跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉佩姻
研究生(外文):LIU, PEI-YIN
論文名稱:電絮凝氧化銥(IrOx・H2O)催化過氧化氫還原及水氧化反應之研究
論文名稱(外文):Preparation and characterization of the electroflocculated IrOx・H2O electrode for hydrogen peroxide reduction and water oxidation
指導教授:莊旻傑
指導教授(外文):CHUANG, MIN-CHIEH
口試委員:黃承文杜景順
口試委員(外文):WHANG, CHEN-WENDO, JING-SHAN
口試日期:2016-05-25
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:92
中文關鍵詞:氧化銥電絮凝過氧化氫水氧化析氧反應
外文關鍵詞:Iridium oxideElectroflocculationHydrogen peroxideWater oxidationOxygen evolution reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化銥(iridium oxide) 具有多重氧化態(IrIII、IrIV、IrV、IrVI),四價氧化物被認為是普遍存在的狀態,銥及氧原子以四方晶體(tetragonal)結構排列。基於氧化銥具有高穩定、抗腐蝕及良好的生物相容性等特性,已被應用於電生理刺激及量 測電極、pH感測電極、電致變色元件、電解反應的陽極材料。
本研究利用電絮凝方式(electroflocculation)製備具有奈米結構的氧化銥(IrOx・H2O)電極,由循環伏安圖得知,此IrOx・H2O電極催化過氧化氫(1 mM)還原反應的起始電位發生在-0.1 V(相對於銀/氯化銀參考電極),相較於裸玻璃碳電極電位值往正電位位移約400 mV,證實IrOx・H2O具有催化過氧化氫還原反應的活性。經由Koutecky-Levich方程式計算,反應的電子轉移數目為二 (n = 1.89 ± 0.30),塔弗斜率(Tafel slope) 值為 240.9 mV/dec (由極化曲線計算獲得)。此外,IrOx・H2O電極偵測過氧化氫線性濃度範圍分別為0~1 mM(磁石攪拌)及0~150 μM(流動注射分析),利用流動注射分析進行三重複的測試,電極感測過氧化氫偵測極限為5 μM。干擾物抗壞血酸(ascorbic acid, 1 mM)和對乙酰氨基酚(acetaminophen, 1 mM) 對於偵測過氧化氫的干擾並不顯著,此電極使用安培法連續測試二十多次,仍表現穩定的感測訊號。
另一方面,我們探討IrOx・H2O電極對於水氧化反應催化特性。文獻中指出氧化銥於鹼性溶液中穩定性不佳,針對此弱點我們研究於鹼性溶液中電聚合氯化血紅素[chloroprotoporphyrin IX iron (III), hemin],探討參數包括電位範圍、掃描圈數以及氯化血紅素濃度,對於生成聚合氯化血紅素膜的氧氣催化活性的影響,同時,使用紅外光譜儀及可見光紫外光分光光譜儀分析化學組成,利用掃描式電子顯微鏡及共軛焦顯微鏡觀察表面形態。結果指出,於含有50 μM氯化血紅素的0.1 M氫氧化鈉溶液中,進行10圈電位範圍0 ~ 1.5 V循環伏安掃描,可得到適合應用於雙電位電絮凝法所需的輔助氧氣催化分子層。將此氯化血紅素修飾電極用於製備氧化銥觸媒電極,發現電聚合氯化血紅素掃描圈數對於氧化銥薄膜結構有顯著影響,但氧化銥電化學活性面積則不受氯化血紅素濃度影響。所製備氧化銥觸媒電極電化學活性表面積為11.05 ± 0.65 cm2,粗糙度度為56.3 ± 3.3 (於1 M NaOH溶液)。採用雙電位電絮凝法沉積5分鐘所得電極催化水氧化反應,經氯化血紅素修飾的電極穩定時間(過電位增加至1.0 V的時間)可達7小時,約為未修飾氯化血紅素的5倍,過電位(t = 0)則沒有太大變化(1 M NaOH)。使用上述最佳化電聚合條件,我們分別探討t = 0秒、t = 2小時、t = 24小時的過電位值,於1 M NaOH中,電絮凝法沉積5及30分鐘所得電極過電位值在t = 0秒時均為0.33 V,在t = 2小時則分別為0.45 V及0.40 V,30分鐘電絮凝所得電極穩定時間可達20.27小時;此電極於酸性溶液(1 M H2SO4)可得更佳催化表現,電絮凝沉積15分鐘的電極穩定時間便可大於24小時,過電位為0.29V,以電流密度10 mA cm-2進行電解,24小時電位降只有50 mV。為了了解聚合氯化血紅素如何提升氧化銥電極催化水氧化反應時電極穩定度,我們研究聚合氯化血紅素對於氧化銥電絮凝沉積過程的影響,發現氯化血紅素催化氧氣還原所長成的氧化銥 (即與聚合氯化血紅素具有界面的氧化銥層)具有較小幾何構形,並且均勻分佈於玻璃碳電極表面,具此結構的氧化銥造成接續成長的氧化銥具有連續相結構,因此提升氧化銥電極穩定度。
Iridium oxide (IrOx) is a considerably stable, corrosion-resistant, and biocompatible material which has been extensively utilized for catalysts and electrodes against a variety of chemical reactions. By virtue of its redox reversibility, IrOx catalyzes oxidation or reduction of distinct substances such as oxygen, water, hydrogen peroxide (H2O2), insulin, neurotransmitters etc. In this study, an IrOx・H2O nanostructured electrode prepared by electroflocculation is reported; the electrode efficiently catalyzes the electrochemical reduction of hydrogen peroxide. Linear sweep voltammograms reveal that the