|
[1] V.I. Birss, H. Elzanowska, S. Gottesfeld, Quartz crystal microbalance measurements during oxidation/reduction of hydrous Ir oxide electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 318 (1991) 327-333. [2] H. Elzanowska, J. Segal, V.I. Birss, Complications associated with kinetic studies of hydrous Ir oxide films, Electrochim Acta, 44 (1999) 4515-4524. [3] J.A. Cox, K. Lewinski, Flow injection amperometric determination of hydrogen peroxide by oxidation at an iridium oxide electrode, Talanta, 40 (1993) 1911-1915. [4] M. Pikulski, W. Gorski, Iridium-Based Electrocatalytic Systems for the Determination of Insulin, Analytical Chemistry, 72 (2000) 2696-2702. [5] A. Salimi, V. Alizadeh, R.G. Compton, Disposable Amperometric Sensor for Neurotransmitters Based on Screen-Printed Electrodes Modified with a Thin Iridium Oxide Film, Analytical Sciences, 21 (2005) 1275-1280. [6] S.J. Tanghe, K. Najafi, K.D. Wise, A planar IrO multichannel stimulating electrode for use in neural prostheses, Sensors and Actuators B: Chemical, 1 (1990) 464-467. [7] J.H. Payer, K. Fink, I. Song, Metal-Metal Oxide Ph Sensor: The Effect of Anions and Aeration on pH Measurements, NACE International, 1997. [8] J. Kiwi, M. Grätzel, Oxygen Evolution from Water via Redox Catalysis, Angewandte Chemie International Edition in English, 17 (1978) 860-861. [9] G. Beni, L.M. Schiavone, J.L. Shay, W.C. Dautremont-Smith, B.S. Schneider, Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide films, Nature, 282 (1979) 281-283. [10] K. Kalyanasundaram, M. Grätzel, Cyclic Cleavage of Water into H2 and O2 by Visible Light with Coupled Redox Catalysts, Angewandte Chemie International Edition in English, 18 (1979) 701-702. [11] S. Ardizzone, A. Carugati, S. Trasatti, Properties of thermally prepared iridium dioxide electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 126 (1981) 287-292. [12] K.S. Kang, J.L. Shay, Blue Sputtered Iridium Oxide Films (Blue SIROF's), Journal of The Electrochemical Society, 130 (1983) 766-769. [13] L.S. Robblee, J.L. Lefko, S.B. Brummer, Activated Ir: An Electrode Suitable for Reversible Charge Injection in Saline Solution, Journal of The Electrochemical Society, 130 (1983) 731-733. [14] X. Beebe, T.L. Rose, Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application), IEEE Transactions on Biomedical Engineering, 35 (1988) 494-495. [15] Y. Takako, B. Nobuyoshi, A. Kenji, Electrochromic IrOx Thin Films Formed in Sulfatoiridate (III, IV) Complex Solution by Periodic Reverse Current Electrolysis (PRIROF), Japanese Journal of Applied Physics, 26 (1987) 1547. [16] Y. Kazusuke, Anodically Electrodeposited Iridium Oxide Films (AEIROF) from Alkaline Solutions for Electrochromic Display Devices, Japanese Journal of Applied Physics, 28 (1989) 632. [17] R.D. Meyer, S.F. Cogan, T.H. Nguyen, R.D. Rauh, Electrodeposited iridium oxide for neural stimulation and recording electrodes, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9 (2001) 2-11. [18] M.A. Petit, V. Plichon, Anodic electrodeposition of iridium oxide films, Journal of Electroanalytical Chemistry, 444 (1998) 247-252. [19] T. Nakagawa, C.A. Beasley, R.W. Murray, Efficient Electro-Oxidation of Water near Its Reversible Potential by a Mesoporous IrOx Nanoparticle Film, The Journal of Physical Chemistry C, 113 (2009) 12958-12961. [20] J.E. Baur, T.W. Spaine, Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium(III) oxide, Journal of Electroanalytical Chemistry, 443 (1998) 208-216. [21] H.