 940-950. doi: 10.1016/j.yjmcc.2011.02.018
[6] Benjamin, E. J., D'Agostino, R. B., Belanger, A. J., Wolf, P. A., & Levy, D. (1995). Left atrial size and the risk of stroke and death. The Framingham Heart Study. Circulation, 92(4), 835-841.
[7] Bers, D. M. (2006). Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda), 21, 380-387. doi: 10.1152/physiol.00019.2006
[8] Bolli, R., & Marban, E. (1999). Molecular and cellular mechanisms of myocardial stunning. Physiol Rev, 79(2), 609-634.
[9] Burashnikov, A., Di Diego, J. M., Zygmunt, A. C., Belardinelli, L., & Antzelevitch, C. (2007). Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation, 116(13), 1449-1457. doi: CIRCULATIONAHA.107.704890 [pii] 10.1161/CIRCULATIONAHA.107.704890
[10] Burkhardt, M., Glazova, M., Gambaryan, S., Vollkommer, T., Butt, E., Bader, B., . . . Palmetshofer, A. (2000). KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. J Biol Chem, 275(43), 33536-33541. doi: 10.1074/jbc.M005670200
[11] Carmeliet, E. (1999). Cardiac Ionic Currents and Acute Ischemia: From Channels to Arrhythmias. Physiological Reviews, 79(3), 917-1017.
[12] Chang, C. J., Cheng, C. C., Yang, T. F., Chen, Y. C., Lin, Y. K., Chen, S. A., & Chen, Y. J. (2015). Selective and non-selective non-steroidal anti-inflammatory drugs differentially regulate pulmonary vein and atrial arrhythmogenesis. Int J Cardiol, 184, 559-567. doi: 10.1016/j.ijcard.2015.03.066
[13] Chen, D. D., Dong, Y. G., Liu, D., & He, J. G. (2009). Epigallocatechin-3-gallate attenuates cardiac hypertrophy in hypertensive rats in part by modulation of mitogen-activated protein kinase signals. Clin Exp Pharmacol Physiol, 36(9), 925-932. doi: 10.1111/j.1440-1681.2009.05173.x
[14] Chen, Y. J., Chen, Y. C., Wongcharoen, W., Lin, C. I., & Chen, S. A. (2008). Effect of K201, a novel antiarrhythmic drug on calcium handling and arrhythmogenic activity of pulmonary vein cardiomyocytes. Br J Pharmacol, 153(5), 915-925. doi: 10.1038/sj.bjp.0707564
[15] Chen, Y. J., Chen, Y. C., Yeh, H. I., Lin, C. I., & Chen, S. A. (2002). Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation, 105(22), 2679-2685.
[16] Cheng, T. O. (2006). All teas are not created equal: the Chinese green tea and cardiovascular health. Int J Cardiol, 108(3), 301-308. doi: 10.1016/j.ijcard.2005.05.038
[17] Clusin, W. T. (2003). Calcium and cardiac arrhythmias: DADs, EADs, and alternans. Crit Rev Clin Lab Sci, 40(3), 337-375. doi: 10.1080/713609356
[18] DiFrancesco, D. (1995). The pacemaker current (I(f)) plays an important role in regulating SA node pacemaker activity. Cardiovasc Res, 30(2), 307-308.
[19] Dini, F. L., Cortigiani, L., Baldini, U., Boni, A., Nuti, R., Barsotti, L., & Micheli, G. (2002). Prognostic value of left atrial enlargement in patients with idiopathic dilated cardiomyopathy and ischemic cardiomyopathy. Am J Cardiol, 89(5), 518-523.
[20] Ferrier, G. R., & Howlett, S. E. (2001). Cardiac excitation-contraction coupling: role of membrane potential in regulation of contraction. Am J Physiol Heart Circ Physiol, 280(5), H1928-1944.
[21] Fischmeister, R., & Mery, P. F. (1996). [Regulation of cardiac calcium current by cGMP/NO route]. C R Seances Soc Biol Fil, 190(2-3), 181-206.