potential onset arising due to the reduction of H2O2 (1 mM) occurs at -0.1 V (vs. Ag/AgCl), which is more anodic than the onset potential occurring on the glassy carbon electrode by 400 mV, thereby substantiating the catalytic utility of IrOx・H2O. The number of electrons transferred in the process, estimated via the Koutecky-Levich equation, is two (n=1.89 ± 0.30). The Tafel slope obtained from polarization measurements is ca. 240.9 mV/dec. Furthermore, the IrOx・H2O nanostructured electrode exhibits response with linear relationship against H2O2 concentrations ranging over 0-1 mM (when agitated) and 0-150 μM (in flow injection analysis); the limit of detection (3σ), as determined under flow injection analysis, is 5 μM. The as-fabricated electrode is insensitive to the oxidation of ascorbic acid (0.1 mM) and acetaminophen (0.1 mM) and exhibits stable amperometric response (over twenty successive trials), albeit a slight drift in the sensor response is observed during the initial six evaluations. Based on the results, a three-step mechanism is proposed.
In addition, capability of the electroflocculated IrOx catalytic to water oxidation, or so-called oxygen evolution reaction (OER), is also investigated. To improve the instability of IrOx in alkaline medium when it acts OER, we propose an underlay constituting polymerized hemin [chloroprotoporphyrin IX iron (III)] which effectively furthers long-term durability. The polymerized hemin serves as catalyst acting reduction of the resulting oxygen during electroflocculation, thereby mitigating the detrimental effect of accumulated oxygen on growth of IrOx. Parameters of electro-polymerization including hemin concentration, scanned potential range, and cycle of scan are systematically investigated to maximize catalytic (depletion) capability of the polymerized hemin, and furthermore, to interrogate their utilities beneficial to enhancement of catalytic activity and stability. UV-Vis and IR spectra verify chemical identity of the polymerized hemin. Coverage of hemin over glassy carbon electrode is ca. 42 %, estimated on basis of the redox peak areas of FeIII/FeII displayed in cyclic voltammogram, which correlates with the hemin dispersion photographed by confocal microscopy. While electrochemical active area of IrOx is minimally influenced by the electropolymerization parameters, size of the cavity existed in IrOx films decreases with the cycle number. The electrochemical surface area and roughness factor are 11.05 ± 0.65 cm2 and 56.3 ± 3.3, respectively (in 1 M NaOH). With the IrOx catalyst fabricated by 5 min electroflocculation, the stability time (the time period to reach overpotential at 1.0 V under 10 mA cm-2) is ca. 7 hr which is 5-fold greater than the one without polymerized