-Y. Hsiao, M.-C. Chuang, Eliminating Evolved Oxygen through an Electro-flocculation Efficiently Prompts Stability and Catalytic Kinetics of an IrOx·nH2O Colloidal Nanostructured Electrode for Water Oxidation, Electrochim Acta, 137 (2014) 190-196. [22] T. Devasagayam, J. Tilak, K. Boloor, K. Sane, S. Ghaskadbi, R. Lele, Free radicals and antioxidants in human health: current status and future prospects, The Journal of the Association of Physicians of India, 52 (2004) 794-804. [23] H. Sies, Biochemistry of Oxidative Stress, Angewandte Chemie International Edition in English, 25 (1986) 1058-1071. [24] S. Arjsiriwat, M. Tanticharoen, K. Kirtikara, K. Aoki, M. Somasundrum, Metal-dispersed conducting polymer-coated electrode used for oxidase-based biosensors, Electrochemistry Communications, 2 (2000) 441-444. [25] W. Reitz, Handbook of Fuel Cells: Fundamentals, Technology, and Applications, (Volume 1) W. Vielstich, A. Lamm, and H. A. Gasteiger (editors), Materials and Manufacturing Processes, 22 (2007) 788-788. [26] E.C. Hurdis, H. Romeyn, Accuracy of Determination of Hydrogen Peroxide by Cerate Oxidimetry, Analytical Chemistry, 26 (1954) 320-325. [27] C. Matsubara, N. Kawamoto, K. Takamura, Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide, Analyst, 117 (1992) 1781-1784. [28] S. Hanaoka, J.-M. Lin, M. Yamada, Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin, Analytica Chimica Acta, 426 (2001) 57-64. [29] Y. Shen, M. Träuble, G. Wittstock, Detection of Hydrogen Peroxide Produced during Electrochemical Oxygen Reduction Using Scanning Electrochemical Microscopy, Analytical Chemistry, 80 (2008) 750-759. [30] M. Hajjizadeh, A. Jabbari, H. Heli, A.A. Moosavi-Movahedi, A. Shafiee, K. Karimian, Electrocatalytic oxidation and determination of deferasirox and deferiprone on a nickel oxyhydroxide-modified electrode, Analytical Biochemistry, 373 (2008) 337-348. [31] C. Batchelor-McAuley, Y. Du, G.G. Wildgoose, R.G. Compton, The use of copper(II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide, Sensors and Actuators B: Chemical, 135 (2008) 230-235. [32] D. Fu, X. Zhang, P.G. Keech, D.W. Shoesmith, J.C. Wren, An electrochemical study of H2O2 decomposition on single-phase γ-FeOOH films, Electrochim Acta, 55 (2010) 3787-3796. [33] H. Elzanowska, E. Abu-Irhayem, B. Skrzynecka, V.I. Birss, Hydrogen Peroxide Detection at Electrochemically and Sol-Gel Derived Ir Oxide Films, Electroanalysis, 16 (2004) 478-490. [34] C. Terashima, T.N. Rao, B.V. Sarada, N. Spataru, A. Fujishima, Electrodeposition of hydrous iridium oxide on conductive diamond electrodes for catalytic sensor applications, Journal of Electroanalytical Chemistry, 544 (2003) 65-74. [35] M.V. Vazquez, S.R. de Sanchez, E.J. Calvo, D.J. Schiffrin, The electrochemical reduction of hydrogen peroxide on polycrystalline copper in borax buffer, Journal of Electroanalytical Chemistry, 374 (1994) 179-187. [36] S. Ceré, M. Vazquez, S.R. de Sánchez, D.J. Schiffrin, Surface redox catalysis and reduction kinetics of hydrogen peroxide on copper–nickel alloys, Journal of Electroanalytical Chemistry, 470 (1999) 31-38. [37] M.R. Guascito, E. Filippo, C. Malitesta, D. Manno, A. Serra, A. Turco, A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide, Biosensors and Bioelectronics, 24 (2008) 1057-1063. [38] S. Strbac, The effect of pH on oxygen and hydrogen peroxide reduction on polycrystalline Pt electrode, Electrochim Acta, 56 (2011) 1597-1604. [39] X. Cai, K. Kalcher, G. Kölbl, C. Neuhold, W. Diewald, B. Ogorevc, Electrocatalytic