[22] Frey, N., Katus, H. A., Olson, E. N., & Hill, J. A. (2004). Hypertrophy of the heart: a new therapeutic target? Circulation, 109(13), 1580-1589. doi: 10.1161/01.cir.0000120390.68287.bb
[23] Gaztanaga, L., Marchlinski, F. E., & Betensky, B. P. (2012). Mechanisms of cardiac arrhythmias. Rev Esp Cardiol (Engl Ed), 65(2), 174-185. doi: 10.1016/j.recesp.2011.09.018
[24] Gerdts, E., Wachtell, K., Omvik, P., Otterstad, J. E., Oikarinen, L., Boman, K., . . . Devereux, R. B. (2007). Left atrial size and risk of major cardiovascular events during antihypertensive treatment: losartan intervention for endpoint reduction in hypertension trial. Hypertension, 49(2), 311-316. doi: 10.1161/01.hyp.0000254322.96189.85
[25] Golovko, V., Gonotkov, M., & Lebedeva, E. (2015). Effects of 4-aminopyridine on action potentials generation in mouse sinoauricular node strips. Physiol Rep, 3(7). doi: 10.14814/phy2.12447
[26] Grover, A. K., & Samson, S. E. (1988). Effect of superoxide radical on Ca2+ pumps of coronary artery. Am J Physiol, 255(3 Pt 1), C297-303.
[27] Grover, A. K., Samson, S. E., & Fomin, V. P. (1992). Peroxide inactivates calcium pumps in pig coronary artery. Am J Physiol, 263(2 Pt 2), H537-543.
[28] Hamill, O. P., Marty, A., Neher, E., Sakmann, B., & Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch, 391(2), 85-100.
[29] Hao, J., Kim, C. H., Ha, T. S., & Ahn, H. Y. (2007). Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J Vet Sci, 8(2), 121-129.
[30] Heijman, J., Voigt, N., Nattel, S., & Dobrev, D. (2014). Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res, 114(9), 1483-1499. doi: 10.1161/circresaha.114.302226
[31] Helms, A. S., West, J. J., Patel, A., Lipinski, M. J., Mangrum, J. M., Mounsey, J. P., . . . Ferguson, J. D. (2009). Relation of left atrial volume from three-dimensional computed tomography to atrial fibrillation recurrence following ablation. Am J Cardiol, 103(7), 989-993. doi: 10.1016/j.amjcard.2008.12.021
[32] Hotta, Y., Huang, L., Muto, T., Yajima, M., Miyazeki, K., Ishikawa, N., . . . Nonogaki, T. (2006). Positive inotropic effect of purified green tea catechin derivative in guinea pig hearts: the measurements of cellular Ca2+ and nitric oxide release. Eur J Pharmacol, 552(1-3), 123-130. doi: 10.1016/j.ejphar.2006.09.017
[33] Huang, S.-Y., Lu, Y.-Y., Chen, Y.-C., Chen, W.-T., Lin, Y.-K., Chen, S.-A., & Chen, Y.-J. . (2014). Hydrogen Peroxide Modulates Electrophysiological Characteristics of Left Atrial Myocytes Zhonghua Minguo Xin Zang Xue Hui Za Zhi, 30,(1), 38-45.
[34] Ibrahim, M., Kukadia, P., Siedlecka, U., Cartledge, J. E., Navaratnarajah, M., Tokar, S., . . . Terracciano, C. M. (2012). Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation. J Cell Mol Med, 16(12), 2910-2918. doi: 10.1111/j.1582-4934.2012.01611.x
[35] Jean, C., Tollon, Y., Raynaud-Messina, B., & Wright, M. (1999). The mammalian interphase centrosome: two independent units maintained together by the dynamics of the microtubule cytoskeleton. Eur J Cell Biol, 78(8), 549-560. doi: 10.1016/s0171-9335(99)80020-x
[36] Kako, K., Kato, M., Matsuoka, T., & Mustapha, A. (1988). Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney. Am J Physiol, 254(2 Pt 1), C330-337.
[37] Kamata, H., & Hirata, H. (1999). Redox regulation of cellular signalling. Cell Signal, 11(1), 1-14.
[38] Kaneko, M., Beamish, R. E., & Dhalla, N. S. (1989). Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals. Am J Physiol, 256(2 Pt 2), H368-374.
[39] Kaneko, M., Singal, P. K., & Dhalla, N. S. (1990). Alterations in heart sarcolemmal Ca2(+)-ATPase and Ca2(+)-binding activities due to oxygen free radicals. Basic Res Cardiol, 85(1), 45-54.
