跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾婉婷
研究生(外文):Zeng, Wan-Ting
論文名稱:以稻殼廢棄物資源化製備多孔洞矽基吸附材料及其應用於空氣汙染控制之研究
論文名稱(外文):Utilization of rice husk agriculture waste for the fabrication of porous silica adsorbents and their performance for air pollution control
指導教授:白曛綾
指導教授(外文):Bai, Hsun-Ling
口試委員:吳紀聖
口試委員(外文):Wu, Jeffrey Chi-Sheng
口試日期:2016-08-09
學位類別:博士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:155
中文關鍵詞:農業廢棄物資源化中孔洞材料二氧化碳揮發性有機物丙酮吸附
外文關鍵詞:Agriculture waste utilizationmesoporous silicaCO2VOCsacetoneadaorption
相關次數:
  • 被引用被引用:9
  • 點閱點閱:796
  • 評分評分:
  • 下載下載:140
  • 收藏至我的研究室書目清單書目收藏:0
為減緩能源短缺與空氣汙染之問題,本研究擬將稻殼農業廢棄物再利用,藉由調整合成參數,製備成不同孔洞結構特性之多孔洞材料,探討多孔洞材料物性變化對於化學性吸附二氧化碳與物理性吸附揮發性有機物之效能影響。
本研究首先藉由調整稻殼前處理溫度以及矽酸鹽萃取溫度,探討兩種溫度對於中孔洞材料物理特性及其應用於二氧化碳吸附效能之影響。經由數據歸納分析出影響二氧化碳吸附量的關鍵因素為中孔洞材料之總孔洞體積之大小。相較於文獻中多以添加高分子有機物作為擴孔劑以增大多孔材料之孔徑與孔體積;本研究研發出在不使用任何有機高分子擴孔劑的條件下,僅靠簡單控制稻殼高溫熱處理溫度以及矽酸鹽萃取溫度即可製備出具有大孔徑以及高孔體積特性之多孔二氧化矽材料。此技術能大幅減少使用化學藥劑,不僅能夠減少在吸附材料製備程序中可能衍生的環境汙染污染問題,亦能夠縮減吸附材料製備之費用。
為了節省吸附劑製備所需耗費的成本與時間,本研究亦開發出能夠在常溫下快速直接從稻穀中製備出多孔性二氧化矽奈米顆粒(Porous silica nanoparticles, PSNs)。研究結果指出在合成材料過程中形成的氟矽酸銨(NH4)2SiF6,可作為孔洞形成劑並且可於常溫下透過水洗的方式去除,進而形成孔洞材料。相較於傳統文獻中之多孔性吸附劑製備大多需要有機界面活性劑作為模板,且需要數十小時的製備時程,此研究之合成方法可大幅減少吸附劑製備所需耗費之成本與時間。而相比於文獻中常見之二氧化碳中孔洞吸附劑MCM-41、SBA-15及SBA-16,多孔性二氧化矽奈米顆粒亦呈現最佳的吸附能力。多孔性二氧化矽奈米顆粒在製備程序上,具有快速、低能源消耗並且不需要額外添加界面活性劑的優勢,且應用於溫室氣體CO2捕獲,亦有優異的成效。
另一方面,本研究亦探討多孔二氧化矽材料孔洞結構特性應用於揮發性有機物丙酮吸附之影響;在本研究中,首度利用稻殼灰做為二氧化矽前驅物製備出微/中孔洞RSBA-16作為丙酮之吸附劑,並藉由調整界面活性劑與二氧化矽莫耳比例,進而尋求最適應用於丙酮吸附之孔洞特性。結果顯示,孔洞材料具備大比表面積時,可以提供更多活性吸附位置,增加丙酮吸附能力;此外,本研究發現在具有相同總比表面積下,吸附劑若具有較高微孔比表面積有助於提升丙酮吸附能力。其中,RSBA-16因同時具備高總比表面積以及高微孔比表面積,因此其丙酮飽和吸附量(179 mg/g)遠高於RMCM-41 (108 mg/g) 與RSBA-15 (152 mg/g)。而丙酮等溫吸附測試顯示丙酮在吸附劑RSBA-16表面上屬物理性吸附,此現象則與比表面積為最重要決定因子前後呼應。反覆吸脫附測試亦顯示RSBA-16具有相當好之熱穩定性。此外RSBA-16(0.004)其製備成本與RSBA-15相似,並遠低於RMCM-41。故經過吸附效能、製備成本與再生測試後,RSBA-16(0.004)具有最好的吸附劑條件。

As the energy crisis and resource shortage continue, the rice husk becomes an agriculture valuable waste resource which can be made into various kinds of energy products and resource materials. On the other hand, the capture of CO2 and the control of VOCs emitted from industrial sources are two of the most important air pollution issues. This study intends to reutilize the rice husk as the silica source for the synthesis of porous silica materials and to investigate the effects of structural properties of the waste-derived-materials on CO2 and VOCs adsorption performance.