hemin. Overpotentials(η) given by the either 5 or 30 min electroflocculated IrOx are 0.33 V (t = 0) and are 0.45 (5 min) and 0.4 V (30 min) at t = 2 h. The 30 min electroflocculated IrOx exhibits a stability time longer than 20 h. Such the hemin-underlaid IrOx is even more catalytic to OER in acidic solution (1 M H2SO4), in which the 15 min electroflocculated electrode gives η = 0.29 V (t = 0) and stability time longer than 24 h. Furthermore, η rises 50 mV only through 24 h electrolysis (under 10 mA cm-2). To shed light on the stability advance brought by the polymerized hemin, behavior of electroflocculation was investigated by tracing morphology and chronopotentiometric curves of IrOx along electroflocculation time (< 90 sec). With the assistance of hemin-catalyzed depletion of oxygen, the IrOx in interface with the polymerized hemin apparently deposits in less-sized and well-defined structure which resides on electrode surface dispersedly. This unique property plays principal factor to facilitate subsequent electroflocculation of IrOx towards formation of a continuous deposit film which is resistant to degradation caused by vigorous oxygen evolution throughout water electrolysis. To our best knowledge, this is one of the limited approaches to improve instability of iridium oxide for OER in alkaline medium with promotion of stability time more than 24 h.
誌謝
中文摘要
Abstract
目錄
圖目錄
表目錄
第一章 緒論
1.1 氧化銥 (iridium oxide)
1.1.1 介紹
1.1.2 製備氧化銥電極方式
1.2 過氧化氫(hydrogen peroxide, H2O2)
1.2.1 介紹
1.2.2 偵測方式與偵測基材
1.3 氯化血紅素(Ferriprotoporphyrin IX chloride, hemin)
1.3.1 介紹
1.3.2 製備氯化血紅素電極方式
1.4 電催化水氧化反應
1.4.1 永續能源之應用
1.4.2 電解水反應之催化材
1.5 動機
第二章 材料與方法
2.1 藥品與試劑
2.2 實驗儀器與材料
2.3 合成含銥前驅溶液
2.4 電極製備-修飾氧化銥奈米粒子
2.5 電化學實驗方法及其他實驗條件
2.6 偵測過氧化氫(H2O2)
2.7 電極製備-聚合氯化血紅素修飾電極
2.8 聚合氯化血紅素電極染色
2.9 聚合氯化血紅素電極催化氧氣還原反應
2.10 電極製備-氯化血紅素結合氧化銥修飾電極
2.11 電催化水氧化反應
第三章 結果與討論
3.1 催化過氧化氫還原反應
3.1.1 含銥前驅物分析
3.1.2 修飾IrOx・H2O奈米結構薄膜之優化
3.1.3 IrOx・H2O的電化學特性
3.1.4 電催化還原過氧化氫
3.1.5 動力學和擴散控制對還原過氧化氫反應的調控
3.1.6 電子轉移數
3.1.7 塔弗曲線 (Tafel curve)
3.1.8 反應級數
3.1.9 反應機制
3.1.10 感測過氧化氫之靈敏度
3.1.11 流動注射分析法
3.1.12干擾物的影響
3.1.13 電極之穩定性
3.2 催化水氧化反應
3.2.1 電聚合氯化血紅素
3.2.1.1 電位的影響
3.2.1.2 掃描圈數的影響
3.2.1.3 血紅素濃度的影響
3.2.1.4 電聚合氯化血紅素特性探討
3.2.2 電聚合氯化血紅素輔助IrOx・H2O沉積
3.2.2.1 電絮凝沉積方式
3.2.2.2 電聚合氯化血紅素之掃描圈數的影響
3.2.2.3 氯化血紅素濃度的影響
3.2.2.4 電絮凝時間的影響
3.2.3 電絮凝IrOx・H2O電催化水氧化反應特性探討
3.2.3.1 電化學活性表面積及粗糙度
3.2.3.2 單電位電絮凝氧化銥電極電催化水氧化反應
3.2.3.3 電聚合掃描圈數對水氧化反應的影響
3.2.3.4 氯化血紅素濃度對水氧化反應的影響
3.2.3.5 鹼性溶液中電催化水氧化反應之表現
3.2.3.6 酸性溶液中電催化水氧化反應之表現
3.2.3.7 水氧化反應催化特性綜合比較
3.2.4 氯化血紅素對氧化銥穩定性之探討
第四章 結論
4.1 催化過氧化氫還原反應之結論
4.2 催化過氧化氫還原反應之結論
第五章 參考文獻
[1] V.I. Birss, H. Elzanowska, S. Gottesfeld, Quartz crystal microbalance measurements during oxidation/reduction of hydrous Ir oxide electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 318 (1991) 327-333.