[40] Kang, J., Cheng, H., Ji, J., Incardona, J., & Rampe, D. (2010). In vitro electrocardiographic and cardiac ion channel effects of (-)-epigallocatechin-3-gallate, the main catechin of green tea. J Pharmacol Exp Ther, 334(2), 619-626. doi: 10.1124/jpet.110.169391
[41] Kang, J., Cheng, H., Ji, J., Incardona, J., & Rampe, D. (2010). In Vitro Electrocardiographic and Cardiac Ion Channel Effects of (−)-Epigallocatechin-3-Gallate, the Main Catechin of Green Tea. Journal of Pharmacology and Experimental Therapeutics, 334(2), 619-626. doi: 10.1124/jpet.110.169391
[42] Kannel, W. B., Abbott, R. D., Savage, D. D., & McNamara, P. M. (1982). Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med, 306(17), 1018-1022. doi: 10.1056/nejm198204293061703
[43] Karnovsky, M. J. (1994). Robert Feulgen Lecture 1994. Cytochemistry and reactive oxygen species: a retrospective. Histochemistry, 102(1), 15-27.
[44] Keating, M. T., & Sanguinetti, M. C. (2001). Molecular and cellular mechanisms of cardiac arrhythmias. Cell, 104(4), 569-580.
[45] Kelemen, K., Kiesecker, C., Zitron, E., Bauer, A., Scholz, E., Bloehs, R., . . . Karle, C. A. (2007). Green tea flavonoid epigallocatechin-3-gallate (EGCG) inhibits cardiac hERG potassium channels. Biochem Biophys Res Commun, 364(3), 429-435. doi: 10.1016/j.bbrc.2007.10.001
[46] Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M., & Tai, T. C. (2013). Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients, 5(10), 3779-3827. doi: 10.3390/nu5103779
[47] Kim, H. S., Quon, M. J., & Kim, J. A. (2014). New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol, 2, 187-195. doi: 10.1016/j.redox.2013.12.022
[48] Kim, Y. M., Guzik, T. J., Zhang, Y. H., Zhang, M. H., Kattach, H., Ratnatunga, C., . . . Casadei, B. (2005). A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res, 97(7), 629-636. doi: 10.1161/01.res.0000183735.09871.61
[49] Kimura, J., Miyamae, S., & Noma, A. (1987). Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol, 384, 199-222.
[50] Kiyosue, T., & Arita, M. (1989). Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes. Circ Res, 64(2), 389-397.
[51] Kizer, J. R., Bella, J. N., Palmieri, V., Liu, J. E., Best, L. G., Lee, E. T., . . . Devereux, R. B. (2006). Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: the Strong Heart Study (SHS). Am Heart J, 151(2), 412-418. doi: 10.1016/j.ahj.2005.04.031
[52] Korantzopoulos, P., Kolettis, T., Siogas, K., & Goudevenos, J. (2003). Atrial fibrillation and electrical remodeling: the potential role of inflammation and oxidative stress. Med Sci Monit, 9(9), Ra225-229.
[53] Koumi, S., Backer, C. L., & Arentzen, C. E. (1995). Characterization of inwardly rectifying K+ channel in human cardiac myocytes. Alterations in channel behavior in myocytes isolated from patients with idiopathic dilated cardiomyopathy. Circulation, 92(2), 164-174.
[54] Kourie, J. I. (1998). Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol, 275(1 Pt 1), C1-24.
[55] Kubota, Y., Umegaki, K., Tanaka, N., Mizuno, H., Nakamura, K., Kunitomo, M., & Shinozuka, K. (2002). Safety of dietary supplements: chronotropic and inotropic effects on isolated rat atria. Biol Pharm Bull, 25(2), 197-200.
[56] Kuriyama, S., Shimazu, T., Ohmori, K., Kikuchi, N., Nakaya, N., Nishino, Y., . . . Tsuji, I. (2006). Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. Jama, 296(10), 1255-1265. doi: 10.1001/jama.296.10.1255
[57] Lambert, J. D., & Elias, R. J. (2010). The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys, 501(1), 65-72. doi: 10.1016/j.abb.2010.06.013
[58] Laukkanen, J. A., Kurl, S., Eranen, J., Huttunen, M., & Salonen, J. T. (2005). Left atrium size and the risk of cardiovascular death in middle-aged men. Arch Intern Med, 165(15), 1788-1793. doi: 10.1001/archinte.165.15.1788
[59] Li, H. L., Huang, Y., Zhang, C. N., Liu, G., Wei, Y. S., Wang, A. B., . . . Liang, C. C. (2006). Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med, 40(10), 1756-1775.