In this study, alkali fusion method was employed to extract the silica from rice husk, and the effects of fusion temperature and extraction temperature on the textural properties of waste-derived materials was investigated. Unlike the conventional methods for preparing large-pore silica materials in which toxic and expensive additives were employed as swelling agents, the obtained waste-derived silica materials with large mesopores could be facilely prepared via a simple temperature-controlled approach without adding pore expanders in this study. The correlation between CO2 adsorption capacity and the textural properties (pore volume, pore size and specific surface area) was demonstrated, and a linear correlation between CO2 adsorption capacity and the total pore volume of the adsorbents was clearly observed. This indicated that the total pore volume of the adsorbent plays a dominant role in determining the CO2 adsorption performance.
To reduce the energy consumption and processing time for the preparation of porous silica materials as CO2 adsorbents, a rapid and simple method for the preparation of porous silica nanoparticles (PSNs) directly from agricultural waste of rice husk was developed. Compared with the traditional alkaline fusion and surfactant-templated methods for preparing waste-derived porous silica materials, this method possessed important advantages of a cost-effective, and energy-saving process with faster production rate. Results showed that the (NH4)2SiF6 salt formed during the synthetic process was an effective pore structure medium, which can be easily removed and recovered for further reuse by washing with water. Furthermore, compared to MCM-41, SBA-15 and SBA-16, the PSNs showed the best proformance on CO2 adsorption conditions, probably due to its larger pore volume.
On the other hand, the influence of pore structural properties of porous silica materials on adsorptive removal of volatile organic compounds (VOCs) was also investigated. In particular, for the first time, micro-/mesoporous RSBA-16 materials were synthesized by rice husk derived sodium silicate as a silica source. The pore structural properties of waste-derived SBA-16 materials were controlled and optimized by adjusting the surfactant/silica molar ratio for achieving the best adsorption performance of acetone, and the relationship between structural properties and acetone adsorption performance of RSBA-16 adsorbents was investigated. The results indicated that specific surface areas in both micro- and meso-pore ranges were the main factor that determined the superiority of acetone adsorption capacity of RSBA-16(0.004) adsorbents (179 mg/g) over other adsorbents such as mesoporous RMCM-41 (108 mg/g) and micro-/mesoporous RSBA-15 (152 mg/g). The results suggested that RSBA-16(0.004) which had high adsorption rate, high adsorption capacity, high cyclic stability and relatively low chemical cost can be considered as a potential adsorbent for VOCs removals.