reduction of hydrogen peroxide on a palladium-modified carbon paste electrode, Electroanalysis, 7 (1995) 340-345. [40] T. You, O. Niwa, R. Kurita, Y. Iwasaki, K. Hayashi, K. Suzuki, S. Hirono, Reductive H2O2 Detection at Nanoparticle Iridium/Carbon Film Electrode and Its Application as L-Glutamate Enzyme Sensor, Electroanalysis, 16 (2004) 54-59. [41] M. Ueda, T. Zhang, M. Morimitsu, Effects of Interferents on H2O2 Quantification by Electrochemical Reduction on IrO2 Electrodes, Meeting Abstracts, MA2012-02 (2012) 138. [42] F. Bedioui, S. Trevin, V. Albin, M. Guadalupe, G. Villegas, J. Devynck, Design and characterization of chemically modified electrodes with iron(III) porphyrinic-based polymers: study of their reactivity toward nitrites and nitric oxide in aqueous solution, Analytica Chimica Acta, 341 (1997) 177-185. [43] A. Bettelheim, B.A. White, S.A. Raybuck, R.W. Murray, Electrochemical polymerization of amino-, pyrrole-, and hydroxy-substituted tetraphenylporphyrins, Inorganic Chemistry, 26 (1987) 1009-1017. [44] W. Orellana, Strong π-π interaction of porphyrins on (6,5) carbon nanotubes with full surface coverage: Ab-initio calculations, Applied Physics Letters, 105 (2014) 023110. [45] K.A. Macor, T.G. Spiro, Porphyrin electrode films prepared by electrooxidation of metalloprotoporphyrins, Journal of the American Chemical Society, 105 (1983) 5601-5607. [46] S. Dong, R. Jiang, Researches on chemically modified electrode. XIX. preparation of iron protoporphyrin film electrode by electrochemical polymerization and its catalysis, Journal of Inorganic Biochemistry, 30 (1987) 189-201. [47] C.G. Nana, W. Jian, C. Xi, D.J. Pinga, Z.Z. Feng, C.H. Qing, The enhanced electrogenerated chemiluminescence of Ru(bpy) by glutathione on a glassy carbon electrode modified with some porphine compounds, Analyst, 125 (2000) 2294-2298. [48] A.J. Bard, M.A. Fox, Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen, Accounts of Chemical Research, 28 (1995) 141-145. [49] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar Water Splitting Cells, Chemical Reviews, 110 (2010) 6446-6473. [50] J.R. Swierk, T.E. Mallouk, Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells, Chemical Society Reviews, 42 (2013) 2357-2387. [51] D. Merki, H. Vrubel, L. Rovelli, S. Fierro, X. Hu, Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution, Chemical Science, 3 (2012) 2515-2525. [52] M.D. Merrill, R.C. Dougherty, Metal Oxide Catalysts for the Evolution of O2 from H2O, The Journal of Physical Chemistry C, 112 (2008) 3655-3666. [53] N. Jiang, B. You, M. Sheng, Y. Sun, Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting, Angewandte Chemie International Edition, 54 (2015) 6251-6254. [54] Y. Surendranath, M. Dincǎ, D.G. Nocera, Electrolyte-Dependent Electrosynthesis and Activity of Cobalt-Based Water Oxidation Catalysts, Journal of the American Chemical Society, 131 (2009) 2615-2620. [55] D.A. Corrigan, R.M. Bendert, Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1M KOH Journal of The Electrochemical Society, 136 (1989) 723-728. [56] X. Li, F.C. Walsh, D. Pletcher, Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers, Physical Chemistry Chemical Physics, 13 (2011) 1162-1167. [57] L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution, Journal of the American Chemical Society, 134 (2012) 17253-17261. [58] Y. Gorlin, C.-J. Chung, J.D. Benck, D. Nordlund, L. Seitz, T.