[60] Liu, T., Korantzopoulos, P., & Li, G. (2012). Antioxidant therapies for the management of atrial fibrillation. Cardiovasc Diagn Ther, 2(4), 298-307. doi: 10.3978/j.issn.2223-3652.2012.10.07
[61] Liu, T., & Li, G. (2010). Antioxidant interventions as novel preventive strategies for postoperative atrial fibrillation. Int J Cardiol, 145(1), 140-142. doi: 10.1016/j.ijcard.2009.06.054
[62] Lu, Y. Y., Cheng, C. C., Chen, Y. C., Chen, S. A., & Chen, Y. J. (2012). ATX-II-induced pulmonary vein arrhythmogenesis related to atrial fibrillation and long QT syndrome. Eur J Clin Invest, 42(8), 823-831. doi: 10.1111/j.1365-2362.2012.02655.x
[63] Lukyanenko, Y. O., Younes, A., Lyashkov, A. E., Tarasov, K. V., Riordon, D. R., Lee, J., . . . Lakatta, E. G. (2016). Ca2+/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function. J Mol Cell Cardiol, 98, 73-82. doi: 10.1016/j.yjmcc.2016.06.064
[64] Luo, C. H., & Rudy, Y. (1994). A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res, 74(6), 1071-1096.
[65] Manning, W. J., & Gelfand, E. V. (2006). Left atrial size and postoperative atrial fibrillation: the volume of evidence suggests it is time to break an old habit. J Am Coll Cardiol, 48(4), 787-789. doi: 10.1016/j.jacc.2006.05.036
[66] Melenovsky, V., Borlaug, B. A., Rosen, B., Hay, I., Ferruci, L., Morell, C. H., . . . Kass, D. A. (2007). Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol, 49(2), 198-207. doi: 10.1016/j.jacc.2006.08.050
[67] Meris, A., Amigoni, M., Uno, H., Thune, J. J., Verma, A., Kober, L., . . . Solomon, S. D. (2009). Left atrial remodelling in patients with myocardial infarction complicated by heart failure, left ventricular dysfunction, or both: the VALIANT Echo study. Eur Heart J, 30(1), 56-65. doi: 10.1093/eurheartj/ehn499
[68] Mihm, M. J., Yu, F., Carnes, C. A., Reiser, P. J., McCarthy, P. M., Van Wagoner, D. R., & Bauer, J. A. (2001). Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation, 104(2), 174-180.
[69] Mitra, R., & Morad, M. (1986). Two types of calcium channels in guinea pig ventricular myocytes. Proc Natl Acad Sci U S A, 83(14), 5340-5344.
[70] Moller, J. E., Hillis, G. S., Oh, J. K., Seward, J. B., Reeder, G. S., Wright, R. S., . . . Pellikka, P. A. (2003). Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation, 107(17), 2207-2212. doi: 10.1161/01.cir.0000066318.21784.43
[71] Munger, T. M., Wu, L. Q., & Shen, W. K. (2014). Atrial fibrillation. J Biomed Res, 28(1), 1-17. doi: 10.7555/jbr.28.20130191
[72] Nagy, N., Kormos, A., Kohajda, Z., Szebeni, A., Szepesi, J., Pollesello, P., . . . Toth, A. (2014). Selective Na(+) /Ca(2+) exchanger inhibition prevents Ca(2+) overload-induced triggered arrhythmias. Br J Pharmacol, 171(24), 5665-5681. doi: 10.1111/bph.12867
[73] Nattel, S. (2002). New ideas about atrial fibrillation 50 years on. Nature, 415(6868), 219-226. doi: 10.1038/415219a 415219a [pii]
[74] Neher, E., & Sakmann, B. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 260(5554), 799-802.
[75] Nistri, S., Olivotto, I., Betocchi, S., Losi, M. A., Valsecchi, G., Pinamonti, B., . . . Cecchi, F. (2006). Prognostic significance of left atrial size in patients with hypertrophic cardiomyopathy (from the Italian Registry for Hypertrophic Cardiomyopathy). Am J Cardiol, 98(7), 960-965. doi: 10.1016/j.amjcard.2006.05.013
[76] Orenes-Pinero, E., Valdes, M., Lip, G. Y., & Marin, F. (2015). A comprehensive insight of novel antioxidant therapies for atrial fibrillation management. Drug Metab Rev, 47(3), 388-400. doi: 10.3109/03602532.2015.1077858
[77] Pai, S. M., & Torres, V. (1993). Atrial fibrillation: new management strategies. Curr Probl Cardiol, 18(4), 235-300.
