|
[1] Ali-Hassan-Sayegh, S., Mirhosseini, S. J., Rezaeisadrabadi, M., Dehghan, H. R., Sedaghat-Hamedani, F., Kayvanpour, E., . . . Liakopoulos, O. J. (2014). Antioxidant supplementations for prevention of atrial fibrillation after cardiac surgery: an updated comprehensive systematic review and meta-analysis of 23 randomized controlled trials. Interact Cardiovasc Thorac Surg, 18(5), 646-654. doi: 10.1093/icvts/ivu020 [2] Andrade, J., Khairy, P., Dobrev, D., & Nattel, S. (2014). The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res, 114(9), 1453-1468. doi: 10.1161/circresaha.114.303211 [3] Beavers, D. L., Wang, W., Ather, S., Voigt, N., Garbino, A., Dixit, S. S., . . . Wehrens, X. H. (2013). Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J Am Coll Cardiol, 62(21), 2010-2019. doi: 10.1016/j.jacc.2013.06.052 [4] Beinart, R., Boyko, V., Schwammenthal, E., Kuperstein, R., Sagie, A., Hod, H., . . . Feinberg, M. S. (2004). Long-term prognostic significance of left atrial volume in acute myocardial infarction. J Am Coll Cardiol, 44(2), 327-334. doi: 10.1016/j.jacc.2004.03.062 [5] Bell, R. M., Mocanu, M. M., & Yellon, D. M. (2011). Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol, 50(6), 940-950. doi: 10.1016/j.yjmcc.2011.02.018 [6] Benjamin, E. J., D'Agostino, R. B., Belanger, A. J., Wolf, P. A., & Levy, D. (1995). Left atrial size and the risk of stroke and death. The Framingham Heart Study. Circulation, 92(4), 835-841. [7] Bers, D. M. (2006). Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda), 21, 380-387. doi: 10.1152/physiol.00019.2006 [8] Bolli, R., & Marban, E. (1999). Molecular and cellular mechanisms of myocardial stunning. Physiol Rev, 79(2), 609-634. [9] Burashnikov, A., Di Diego, J. M., Zygmunt, A. C., Belardinelli, L., & Antzelevitch, C. (2007). Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation, 116(13), 1449-1457. doi: CIRCULATIONAHA.107.704890 [pii] 10.1161/CIRCULATIONAHA.107.704890 [10] Burkhardt, M., Glazova, M., Gambaryan, S., Vollkommer, T., Butt, E., Bader, B., . . . Palmetshofer, A. (2000). KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. J Biol Chem, 275(43), 33536-33541. doi: 10.1074/jbc.M005670200 [11] Carmeliet, E. (1999). Cardiac Ionic Currents and Acute Ischemia: From Channels to Arrhythmias. Physiological Reviews, 79(3), 917-1017. [12] Chang, C. J., Cheng, C. C., Yang, T. F., Chen, Y. C., Lin, Y. K., Chen, S. A., & Chen, Y. J. (2015). Selective and non-selective non-steroidal anti-inflammatory drugs differentially regulate pulmonary vein and atrial arrhythmogenesis. Int J Cardiol, 184, 559-567. doi: 10.1016/j.ijcard.2015.03.066 [13] Chen, D. D., Dong, Y. G., Liu, D., & He, J. G. (2009). Epigallocatechin-3-gallate attenuates cardiac hypertrophy in hypertensive rats in part by modulation of mitogen-activated protein kinase signals. Clin Exp Pharmacol Physiol, 36(9), 925-932. doi: 10.1111/j.1440-1681.2009.05173.x [14] Chen, Y. J., Chen, Y. C., Wongcharoen, W., Lin, C. I., & Chen, S. A. (2008). Effect of K201, a novel antiarrhythmic drug on calcium handling and arrhythmogenic activity of pulmonary vein cardiomyocytes. Br J Pharmacol, 153(5), 915-925. doi: 10.1038/sj.bjp.0707564 [15] Chen, Y. J., Chen, Y. C., Yeh, H. I., Lin, C. I., & Chen, S. A. (2002). Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation, 105(22), 2679-2685. [16] Cheng, T. O. (2006). All teas are not created equal: the Chinese green tea and cardiovascular health. Int J Cardiol, 108(3), 301-308. doi: 10.1016/j.ijcard.2005.05.038 [17] Clusin, W. T. (2003). Calcium and cardiac arrhythmias: DADs, EADs, and alternans. Crit Rev Clin Lab Sci, 40(3), 337-375. doi: 10.1080/713609356 [18] DiFrancesco, D. (1995). The pacemaker current (I(f)) plays an important role in regulating SA node pacemaker activity. Cardiovasc Res, 30(2), 307-308. [19] Dini, F. L., Cortigiani, L., Baldini, U., Boni, A., Nuti, R., Barsotti, L., & Micheli, G. (2002). Prognostic value of left atrial enlargement in patients with idiopathic dilated cardiomyopathy and ischemic cardiomyopathy. Am J Cardiol, 89(5), 518-523. [20] Ferrier, G. R., & Howlett, S. E. (2001). Cardiac excitation-contraction coupling: role of membrane potential in regulation of contraction. Am J Physiol Heart Circ Physiol, 280(5), H1928-1944. [21] Fischmeister, R., & Mery, P. F. (1996). [Regulation of cardiac calcium current by cGMP/NO route]. C R Seances Soc Biol Fil, 190(2-3), 181-206. [22] Frey, N., Katus, H. A., Olson, E. N., & Hill, J. A. (2004). Hypertrophy of the heart: a new therapeutic target? Circulation, 109(13), 1580-1589. doi: 10.1161/01.cir.0000120390.68287.bb [23] Gaztanaga, L., Marchlinski, F. E., & Betensky, B. P. (2012). Mechanisms of cardiac arrhythmias. Rev Esp Cardiol (Engl Ed), 65(2), 174-185. doi: 10.1016/j.recesp.2011.09.018 [24] Gerdts, E., Wachtell, K., Omvik, P., Otterstad, J. E., Oikarinen, L., Boman, K., . . . Devereux, R. B. (2007). Left atrial size and risk of major cardiovascular events during antihypertensive treatment: losartan intervention for endpoint reduction in hypertension trial. Hypertension, 49(2), 311-316. doi: 10.1161/01.hyp.0000254322.96189.85 [25] Golovko, V., Gonotkov, M., & Lebedeva, E. (2015). Effects of 4-aminopyridine on action potentials generation in mouse sinoauricular node strips. Physiol Rep, 3(7). doi: 10.14814/phy2.12447 [26] Grover, A. K., & Samson, S. E. (1988). Effect of superoxide radical on Ca2+ pumps of coronary artery. Am J Physiol, 255(3 Pt 1), C297-303. [27] Grover, A. K., Samson, S. E., & Fomin, V. P. (1992). Peroxide inactivates calcium pumps in pig coronary artery. Am J Physiol, 263(2 Pt 2), H537-543. [28] Hamill, O. P., Marty, A., Neher, E., Sakmann, B., & Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch, 391(2), 85-100. [29] Hao, J., Kim, C. H., Ha, T. S., & Ahn, H. Y. (2007). Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J Vet Sci, 8(2), 121-129. [30] Heijman, J., Voigt, N., Nattel, S., & Dobrev, D. (2014). Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res, 114(9), 1483-1499. doi: 10.1161/circresaha.114.302226 [31] Helms, A. S., West, J. J., Patel, A., Lipinski, M. J., Mangrum, J. M., Mounsey, J. P., . . . Ferguson, J. D. (2009). Relation of left atrial volume from three-dimensional computed tomography to atrial fibrillation recurrence following ablation. Am J Cardiol, 103(7), 989-993. doi: 10.1016/j.amjcard.2008.12.021 [32] Hotta, Y., Huang, L., Muto, T., Yajima, M., Miyazeki, K., Ishikawa, N., . . . Nonogaki, T. (2006). Positive inotropic effect of purified green tea catechin derivative in guinea pig hearts: the measurements of cellular Ca2+ and nitric oxide release. Eur J Pharmacol, 552(1-3), 123-130. doi: 10.1016/j.ejphar.2006.09.017 [33] Huang, S.