摘 要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 多孔性材料介紹與基本特性 5
2.1.1 多孔性材料簡介 5
2.1.2 界面活性劑之分類及特性 6
2.2 中孔洞分子篩MCM與SBA家族簡介 7
2.2.1 中孔洞分子篩MCM-n簡介 7
2.2.2 中孔洞分子篩SBA-n簡介 8
2.3 中孔洞分子篩合成機制及製備方法 9
2.3.1 中孔洞矽材MCM-41 9
2.3.2 中孔洞矽材SBA-15、SBA-16 12
2.4 多孔吸附材吸附原理與吸附選擇性 14
2.4.1吸附原理 14
2.4.2吸附選擇性 16
2.4.3 等溫吸附模式 18
2.4.3.1 Langmuir isotherm 18
2.4.3.2 Freundlich isotherm 19
2.4.3.3 Dubinin-Radushkevich isotherm 19
2.4.4脫附原理 20
2.4.5吸脫附之技術 21
2.5 多孔洞材料應用於二氧化碳捕獲之研究 22
2.5.1 中孔洞材料吸附二氧化碳之研究 22
2.5.2 微孔洞材料吸附二氧化碳之研究 24
2.5.3 材料孔洞結構對二氧化碳吸附效能之影響 29
2.6 多孔性材料吸附捕獲VOCs之相關研究 32
2.6.1 中孔洞材料進行VOCs吸附之相關研究 32
2.6.2 微孔洞材料進行VOCs吸附之相關研究 33
2.6.3 材料孔洞結構對於VOCs吸附之影響 37
2.7 廢棄物資源化之多孔性奈米材料 39
2.7.1 稻殼與稻殼灰資源化之矽基奈米孔洞材料 39
2.7.2 其他廢棄物製造多孔洞吸附材 41
2.8 以廢棄物製備多孔洞材料吸附CO2與VOCs之研究 43
第三章 研究方法 46
3.1 研究流程 46
3.2 實驗設備與藥品 48
3.3 實驗合成步驟 50
3.3.1中孔洞材料(mesoporous silica, MS)製備 50
3.3.2多孔洞材料(porous silica nanoparticels, PSNs)製備 52
3.3.3 RSBA-15製備 53
3.3.4 RSBA-16製備 54
3.3.5多孔洞材料胺基化步驟 56
3.4 中孔洞材料分析與鑑定 58
3.5 二氧化碳吸脫附測試 60
3.5.1 二氧化碳管柱吸附測試 60
3.5.2 二氧化碳吸附量計算 61
3.5.3 二氧化碳脫附測試 61
3.6 丙酮吸脫附測試 62
3.6.1 丙酮管柱吸附測試 62
3.6.2 丙酮吸附量計算 62
3.6.3 丙酮吸脫附循環測試 64
第四章 稻殼灰製備中孔洞矽材及其應用於CO2捕獲 65
4.1 背景說明 65
4.1.1 研究動機與目的 65
4.1.2 稻殼成份介紹 65
4.2 結果與討論 67
4.2.1 稻殼灰前處理溫度及萃取溫度對中孔洞材料結構形成之影響 67
4.2.2 胺基化中孔洞材料表面官能基鑑定分析 76
4.2.3 胺基化MS材料:二氧化碳吸附測試 80
4.2.4 孔洞結構特性與CO2吸附量探討 83
4.2.5 TEPA含量對中孔洞材料CO2吸附之影響 85
4.2.6 CO2吸附效能比較 88
4.3小結 88
第五章 以低溫快速水熱法製備中孔洞矽材應用於CO2捕獲 90
5.1 研究動機與目的 90
5.2 結果與討論 91
5.2.1 孔洞矽材(PSNs)物性鑑定 91
5.2.2 (NH4)2SiF6與孔洞結構分析關係 98
5.2.3 PEI胺基化PSNs材料:二氧化碳吸附測試 99
5.2.4 孔洞結構特性與CO2吸附量探討 101
5.2.5 胺基PEI含量對多孔洞材料CO2吸附之影響 102
5.2.6 CO2反覆吸脫附測試 104
5.2.7 CO2吸附效能比較 105
5.3 小結 107
第六章 以稻殼灰製備多孔洞矽材應用於VOCs吸附之研究 108
6.1研究動機與目的 108
6.2 結果與討論 110
6.2.1 RSBA-15之特性分析 110
6.2.2 RSBA-16之特性分析 113
6.2.3 多孔洞材料丙酮吸附能力比較 116
6.2.3.1 RSBA-15 116
6.2.3.2 RSBA-16 118
6.2.4 多孔洞材料結構對於丙酮吸附之影響 121
6.2.5 RSBA-15、RSBA-16與RMCM-41吸附量比較 127
6.2.6 丙酮吸附與再生測試 131
6.3小結 132
第七章 多孔洞材料製備與應用結果比較 133
7.1多孔洞材料過程產生之廢棄物與能源使用 133
7.2多孔洞材料的優缺點與吸附應用結果彙整 136
第八章 結論與建議 139
8.1結論 139
8.2建議 141
參考文獻 142

Aaron, D., Tsouris, C., 2005. Separation of CO2 from Flue Gas: A Review. Sep. Sci. Technol. 40, 321–348.