[2] H. Elzanowska, J. Segal, V.I. Birss, Complications associated with kinetic studies of hydrous Ir oxide films, Electrochim Acta, 44 (1999) 4515-4524.
[3] J.A. Cox, K. Lewinski, Flow injection amperometric determination of hydrogen peroxide by oxidation at an iridium oxide electrode, Talanta, 40 (1993) 1911-1915.
[4] M. Pikulski, W. Gorski, Iridium-Based Electrocatalytic Systems for the Determination of Insulin, Analytical Chemistry, 72 (2000) 2696-2702.
[5] A. Salimi, V. Alizadeh, R.G. Compton, Disposable Amperometric Sensor for Neurotransmitters Based on Screen-Printed Electrodes Modified with a Thin Iridium Oxide Film, Analytical Sciences, 21 (2005) 1275-1280.
[6] S.J. Tanghe, K. Najafi, K.D. Wise, A planar IrO multichannel stimulating electrode for use in neural prostheses, Sensors and Actuators B: Chemical, 1 (1990) 464-467.
[7] J.H. Payer, K. Fink, I. Song, Metal-Metal Oxide Ph Sensor: The Effect of Anions and Aeration on pH Measurements, NACE International, 1997.
[8] J. Kiwi, M. Grätzel, Oxygen Evolution from Water via Redox Catalysis, Angewandte Chemie International Edition in English, 17 (1978) 860-861.
[9] G. Beni, L.M. Schiavone, J.L. Shay, W.C. Dautremont-Smith, B.S. Schneider, Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide films, Nature, 282 (1979) 281-283.
[10] K. Kalyanasundaram, M. Grätzel, Cyclic Cleavage of Water into H2 and O2 by Visible Light with Coupled Redox Catalysts, Angewandte Chemie International Edition in English, 18 (1979) 701-702.
[11] S. Ardizzone, A. Carugati, S. Trasatti, Properties of thermally prepared iridium dioxide electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 126 (1981) 287-292.
[12] K.S. Kang, J.L. Shay, Blue Sputtered Iridium Oxide Films (Blue SIROF's), Journal of The Electrochemical Society, 130 (1983) 766-769.
[13] L.S. Robblee, J.L. Lefko, S.B. Brummer, Activated Ir: An Electrode Suitable for Reversible Charge Injection in Saline Solution, Journal of The Electrochemical Society, 130 (1983) 731-733.
[14] X. Beebe, T.L. Rose, Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application), IEEE Transactions on Biomedical Engineering, 35 (1988) 494-495.
[15] Y. Takako, B. Nobuyoshi, A. Kenji, Electrochromic IrOx Thin Films Formed in Sulfatoiridate (III, IV) Complex Solution by Periodic Reverse Current Electrolysis (PRIROF), Japanese Journal of Applied Physics, 26 (1987) 1547.
[16] Y. Kazusuke, Anodically Electrodeposited Iridium Oxide Films (AEIROF) from Alkaline Solutions for Electrochromic Display Devices, Japanese Journal of Applied Physics, 28 (1989) 632.
[17] R.D. Meyer, S.F. Cogan, T.H. Nguyen, R.D. Rauh, Electrodeposited iridium oxide for neural stimulation and recording electrodes, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9 (2001) 2-11.
[18] M.A. Petit, V. Plichon, Anodic electrodeposition of iridium oxide films, Journal of Electroanalytical Chemistry, 444 (1998) 247-252.