[78] Pallandi, R. T., Perry, M. A., & Campbell, T. J. (1987). Proarrhythmic effects of an oxygen-derived free radical generating system on action potentials recorded from guinea pig ventricular myocardium: a possible cause of reperfusion-induced arrhythmias. Circ Res, 61(1), 50-54.
[79] Pogwizd, S. M. (2003). Clinical potential of sodium-calcium exchanger inhibitors as antiarrhythmic agents. Drugs, 63(5), 439-452.
[80] Pogwizd, S. M., & Bers, D. M. (2004). Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med, 14(2), 61-66. doi: 10.1016/j.tcm.2003.12.002 S1050173803001944 [pii]
[81] Qi, X., Yeh, Y. H., Chartier, D., Xiao, L., Tsuji, Y., Brundel, B. J., . . . Nattel, S. (2009). The calcium/calmodulin/kinase system and arrhythmogenic afterdepolarizations in bradycardia-related acquired long-QT syndrome. Circ Arrhythm Electrophysiol, 2(3), 295-304. doi: 10.1161/circep.108.815654
[82] Reed, D., Abbott, R. D., Smucker, M. L., & Kaul, S. (1991). Prediction of outcome after mitral valve replacement in patients with symptomatic chronic mitral regurgitation. The importance of left atrial size. Circulation, 84(1), 23-34.
[83] Reeves, J. P., Bailey, C. A., & Hale, C. C. (1986). Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem, 261(11), 4948-4955.
[84] Reiter, R. J. (1995). Oxidative processes and antioxidative defense mechanisms in the aging brain. Faseb j, 9(7), 526-533.
[85] Rodrigo, R., Korantzopoulos, P., Cereceda, M., Asenjo, R., Zamorano, J., Villalabeitia, E., . . . Gormaz, J. G. (2013). A randomized controlled trial to prevent post-operative atrial fibrillation by antioxidant reinforcement. J Am Coll Cardiol, 62(16), 1457-1465. doi: 10.1016/j.jacc.2013.07.014
[86] Rossi, A., Cicoira, M., Florea, V. G., Golia, G., Florea, N. D., Khan, A. A., . . . Henein, M. (2006). Chronic heart failure with preserved left ventricular ejection fraction: diagnostic and prognostic value of left atrial size. Int J Cardiol, 110(3), 386-392. doi: 10.1016/j.ijcard.2005.08.049
[87] Rossi, A., Cicoira, M., Zanolla, L., Sandrini, R., Golia, G., Zardini, P., & Enriquez-Sarano, M. (2002). Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J Am Coll Cardiol, 40(8), 1425.
[88] Saad, M., Mahmoud, A., & Elgendy, I. Y. (2016). Ranolazine in Cardiac Arrhythmia. 39(3), 170-178. doi: 10.1002/clc.22476
[89] Shiroshita-Takeshita, A., Schram, G., Lavoie, J., & Nattel, S. (2004). Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation, 110(16), 2313-2319. doi: 10.1161/01.cir.0000145163.56529.d1
[90] Simek, C. L., Feldman, M. D., Haber, H. L., Wu, C. C., Jayaweera, A. R., & Kaul, S. (1995). Relationship between left ventricular wall thickness and left atrial size: comparison with other measures of diastolic function. J Am Soc Echocardiogr, 8(1), 37-47.