-C. Weng, D. Sokaras, B.M. Clemens, T.F. Jaramillo, Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation, Journal of the American Chemical Society, 136 (2014) 4920-4926. [59] X. Li, G. Guan, X. Du, J. Cao, X. Hao, X. Ma, A.D. Jagadale, A. Abudula, A sea anemone-like CuO/Co3O4 composite: an effective catalyst for electrochemical water splitting, Chemical Communications, 51 (2015) 15012-15014. [60] E.L. Tae, J. Song, A.R. Lee, C.H. Kim, S. Yoon, I.C. Hwang, M.G. Kim, K.B. Yoon, Cobalt Oxide Electrode Doped with Iridium Oxide as Highly Efficient Water Oxidation Electrode, ACS Catalysis, 5 (2015) 5525-5529. [61] D.A. Corrigan, The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes, Journal of The Electrochemical Society, 134 (1987) 377-384. [62] X. Liu, S. Cui, Z. Sun, Y. Ren, X. Zhang, P. Du, Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-Edge X-ray Absorption Spectroscopy, The Journal of Physical Chemistry C, 120 (2016) 831-840. [63] E. Tsuji, A. Imanishi, K.-i. Fukui, Y. Nakato, Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution, Electrochim Acta, 56 (2011) 2009-2016. [64] L. Duan, L. Wang, F. Li, F. Li, L. Sun, Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts with Negatively Charged Backbone Ligands, Accounts of Chemical Research, 48 (2015) 2084-2096. [65] J.M. Spurgeon, J.M. Velazquez, M.T. McDowell, Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte, Physical Chemistry Chemical Physics, 16 (2014) 3623-3631. [66] K.L. Materna, B. Rudshteyn, B.J. Brennan, M.H. Kane, A.J. Bloomfield, D.L. Huang, D.Y. Shopov, V.S. Batista, R.H. Crabtree, G.W. Brudvig, Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane Precursor, ACS Catalysis, (2016) 5371-5377. [67] Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions, The Journal of Physical Chemistry Letters, 3 (2012) 399-404. [68] Y. Zhao, E.A. Hernandez-Pagan, N.M. Vargas-Barbosa, J.L. Dysart, T.E. Mallouk, A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity, The Journal of Physical Chemistry Letters, 2 (2011) 402-406. [69] X. Lu, C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities, Nat Commun, 6 (2015). [70] R. Solmaz, G. Kardaş, Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis, Electrochim Acta, 54 (2009) 3726-3734. [71] J.A. Haber, Y. Cai, S. Jung, C. Xiang, S. Mitrovic, J. Jin, A.T. Bell, J.M. Gregoire, Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis, Energy & Environmental Science, 7 (2014) 682-688. [72] M. Jayalakshmi, W.Y. Kim, K.D. Jung, O.S. Joo, Electrochemical characterization of Ni-Mo-Fe composite film in alkali solution, Int J Electrochem Sc, 3 (2008) 908-917. [73] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, Journal of the American Chemical Society, 135 (2013) 16977-16987. [74] J. Masud, S. Umapathi, N. Ashokaan, M. Nath, Iron phosphide nanoparticles as an efficient electrocatalyst for the OER in alkaline solution, Journal of Materials Chemistry A, 4 (2016) 9750-9754. [75] M.W. Kanan, D.G. Nocera, In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+, Science, 321 (2008) 1072-1075. [76] C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices, Journal of the American Chemical Society, 137 (2015) 4347-4357. [77] A.T. Swesi, J. Masud, M. Nath, Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction, Energy & Environmental Science, 9 (2016) 1771-1782. [78] H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis, Nano Letters, 15 (2015) 1421-1427. [79] J. Newman, Schmidt Number Correction for the Rotating Disk, The Journal of Physical Chemistry, 