-Y., Lu, Y.-Y., Chen, Y.-C., Chen, W.-T., Lin, Y.-K., Chen, S.-A., & Chen, Y.-J. . (2014). Hydrogen Peroxide Modulates Electrophysiological Characteristics of Left Atrial Myocytes Zhonghua Minguo Xin Zang Xue Hui Za Zhi, 30,(1), 38-45. [34] Ibrahim, M., Kukadia, P., Siedlecka, U., Cartledge, J. E., Navaratnarajah, M., Tokar, S., . . . Terracciano, C. M. (2012). Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation. J Cell Mol Med, 16(12), 2910-2918. doi: 10.1111/j.1582-4934.2012.01611.x [35] Jean, C., Tollon, Y., Raynaud-Messina, B., & Wright, M. (1999). The mammalian interphase centrosome: two independent units maintained together by the dynamics of the microtubule cytoskeleton. Eur J Cell Biol, 78(8), 549-560. doi: 10.1016/s0171-9335(99)80020-x [36] Kako, K., Kato, M., Matsuoka, T., & Mustapha, A. (1988). Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney. Am J Physiol, 254(2 Pt 1), C330-337. [37] Kamata, H., & Hirata, H. (1999). Redox regulation of cellular signalling. Cell Signal, 11(1), 1-14. [38] Kaneko, M., Beamish, R. E., & Dhalla, N. S. (1989). Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals. Am J Physiol, 256(2 Pt 2), H368-374. [39] Kaneko, M., Singal, P. K., & Dhalla, N. S. (1990). Alterations in heart sarcolemmal Ca2(+)-ATPase and Ca2(+)-binding activities due to oxygen free radicals. Basic Res Cardiol, 85(1), 45-54. [40] Kang, J., Cheng, H., Ji, J., Incardona, J., & Rampe, D. (2010). In vitro electrocardiographic and cardiac ion channel effects of (-)-epigallocatechin-3-gallate, the main catechin of green tea. J Pharmacol Exp Ther, 334(2), 619-626. doi: 10.1124/jpet.110.169391 [41] Kang, J., Cheng, H., Ji, J., Incardona, J., & Rampe, D. (2010). In Vitro Electrocardiographic and Cardiac Ion Channel Effects of (−)-Epigallocatechin-3-Gallate, the Main Catechin of Green Tea. Journal of Pharmacology and Experimental Therapeutics, 334(2), 619-626. doi: 10.1124/jpet.110.169391 [42] Kannel, W. B., Abbott, R. D., Savage, D. D., & McNamara, P. M. (1982). Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med, 306(17), 1018-1022. doi: 10.1056/nejm198204293061703 [43] Karnovsky, M. J. (1994). Robert Feulgen Lecture 1994. Cytochemistry and reactive oxygen species: a retrospective. Histochemistry, 102(1), 15-27. [44] Keating, M. T., & Sanguinetti, M. C. (2001). Molecular and cellular mechanisms of cardiac arrhythmias. Cell, 104(4), 569-580. [45] Kelemen, K., Kiesecker, C., Zitron, E., Bauer, A., Scholz, E., Bloehs, R., . . . Karle, C. A. (2007). Green tea flavonoid epigallocatechin-3-gallate (EGCG) inhibits cardiac hERG potassium channels. Biochem Biophys Res Commun, 364(3), 429-435. doi: 10.1016/j.bbrc.2007.10.001 [46] Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M., & Tai, T. C. (2013). Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients, 5(10), 3779-3827. doi: 10.3390/nu5103779 [47] Kim, H. S., Quon, M. J., & Kim, J. A. (2014). New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol, 2, 187-195. doi: 10.1016/j.redox.2013.12.022 [48] Kim, Y. M., Guzik, T. J., Zhang, Y. H., Zhang, M. H., Kattach, H., Ratnatunga, C., . . . Casadei, B. (2005). A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res, 97(7), 629-636. doi: 10.1161/01.res.0000183735.09871.61 [49] Kimura, J., Miyamae, S., & Noma, A. (1987). Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol, 384, 199-222. [50] Kiyosue, T., & Arita, M. (1989). Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes. Circ Res, 64(2), 389-397. [51] Kizer, J. R., Bella, J. N., Palmieri, V., Liu, J. E., Best, L. G., Lee, E. T., . . . Devereux, R. B. (2006). Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: the Strong Heart Study (SHS). Am Heart J, 151(2), 412-418. doi: 10.1016/j.ahj.2005.04.031 [52] Korantzopoulos, P., Kolettis, T., Siogas, K., & Goudevenos, J. (2003). Atrial fibrillation and electrical remodeling: the potential role of inflammation and oxidative stress. Med Sci Monit, 9(9), Ra225-229. [53] Koumi, S., Backer, C. L., & Arentzen, C. E. (1995). Characterization of inwardly rectifying K+ channel in human cardiac myocytes. Alterations in channel behavior in myocytes isolated from patients with idiopathic dilated cardiomyopathy. Circulation, 92(2), 164-174. [54] Kourie, J. I. (1998). Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol, 275(1 Pt 1), C1-24. [55] Kubota, Y., Umegaki, K., Tanaka, N., Mizuno, H., Nakamura, K., Kunitomo, M., & Shinozuka, K. (2002). Safety of dietary supplements: chronotropic and inotropic effects on isolated rat atria. Biol Pharm Bull, 25(2), 197-200. [56] Kuriyama, S., Shimazu, T., Ohmori, K., Kikuchi, N., Nakaya, N., Nishino, Y., . . . Tsuji, I. (2006). Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. Jama, 296(10), 1255-1265. doi: 10.1001/jama.296.10.1255 [57] Lambert, J. D., & Elias, R. J. (2010). The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys, 501(1), 65-72. doi: 10.1016/j.abb.2010.06.013 [58] Laukkanen, J. A., Kurl, S., Eranen, J., Huttunen, M., & Salonen, J. T. (2005). Left atrium size and the risk of cardiovascular death in middle-aged men. Arch Intern Med, 165(15), 1788-1793. doi: 10.1001/archinte.165.15.1788 [59] Li, H. L., Huang, Y., Zhang, C. N., Liu, G., Wei, Y. S., Wang, A. B., . . . Liang, C. C. (2006). Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med, 40(10), 1756-1775. [60] Liu, T., Korantzopoulos, P., & Li, G. (2012). Antioxidant therapies for the management of atrial fibrillation. Cardiovasc Diagn Ther, 2(4), 298-307. doi: 10.3978/j.issn.2223-3652.2012.10.07 [61] Liu, T., & Li, G. (2010). Antioxidant interventions as novel preventive strategies for postoperative atrial fibrillation. Int J Cardiol, 145(1), 140-142. doi: 10.1016/j.ijcard.2009.06.054 [62] Lu, Y. Y., Cheng, C. C., Chen, Y. C., Chen, S. A., & Chen, Y. J. (2012). ATX-II-induced pulmonary vein arrhythmogenesis related to atrial fibrillation and long QT syndrome. Eur J Clin Invest, 42(8), 823-831. doi: 10.1111/j.1365-2362.2012.02655.x [63] Lukyanenko, Y. O., Younes, A., Lyashkov, A. E., Tarasov, K. V., Riordon, D. R., Lee, J., . . . Lakatta, E. G. (2016). Ca2+/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function. J