[19] T. Nakagawa, C.A. Beasley, R.W. Murray, Efficient Electro-Oxidation of Water near Its Reversible Potential by a Mesoporous IrOx Nanoparticle Film, The Journal of Physical Chemistry C, 113 (2009) 12958-12961.
[20] J.E. Baur, T.W. Spaine, Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium(III) oxide, Journal of Electroanalytical Chemistry, 443 (1998) 208-216.
[21] H.-Y. Hsiao, M.-C. Chuang, Eliminating Evolved Oxygen through an Electro-flocculation Efficiently Prompts Stability and Catalytic Kinetics of an IrOx·nH2O Colloidal Nanostructured Electrode for Water Oxidation, Electrochim Acta, 137 (2014) 190-196.
[22] T. Devasagayam, J. Tilak, K. Boloor, K. Sane, S. Ghaskadbi, R. Lele, Free radicals and antioxidants in human health: current status and future prospects, The Journal of the Association of Physicians of India, 52 (2004) 794-804.
[23] H. Sies, Biochemistry of Oxidative Stress, Angewandte Chemie International Edition in English, 25 (1986) 1058-1071.
[24] S. Arjsiriwat, M. Tanticharoen, K. Kirtikara, K. Aoki, M. Somasundrum, Metal-dispersed conducting polymer-coated electrode used for oxidase-based biosensors, Electrochemistry Communications, 2 (2000) 441-444.
[25] W. Reitz, Handbook of Fuel Cells: Fundamentals, Technology, and Applications, (Volume 1) W. Vielstich, A. Lamm, and H. A. Gasteiger (editors), Materials and Manufacturing Processes, 22 (2007) 788-788.
[26] E.C. Hurdis, H. Romeyn, Accuracy of Determination of Hydrogen Peroxide by Cerate Oxidimetry, Analytical Chemistry, 26 (1954) 320-325.
[27] C. Matsubara, N. Kawamoto, K. Takamura, Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide, Analyst, 117 (1992) 1781-1784.
[28] S. Hanaoka, J.-M. Lin, M. Yamada, Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin, Analytica Chimica Acta, 426 (2001) 57-64.
[29] Y. Shen, M. Träuble, G. Wittstock, Detection of Hydrogen Peroxide Produced during Electrochemical Oxygen Reduction Using Scanning Electrochemical Microscopy, Analytical Chemistry, 80 (2008) 750-759.
[30] M. Hajjizadeh, A. Jabbari, H. Heli, A.A. Moosavi-Movahedi, A. Shafiee, K. Karimian, Electrocatalytic oxidation and determination of deferasirox and deferiprone on a nickel oxyhydroxide-modified electrode, Analytical Biochemistry, 373 (2008) 337-348.
[31] C. Batchelor-McAuley, Y. Du, G.G. Wildgoose, R.G. Compton, The use of copper(II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide, Sensors and Actuators B: Chemical, 135 (2008) 230-235.
[32] D. Fu, X. Zhang, P.G. Keech, D.W. Shoesmith, J.C. Wren, An electrochemical study of H2O2 decomposition on single-phase γ-FeOOH films, Electrochim Acta, 55 (2010) 3787-3796.
[33] H. Elzanowska, E. Abu-Irhayem, B. Skrzynecka, V.I. Birss, Hydrogen Peroxide Detection at Electrochemically and Sol-Gel Derived Ir Oxide Films, Electroanalysis, 16 (2004) 478-490.
[34] C. Terashima, T.N. Rao, B.V. Sarada, N. Spataru, A. Fujishima, Electrodeposition of hydrous iridium oxide on conductive diamond electrodes for catalytic sensor applications, Journal of Electroanalytical Chemistry, 544 (2003) 65-74.
[35] M.V. Vazquez, S.R. de Sanchez, E.J. Calvo, D.J. Schiffrin, The electrochemical reduction of hydrogen peroxide on polycrystalline copper in borax buffer, Journal of Electroanalytical Chemistry, 374 (1994) 179-187.
[36] S. Ceré, M. Vazquez, S.R. de Sánchez, D.J. Schiffrin, Surface redox catalysis and reduction kinetics of hydrogen peroxide on copper–nickel alloys, Journal of Electroanalytical Chemistry, 470 (1999) 31-38.