70 (1966) 1327-1328. [80] S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature, Electrochim Acta, 44 (1999) 2455-2462. [81] K.L. Stewart, A.A. Gewirth, Mechanism of Electrochemical Reduction of Hydrogen Peroxide on Copper in Acidic Sulfate Solutions, Langmuir, 23 (2007) 9911-9918. [82] P.G. Keech, J.J. Noël, D.W. Shoesmith, The electrochemical reduction of hydrogen peroxide on uranium dioxide under intermediate pH to acidic conditions, Electrochim Acta, 53 (2008) 5675-5683. [83] M.R. Miah, T. Ohsaka, Kinetics of Electroreduction of H2O2 at Gold Electrodes in Iodide-Containing Alkaline Media, Journal of The Electrochemical Society, 154 (2007) F186-F190. [84] V.G. Prabhu, L.R. Zarapkar, R.G. Dhaneshwar, Electrochemical studies of hydrogen peroxide at a platinum disc electrode, Electrochim Acta, 26 (1981) 725-729. [85] C.M. Welch, C.E. Banks, A.O. Simm, R.G. Compton, Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide, Anal Bioanal Chem, 382 (2005) 12-21. [86] F.W. Campbell, S.R. Belding, R. Baron, L. Xiao, R.G. Compton, Hydrogen Peroxide Electroreduction at a Silver-Nanoparticle Array: Investigating Nanoparticle Size and Coverage Effects, The Journal of Physical Chemistry C, 113 (2009) 9053-9062. [87] M. Razdan, D.S. Hall, P.G. Keech, D.W. Shoesmith, Electrochemical reduction of hydrogen peroxide on SIMFUEL (UO2) in acidic pH conditions, Electrochim Acta, 83 (2012) 410-419. [88] J.A. Cox, R.K. Jaworski, Mechanism of the mediated reduction of hydrogen peroxide at an electrode modified with a film containing a basic form of iridium oxide, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 281 (1990) 163-170. [89] S. Patra, N. Munichandraiah, Electrochemical reduction of hydrogen peroxide on stainless steel, J Chem Sci, 121 (2009) 675-683. [90] K. Yamamoto, G. Shi, T. Zhou, F. Xu, J. Xu, T. Kato, J.-Y. Jin, L. Jin, Study of carbon nanotubes-HRP modified electrode and its application for novel on-line biosensors, Analyst, 128 (2003) 249-254. [91] E. Ferapontova, L. Gorton, Bioelectrocatalytical Detection of H2O2 with Different Forms of Horseradish Peroxidase Directly Adsorbed at Polycrystalline Silver and Gold, Electroanalysis, 15 (2003) 484-491. [92] R.C. Engstrom, V.A. Strasser, Characterization of electrochemically pretreated glassy carbon electrodes, Analytical Chemistry, 56 (1984) 136-141. [93] J.N. Younathan, K.S. Wood, T.J. Meyer, Electrocatalytic reduction of nitrite and nitrosyl by iron(III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film, Inorganic Chemistry, 31 (1992) 3280-3285. [94] S. Iseki, K. Ohashi, S. Nagaura, Impedance of the oxygen-evolution reaction on noble metal electrodes, Electrochim Acta, 17 (1972) 2249-2265. [95] W.A. Badawy, A.G. Gad-Allah, H.A. Abd El-Rahman, M.M. Abouromia, Kinetics of the passivation of molybdenum in acids and alkali solutions as inferred from impedance and potential measurements, Surface and Coatings Technology, 27 (1986) 187-196. [96] G. Wu, N. Li, D.-R. Zhou, K. Mitsuo, B.-Q. Xu, Anodically electrodeposited Co+Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media, Journal of Solid State Chemistry, 177 (2004) 3682-3692. [97] N.A. Hampson, R.J. Latham, J.B. Lee, K.I. Macdonald, Oxidations at copper electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 31 (1971) 57-62. [98] T.A. Centeno, F. Stoeckli, On the specific double-layer capacitance of activated carbons, in relation to their structural and chemical properties, Journal of Power Sources, 154 (2006) 314-320.
|