Mol Cell Cardiol, 98, 73-82. doi: 10.1016/j.yjmcc.2016.06.064 [64] Luo, C. H., & Rudy, Y. (1994). A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res, 74(6), 1071-1096. [65] Manning, W. J., & Gelfand, E. V. (2006). Left atrial size and postoperative atrial fibrillation: the volume of evidence suggests it is time to break an old habit. J Am Coll Cardiol, 48(4), 787-789. doi: 10.1016/j.jacc.2006.05.036 [66] Melenovsky, V., Borlaug, B. A., Rosen, B., Hay, I., Ferruci, L., Morell, C. H., . . . Kass, D. A. (2007). Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol, 49(2), 198-207. doi: 10.1016/j.jacc.2006.08.050 [67] Meris, A., Amigoni, M., Uno, H., Thune, J. J., Verma, A., Kober, L., . . . Solomon, S. D. (2009). Left atrial remodelling in patients with myocardial infarction complicated by heart failure, left ventricular dysfunction, or both: the VALIANT Echo study. Eur Heart J, 30(1), 56-65. doi: 10.1093/eurheartj/ehn499 [68] Mihm, M. J., Yu, F., Carnes, C. A., Reiser, P. J., McCarthy, P. M., Van Wagoner, D. R., & Bauer, J. A. (2001). Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation, 104(2), 174-180. [69] Mitra, R., & Morad, M. (1986). Two types of calcium channels in guinea pig ventricular myocytes. Proc Natl Acad Sci U S A, 83(14), 5340-5344. [70] Moller, J. E., Hillis, G. S., Oh, J. K., Seward, J. B., Reeder, G. S., Wright, R. S., . . . Pellikka, P. A. (2003). Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation, 107(17), 2207-2212. doi: 10.1161/01.cir.0000066318.21784.43 [71] Munger, T. M., Wu, L. Q., & Shen, W. K. (2014). Atrial fibrillation. J Biomed Res, 28(1), 1-17. doi: 10.7555/jbr.28.20130191 [72] Nagy, N., Kormos, A., Kohajda, Z., Szebeni, A., Szepesi, J., Pollesello, P., . . . Toth, A. (2014). Selective Na(+) /Ca(2+) exchanger inhibition prevents Ca(2+) overload-induced triggered arrhythmias. Br J Pharmacol, 171(24), 5665-5681. doi: 10.1111/bph.12867 [73] Nattel, S. (2002). New ideas about atrial fibrillation 50 years on. Nature, 415(6868), 219-226. doi: 10.1038/415219a 415219a [pii] [74] Neher, E., & Sakmann, B. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 260(5554), 799-802. [75] Nistri, S., Olivotto, I., Betocchi, S., Losi, M. A., Valsecchi, G., Pinamonti, B., . . . Cecchi, F. (2006). Prognostic significance of left atrial size in patients with hypertrophic cardiomyopathy (from the Italian Registry for Hypertrophic Cardiomyopathy). Am J Cardiol, 98(7), 960-965. doi: 10.1016/j.amjcard.2006.05.013 [76] Orenes-Pinero, E., Valdes, M., Lip, G. Y., & Marin, F. (2015). A comprehensive insight of novel antioxidant therapies for atrial fibrillation management. Drug Metab Rev, 47(3), 388-400. doi: 10.3109/03602532.2015.1077858 [77] Pai, S. M., & Torres, V. (1993). Atrial fibrillation: new management strategies. Curr Probl Cardiol, 18(4), 235-300. [78] Pallandi, R. T., Perry, M. A., & Campbell, T. J. (1987). Proarrhythmic effects of an oxygen-derived free radical generating system on action potentials recorded from guinea pig ventricular myocardium: a possible cause of reperfusion-induced arrhythmias. Circ Res, 61(1), 50-54. [79] Pogwizd, S. M. (2003). Clinical potential of sodium-calcium exchanger inhibitors as antiarrhythmic agents. Drugs, 63(5), 439-452. [80] Pogwizd, S. M., & Bers, D. M. (2004). Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med, 14(2), 61-66. doi: 10.1016/j.tcm.2003.12.002 S1050173803001944 [pii] [81] Qi, X., Yeh, Y. H., Chartier, D., Xiao, L., Tsuji, Y., Brundel, B. J., . . . Nattel, S. (2009). The calcium/calmodulin/kinase system and arrhythmogenic afterdepolarizations in bradycardia-related acquired long-QT syndrome. Circ Arrhythm Electrophysiol, 2(3), 295-304. doi: 10.1161/circep.108.815654 [82] Reed, D., Abbott, R. D., Smucker, M. L., & Kaul, S. (1991). Prediction of outcome after mitral valve replacement in patients with symptomatic chronic mitral regurgitation. The importance of left atrial size. Circulation, 84(1), 23-34. [83] Reeves, J. P., Bailey, C. A., & Hale, C. C. (1986). Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem, 261(11), 4948-4955. [84] Reiter, R. J. (1995). Oxidative processes and antioxidative defense mechanisms in the aging brain. Faseb j, 9(7), 526-533. [85] Rodrigo, R., Korantzopoulos, P., Cereceda, M., Asenjo, R., Zamorano, J., Villalabeitia, E., . . . Gormaz, J. G. (2013). A randomized controlled trial to prevent post-operative atrial fibrillation by antioxidant reinforcement. J Am Coll Cardiol, 62(16), 1457-1465. doi: 10.1016/j.jacc.2013.07.014 [86] Rossi, A., Cicoira, M., Florea, V. G., Golia, G., Florea, N. D., Khan, A. A., . . . Henein, M. (2006). Chronic heart failure with preserved left ventricular ejection fraction: diagnostic and prognostic value of left atrial size. Int J Cardiol, 110(3), 386-392. doi: 10.1016/j.ijcard.2005.08.049 [87] Rossi, A., Cicoira, M., Zanolla, L., Sandrini, R., Golia, G., Zardini, P., & Enriquez-Sarano, M. (2002). Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J Am Coll Cardiol, 40(8), 1425. [88] Saad, M., Mahmoud, A., & Elgendy, I. Y. (2016). Ranolazine in Cardiac Arrhythmia. 39(3), 170-178. doi: 10.1002/clc.22476 [89] Shiroshita-Takeshita, A., Schram, G., Lavoie, J., & Nattel, S. (2004). Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation, 110(16), 2313-2319. doi: 10.1161/01.cir.0000145163.56529.d1 [90] Simek, C. L., Feldman, M. D., Haber, H. L., Wu, C. C., Jayaweera, A. R., & Kaul, S. (1995). Relationship between left ventricular wall thickness and left atrial size: comparison with other measures of diastolic function. J Am Soc Echocardiogr, 8(1), 37-47. [91] Song, J., Cheon, S. Y., Lee, W. T., Park, K. A., & Lee, J. E. (2015). PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury. Neural Plast, 2015, 374520. doi: 10.1155/2015/374520 [92] Song, Y., Shryock, J. C., & Belardinelli, L. (2009). A slowly inactivating sodium current contributes to spontaneous diastolic depolarization of atrial myocytes. Am J Physiol Heart Circ Physiol, 297(4), H1254-1262. doi: 00444.2009 [pii] 10.1152/ajpheart.00444.2009 [93] Stangherlin, A., & Zaccolo, M. (2012). cGMP-cAMP interplay in cardiac myocytes: a local affair with far-reaching consequences for heart function. Biochem Soc Trans, 40(1), 11-14. doi: 10.1042/bst20110655 [94] Stangl, V., Dreger, H., Stangl, K., & Lorenz, M. (2007). Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res, 73(2), 348-358. doi: 10.1016/j.cardiores.2006.08.022 [95] Suenari, K., Chen, Y. C., Kao, Y. H., Cheng, C. C., Lin, Y. K., Chen, Y. J., & Chen, S. A. (2011). Discrepant electrophysiological characteristics and calcium homeostasis of left atrial anterior and posterior myocytes. Basic Res Cardiol, 106(1), 65-74. doi: 10.1007/s00395-010-0132-1 [96] Suzuki, J., Ogawa, M., Futamatsu, H., Kosuge, H., Sagesaka, Y. M., & Isobe, M. (2007). Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur J Heart Fail, 9(2), 152-159. doi: 10.1016/j.ejheart.2006.05.007 [97] Suzuki, J., Ogawa, M., Maejima, Y., Isobe, K., Tanaka, H., Sagesaka, Y. M., & Isobe, M. (2007). Tea catechins attenuate chronic ventricular remodeling after myocardial ischemia in rats. J Mol Cell Cardiol, 42(2), 432-440. doi: 10.1016/j.yjmcc.2006.10.006 [98] Tadano, N., Du, C. K., Yumoto, F., Morimoto, S., Ohta, M., Xie, M. F., . . . Sasaguri, T. (2010). Biological actions of green tea catechins on cardiac troponin C. Br J Pharmacol, 161(5), 1034-1043. doi: 10.1111/j.1476-5381.2010.00942.x [99] Tsang, T. S., & Gersh, B. J. (2002). Atrial fibrillation: an old disease, a new epidemic. Am J Med, 113(5), 432-435. [100] Vaidya, P. N., Bhosley, P. N., Rao, D. B., & Luisada, A. A. (1976). Tachyarrhythmias in old age. J Am Geriatr Soc, 24(9), 412-414. [101] Van Gelder, I. C., Crijns, H. J., Van Gilst, W. H., Verwer, R., & Lie, K. I. (1991). Prediction of uneventful cardioversion and maintenance of sinus rhythm from direct-current electrical cardioversion of chronic atrial fibrillation and flutter. Am J Cardiol, 68(1), 41-46. [102] Voigt, N., Heijman, J., Wang, Q., Chiang, D. Y., Li, N., Karck, M., . . . Dobrev, D. (2014). Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation, 129(2), 145-156. doi: 10.1161/circulationaha.113.006641 [103] Voigt, N., Li, N., Wang, Q., Wang, W., Trafford, A. W., Abu-Taha, I., . . . Dobrev, D. (2012). Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation, 125(17), 2059-2070. doi: 10.1161/circulationaha.111.067306 [104] Waldo, A. L., & Wit, A. L. (1993). Mechanisms of cardiac arrhythmias. Lancet, 341(8854), 1189-1193. [105] Wardman, P., & Candeias, L. P. (1996). Fenton chemistry: an introduction. Radiat Res, 145(5), 523-531. [106] Wit, A. L., & Boyden, P. A. (2007). Triggered Activity and Atrial Fibrillation. Heart Rhythm, 4(3 Suppl), S17-23. doi: 10.1016/j.hrthm.2006.12.021 [107] Wolf, P. A., Abbott, R. D., & Kannel, W. B. (1987). Atrial fibrillation: a major contributor to stroke in the elderly. The Framingham Study. Arch Intern Med, 147(9), 1561-1564. [108] Wolf, P. A., Dawber, T. R., Thomas, H. E., Jr., & Kannel, W. B. (1978). Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology, 28(10), 973-977. [109] Wongcharoen, W., Chen, Y. C., Chen, Y. J., Chang, C. M., Yeh, H. I., Lin, C. I., & Chen, S. A. (2006). Effects of a Na+/Ca2+ exchanger inhibitor on pulmonary vein electrical activity and ouabain-induced arrhythmogenicity. Cardiovasc Res, 70(3), 497-508. doi: 10.1016/j.cardiores.2006.02.026 [110] Zeng, J., & Rudy, Y. (1995). Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys J, 68(3), 949-964.
|