An, D., Guo, Y., Zhu, Y., Wang, Z., 2010. A green route to preparation of silica powders with rice husk ash and waste gas. Chem. Eng. J. 162, 509–514.
An, D., Guo, Y., Zou, B., Zhu, Y., Wang, Z., 2011. A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenergy 35, 1227–1234.
Anunziata, O.A., Beltramone, A.R., Martínez, M.L., Belon, L.L., 2007. Synthesis and characterization of SBA-3, SBA-15, and SBA-1 nanostructured catalytic materials. J. Colloid Interface Sci. 315, 184–190.
Apiratikul, R., Pavasant, P., 2008. Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chem. Eng. J. 144, 245–258.
Areerob, T., Grisdanurak, N., Chiarakorn, S., 2011. Improvement of BTEX Adsorption Using Silylated RH-MCM-41 Synthesized from Rice Husk Silica. Mater. Sci. Forum 700, 231–235.
Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., 1992. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843.
Belmabkhout, Y., Sayari, A., 2010. Isothermal versus Non-isothermal Adsorption−Desorption Cycling of Triamine-Grafted Pore-Expanded MCM-41 Mesoporous Silica for CO2 Capture from Flue Gas. Energy Fuels 24, 5273–5280.
Bhagiyalakshmi, M., Yun, L.J., Anuradha, R., Jang, H.T., 2010. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. J. Hazard. Mater. 175, 928–938.
Bhagiyalakshmi, M., Yun, L.J., Anuradha, R., Jang, H.T., 2009. Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption. J. Porous Mater. 17, 475–484.
Brady, R., Woonton, B., Gee, M.L., O’Connor, A.J., 2008. Hierarchical mesoporous silica materials for separation of functional food ingredients — A review. Innov. Food Sci. Emerg. Technol., Food Innovation: Emerging Science, Technologies and Applications (FIESTA) Conference 9, 243–248.
Chandrasekar, G., Ahn, W.-S., 2008. Synthesis of cubic mesoporous silica and carbon using fly ash. J. Non-Cryst. Solids 354, 4027–4030.
Chandrasekar, G., Son, W.-J., Ahn, W.-S., 2008a. Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption. J. Porous Mater. 16, 545–551.
Chandrasekar, G., You, K.-S., Ahn, J.-W., Ahn, W.-S., 2008b. Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Microporous Mesoporous Mater. 111, 455–462.
Chang, H.-L., Chun, C.-M., Aksay, I.A., Shih, W.-H., 1999. Conversion of Fly Ash into Mesoporous Aluminosilicate. Ind. Eng. Chem. Res. 38, 973–977.
Chang, S.-H., Wang, K.-S., Li, H.-C., Wey, M.-Y., Chou, J.-D., 2009. Enhancement of Rhodamine B removal by low-cost fly ash sorption with Fenton pre-oxidation. J. Hazard. Mater. 172, 1131–1136.
Chareonpanich, M., Nanta-ngern, A., Limtrakul, J., 2007. Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique. Mater. Lett. 61, 5153–5156.
Chatti, R., Bansiwal, A.K., Thote, J.A., Kumar, V., Jadhav, P., Lokhande, S.K., Biniwale, R.B., Labhsetwar, N.K., Rayalu, S.S., 2009. Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies. Microporous Mesoporous Mater. 121, 84–89.