[91] Song, J., Cheon, S. Y., Lee, W. T., Park, K. A., & Lee, J. E. (2015). PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury. Neural Plast, 2015, 374520. doi: 10.1155/2015/374520
[92] Song, Y., Shryock, J. C., & Belardinelli, L. (2009). A slowly inactivating sodium current contributes to spontaneous diastolic depolarization of atrial myocytes. Am J Physiol Heart Circ Physiol, 297(4), H1254-1262. doi: 00444.2009 [pii] 10.1152/ajpheart.00444.2009
[93] Stangherlin, A., & Zaccolo, M. (2012). cGMP-cAMP interplay in cardiac myocytes: a local affair with far-reaching consequences for heart function. Biochem Soc Trans, 40(1), 11-14. doi: 10.1042/bst20110655
[94] Stangl, V., Dreger, H., Stangl, K., & Lorenz, M. (2007). Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res, 73(2), 348-358. doi: 10.1016/j.cardiores.2006.08.022
[95] Suenari, K., Chen, Y. C., Kao, Y. H., Cheng, C. C., Lin, Y. K., Chen, Y. J., & Chen, S. A. (2011). Discrepant electrophysiological characteristics and calcium homeostasis of left atrial anterior and posterior myocytes. Basic Res Cardiol, 106(1), 65-74. doi: 10.1007/s00395-010-0132-1
[96] Suzuki, J., Ogawa, M., Futamatsu, H., Kosuge, H., Sagesaka, Y. M., & Isobe, M. (2007). Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur J Heart Fail, 9(2), 152-159. doi: 10.1016/j.ejheart.2006.05.007
[97] Suzuki, J., Ogawa, M., Maejima, Y., Isobe, K., Tanaka, H., Sagesaka, Y. M., & Isobe, M. (2007). Tea catechins attenuate chronic ventricular remodeling after myocardial ischemia in rats. J Mol Cell Cardiol, 42(2), 432-440. doi: 10.1016/j.yjmcc.2006.10.006
[98] Tadano, N., Du, C. K., Yumoto, F., Morimoto, S., Ohta, M., Xie, M. F., . . . Sasaguri, T. (2010). Biological actions of green tea catechins on cardiac troponin C. Br J Pharmacol, 161(5), 1034-1043. doi: 10.1111/j.1476-5381.2010.00942.x
[99] Tsang, T. S., & Gersh, B. J. (2002). Atrial fibrillation: an old disease, a new epidemic. Am J Med, 113(5), 432-435.
[100] Vaidya, P. N., Bhosley, P. N., Rao, D. B., & Luisada, A. A. (1976). Tachyarrhythmias in old age. J Am Geriatr Soc, 24(9), 412-414.
[101] Van Gelder, I. C., Crijns, H. J., Van Gilst, W. H., Verwer, R., & Lie, K. I. (1991). Prediction of uneventful cardioversion and maintenance of sinus rhythm from direct-current electrical cardioversion of chronic atrial fibrillation and flutter. Am J Cardiol, 68(1), 41-46.
[102] Voigt, N., Heijman, J., Wang, Q., Chiang, D. Y., Li, N., Karck, M., . . . Dobrev, D. (2014). Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation, 129(2), 145-156. doi: 10.1161/circulationaha.113.006641
[103] Voigt, N., Li, N., Wang, Q., Wang, W., Trafford, A. W., Abu-Taha, I., . . . Dobrev, D. (2012). Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation, 125(17), 2059-2070. doi: 10.1161/circulationaha.111.067306
[104] Waldo, A. L., & Wit, A. L. (1993). Mechanisms of cardiac arrhythmias. Lancet, 341(8854), 1189-1193.
[105] Wardman, P., & Candeias, L. P. (1996). Fenton chemistry: an introduction. Radiat Res, 145(5), 523-531.
[106] Wit, A. L., & Boyden, P. A. (2007). Triggered Activity and Atrial Fibrillation. Heart Rhythm, 4(3 Suppl), S17-23. doi: 10.1016/j.hrthm.2006.12.021
[107] Wolf, P. A., Abbott, R. D., & Kannel, W. B. (1987). Atrial fibrillation: a major contributor to stroke in the elderly. The Framingham Study. Arch Intern Med, 147(9), 1561-1564.
[108] Wolf, P. A., Dawber, T. R., Thomas, H. E., Jr., & Kannel, W. B. (1978). Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology, 28(10), 973-977.
[109] Wongcharoen, W., Chen, Y. C., Chen, Y. J., Chang, C. M., Yeh, H. I., Lin, C. I., & Chen, S. A. (2006). Effects of a Na+/Ca2+ exchanger inhibitor on pulmonary vein electrical activity and ouabain-induced arrhythmogenicity. Cardiovasc Res, 70(3), 497-508. doi: 10.1016/j.cardiores.2006.02.026
[110] Zeng, J., & Rudy, Y. (1995). Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys J, 68(3), 949-964.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top