[37] M.R. Guascito, E. Filippo, C. Malitesta, D. Manno, A. Serra, A. Turco, A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide, Biosensors and Bioelectronics, 24 (2008) 1057-1063.
[38] S. Strbac, The effect of pH on oxygen and hydrogen peroxide reduction on polycrystalline Pt electrode, Electrochim Acta, 56 (2011) 1597-1604.
[39] X. Cai, K. Kalcher, G. Kölbl, C. Neuhold, W. Diewald, B. Ogorevc, Electrocatalytic reduction of hydrogen peroxide on a palladium-modified carbon paste electrode, Electroanalysis, 7 (1995) 340-345.
[40] T. You, O. Niwa, R. Kurita, Y. Iwasaki, K. Hayashi, K. Suzuki, S. Hirono, Reductive H2O2 Detection at Nanoparticle Iridium/Carbon Film Electrode and Its Application as L-Glutamate Enzyme Sensor, Electroanalysis, 16 (2004) 54-59.
[41] M. Ueda, T. Zhang, M. Morimitsu, Effects of Interferents on H2O2 Quantification by Electrochemical Reduction on IrO2 Electrodes, Meeting Abstracts, MA2012-02 (2012) 138.
[42] F. Bedioui, S. Trevin, V. Albin, M. Guadalupe, G. Villegas, J. Devynck, Design and characterization of chemically modified electrodes with iron(III) porphyrinic-based polymers: study of their reactivity toward nitrites and nitric oxide in aqueous solution, Analytica Chimica Acta, 341 (1997) 177-185.
[43] A. Bettelheim, B.A. White, S.A. Raybuck, R.W. Murray, Electrochemical polymerization of amino-, pyrrole-, and hydroxy-substituted tetraphenylporphyrins, Inorganic Chemistry, 26 (1987) 1009-1017.
[44] W. Orellana, Strong π-π interaction of porphyrins on (6,5) carbon nanotubes with full surface coverage: Ab-initio calculations, Applied Physics Letters, 105 (2014) 023110.
[45] K.A. Macor, T.G. Spiro, Porphyrin electrode films prepared by electrooxidation of metalloprotoporphyrins, Journal of the American Chemical Society, 105 (1983) 5601-5607.
[46] S. Dong, R. Jiang, Researches on chemically modified electrode. XIX. preparation of iron protoporphyrin film electrode by electrochemical polymerization and its catalysis, Journal of Inorganic Biochemistry, 30 (1987) 189-201.
[47] C.G. Nana, W. Jian, C. Xi, D.J. Pinga, Z.Z. Feng, C.H. Qing, The enhanced electrogenerated chemiluminescence of Ru(bpy) by glutathione on a glassy carbon electrode modified with some porphine compounds, Analyst, 125 (2000) 2294-2298.
[48] A.J. Bard, M.A. Fox, Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen, Accounts of Chemical Research, 28 (1995) 141-145.
[49] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar Water Splitting Cells, Chemical Reviews, 110 (2010) 6446-6473.
[50] J.R. Swierk, T.E. Mallouk, Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells, Chemical Society Reviews, 42 (2013) 2357-2387.
[51] D. Merki, H. Vrubel, L. Rovelli, S. Fierro, X. Hu, Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution, Chemical Science, 3 (2012) 2515-2525.
[52] M.D. Merrill, R.C. Dougherty, Metal Oxide Catalysts for the Evolution of O2 from H2O, The Journal of Physical Chemistry C, 112 (2008) 3655-3666.
[53] N. Jiang, B. You, M. Sheng, Y. Sun, Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting, Angewandte Chemie International Edition, 54 (2015) 6251-6254.
[54] Y. Surendranath, M. Dincǎ, D.G. Nocera, Electrolyte-Dependent Electrosynthesis and Activity of Cobalt-Based Water Oxidation Catalysts, Journal of the American Chemical Society, 131 (2009) 2615-2620.
[55] D.A. Corrigan, R.M. Bendert, Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1M KOH Journal of The Electrochemical Society, 136 (1989) 723-728.
[56] X. Li, F.C. Walsh, D. Pletcher, Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers, Physical Chemistry Chemical Physics, 13 (2011) 1162-1167.
[57] L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution, Journal of the American Chemical Society, 134 (2012) 17253-17261.
[58] Y. Gorlin, C.-J. Chung, J.D. Benck, D. Nordlund, L. Seitz, T.-C. Weng, D. Sokaras, B.M. Clemens, T.F. Jaramillo, Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation, Journal of the American Chemical Society, 136 (2014) 4920-4926.
[59] X. Li, G. Guan, X. Du, J. Cao, X. Hao, X. Ma, A.D. Jagadale, A. Abudula, A sea anemone-like CuO/Co3O4 composite: an effective catalyst for electrochemical water splitting, Chemical Communications, 51 (2015) 15012-15014.
[60] E.L. Tae, J. Song, A.R. Lee, C.H. Kim, S. Yoon, I.C. Hwang, M.G. Kim, K.B. Yoon, Cobalt Oxide Electrode Doped with Iridium Oxide as Highly Efficient Water Oxidation Electrode, ACS Catalysis, 5 (2015) 5525-5529.
[61] D.A. Corrigan, The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes, Journal of The Electrochemical Society, 134 (1987) 377-384.
[62] X. Liu, S. Cui, Z. Sun, Y. Ren, X. Zhang, P. Du, Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-Edge X-ray Absorption Spectroscopy, The Journal of Physical Chemistry C, 120 (2016) 831-840.
[63] E. Tsuji, A. Imanishi, K.-i. Fukui, Y. Nakato, Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution, Electrochim Acta, 56 (2011) 2009-2016.
[64] L. Duan, L. Wang, F. Li, F. Li, L. Sun, Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts with Negatively Charged Backbone Ligands, Accounts of Chemical Research, 48 (2015) 2084-2096.
[65] J.M. Spurgeon, J.M. Velazquez, M.T. McDowell, Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte, Physical Chemistry Chemical Physics, 16 (2014) 3623-3631.
[66] K.L. Materna, B. Rudshteyn, B.J. Brennan, M.H. Kane, A.J. Bloomfield, D.L. Huang, D.Y. Shopov, V.S. Batista, R.H. Crabtree, G.W. Brudvig, Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane Precursor, ACS Catalysis, (2016) 5371-5377.
[67] Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions, The Journal of Physical Chemistry Letters, 3 (2012) 399-404.
[68] Y. Zhao, E.A. Hernandez-Pagan, N.M. Vargas-Barbosa, J.L. Dysart, T.E. Mallouk, A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity, The Journal of Physical Chemistry Letters, 2 (2011) 402-406.
[69] X. Lu, C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities, Nat Commun, 6 (2015).
[70] R. Solmaz, G. Kardaş, Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis, Electrochim Acta, 54 (2009) 3726-3734.
[71] J.A. Haber, Y. Cai, S. Jung, C. Xiang, S. Mitrovic, J. Jin, A.T. Bell, J.M. Gregoire, Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis, Energy & Environmental Science, 7 (2014) 682-688.
[72] M. Jayalakshmi, W.Y. Kim, K.D. Jung, O.S. Joo, Electrochemical characterization of Ni-Mo-Fe composite film in alkali solution, Int J Electrochem Sc, 3 (2008) 908-917.
[73] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, Journal of the American Chemical Society, 135 (2013) 16977-16987.
[74] J. Masud, S. Umapathi, N. Ashokaan, M. Nath, Iron phosphide nanoparticles as an efficient electrocatalyst for the OER in alkaline solution, Journal of Materials Chemistry A, 4 (2016) 9750-9754.
[75] M.W. Kanan, D.G. Nocera, In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+, Science, 321 (2008) 1072-1075.
[76] C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices, Journal of the American Chemical Society, 137 (2015) 4347-4357.
[77] A.T. Swesi, J. Masud, M. Nath, Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction, Energy & Environmental Science, 9 (2016) 1771-1782.
[78] H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis, Nano Letters, 15 (2015) 1421-1427.
[79] J. Newman, Schmidt Number Correction for the Rotating Disk, The Journal of Physical Chemistry, 70 (1966) 1327-1328.
[80] S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature, Electrochim Acta, 44 (1999) 2455-2462.
[81] K.L. Stewart, A.A. Gewirth, Mechanism of Electrochemical Reduction of Hydrogen Peroxide on Copper in Acidic Sulfate Solutions, Langmuir, 23 (2007) 9911-9918.
[82] P.G. Keech, J.J. Noël, D.W. Shoesmith, The electrochemical reduction of hydrogen peroxide on uranium dioxide under intermediate pH to acidic conditions, Electrochim Acta, 53 (2008) 5675-5683.
[83] M.R. Miah, T. Ohsaka, Kinetics of Electroreduction of H2O2 at Gold Electrodes in Iodide-Containing Alkaline Media, Journal of The Electrochemical Society, 154 (2007) F186-F190.
[84] V.G. Prabhu, L.R. Zarapkar, R.G. Dhaneshwar, Electrochemical studies of hydrogen peroxide at a platinum disc electrode, Electrochim Acta, 26 (1981) 725-729.
[85] C.M. Welch, C.E. Banks, A.O. Simm, R.G. Compton, Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide, Anal Bioanal Chem, 382 (2005) 12-21.
[86] F.W. Campbell, S.R. Belding, R. Baron, L. Xiao, R.G. Compton, Hydrogen Peroxide Electroreduction at a Silver-Nanoparticle Array: Investigating Nanoparticle Size and Coverage Effects, The Journal of Physical Chemistry C, 113 (2009) 9053-9062.
[87] M. Razdan, D.S. Hall, P.G. Keech, D.W. Shoesmith, Electrochemical reduction of hydrogen peroxide on SIMFUEL (UO2) in acidic pH conditions, Electrochim Acta, 83 (2012) 410-419.
[88] J.A. Cox, R.K. Jaworski, Mechanism of the mediated reduction of hydrogen peroxide at an electrode modified with a film containing a basic form of iridium oxide, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 281 (1990) 163-170.
[89] S. Patra, N. Munichandraiah, Electrochemical reduction of hydrogen peroxide on stainless steel, J Chem Sci, 121 (2009) 675-683.
[90] K. Yamamoto, G. Shi, T. Zhou, F. Xu, J. Xu, T. Kato, J.-Y. Jin, L. Jin, Study of carbon nanotubes-HRP modified electrode and its application for novel on-line biosensors, Analyst, 128 (2003) 249-254.
[91] E. Ferapontova, L. Gorton, Bioelectrocatalytical Detection of H2O2 with Different Forms of Horseradish Peroxidase Directly Adsorbed at Polycrystalline Silver and Gold, Electroanalysis, 15 (2003) 484-491.
[92] R.C. Engstrom, V.A. Strasser, Characterization of electrochemically pretreated glassy carbon electrodes, Analytical Chemistry, 56 (1984) 136-141.
[93] J.N. Younathan, K.S. Wood, T.J. Meyer, Electrocatalytic reduction of nitrite and nitrosyl by iron(III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film, Inorganic Chemistry, 31 (1992) 3280-3285.
[94] S. Iseki, K. Ohashi, S. Nagaura, Impedance of the oxygen-evolution reaction on noble metal electrodes, Electrochim Acta, 17 (1972) 2249-2265.
[95] W.A. Badawy, A.G. Gad-Allah, H.A. Abd El-Rahman, M.M. Abouromia, Kinetics of the passivation of molybdenum in acids and alkali solutions as inferred from impedance and potential measurements, Surface and Coatings Technology, 27 (1986) 187-196.
[96] G. Wu, N. Li, D.-R. Zhou, K. Mitsuo, B.-Q. Xu, Anodically electrodeposited Co+Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media, Journal of Solid State Chemistry, 177 (2004) 3682-3692.
[97] N.A. Hampson, R.J. Latham, J.B. Lee, K.I. Macdonald, Oxidations at copper electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 31 (1971) 57-62.
[98] T.A. Centeno, F. Stoeckli, On the specific double-layer capacitance of activated carbons, in relation to their structural and chemical properties, Journal of Power Sources, 154 (2006) 314-320.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top