Chen, C., You, K.-S., Ahn, J.-W., Ahn, W.-S., 2010. Synthesis of mesoporous silica from bottom ash and its application for CO2 sorption. Korean J. Chem. Eng. 27, 1010–1014.
Cheng, C.-F., Lin, Y.-C., Cheng, H.-H., Chen, Y.-C., 2003. The effect and model of silica concentrations on physical properties and particle sizes of three-dimensional SBA-16 nanoporous materials. Chem. Phys. Lett. 382, 496–501.
Chiang, Y.-C., Chiang, P.-C., Huang, C.-P., 2001. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39, 523–534.
Choi, M., Heo, W., Kleitz, F., Ryoo, R., 2003. Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness Electronic supplementary information (ESI) available: Chem. Commun. 1340.
Dasgupta, S., Nanoti, A., Gupta, P., Jena, D., Goswami, A.N., Garg, M.O., 2009. Carbon Di-Oxide Removal with Mesoporous Adsorbents in a Single Column Pressure Swing Adsorber. Sep. Sci. Technol. 44, 3973–3983.
Díaz, E., Ordóñez, S., Vega, A., Coca, J., 2004. Characterization of Co, Fe and Mn-exchanged zeolites by inverse gas chromatography. J. Chromatogr. A 1049.
Dou, B., Hu, Q., Li, J., Qiao, S., Hao, Z., 2011. Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. J. Hazard. Mater. 186, 1615–1624.
Dou, B., Li, J., Hu, Q., Ma, C., He, C., Li, P., Hu, Q., Hao, Z., Qiao, S., 2010. Hydrophobic micro/mesoporous silica spheres assembled from zeolite precursors in acidic media for aromatics adsorption. Microporous Mesoporous Mater. 133, 115–123.
Drage, T.C., Arenillas, A., Smith, K.M., Snape, C.E., 2008. Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater. 116, 504–512.
Feng, X., Hu, G., Hu, X., Xie, G., Xie, Y., Lu, J., Luo, M., 2013. Tetraethylenepentamine-Modified Siliceous Mesocellular Foam (MCF) for CO2 Capture. Ind. Eng. Chem. Res. 52, 4221–4228.
Fisher, J.C., Tanthana, J., Chuang, S.S.C., 2009. Oxide-supported tetraethylenepentamine for CO2 capture. Environ. Prog. Sustain. Energy 28, 589–598.
Franchi, R.S., Harlick, P.J.E., Sayari, A., 2005. Applications of Pore-Expanded Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2. Ind. Eng. Chem. Res. 44, 8007–8013.
Ghoshal, A.K., Manjare, S.D., 2002. Selection of appropriate adsorption technique for recovery of VOCs: an analysis. J. Loss Prev. Process Ind. 15, 413–421.
Gibson, L.T., 2014. Mesosilica materials and organic pollutant adsorption: part A removal from air. Chem. Soc. Rev. 43, 5163.
Gray, M.., Soong, Y., Champagne, K.., Baltrus, J., Stevens Jr, R.., Toochinda, P., Chuang, S.S.., 2004. CO2 capture by amine-enriched fly ash carbon sorbents. Sep. Purif. Technol. 35, 31–36.
Grisdanurak, N., Chiarakorn, S., Wittayakun, J., 2003. Utilization of mesoporous molecular sieves synthesized from natural source rice husk silica to Chlorinated Volatile Organic Compounds (CVOCs) adsorption. Korean J. Chem. Eng. 20, 950–955.
Halina, M., Ramesh, S., Yarmo, M.A., Kamarudin, R.A., 2007. Non-hydrothermal synthesis of mesoporous materials using sodium silicate from coal fly ash. Mater. Chem. Phys. 101, 344–351.
Harlick, P.J.E., Sayari, A., 2006. Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption. Ind. Eng. Chem. Res. 45, 3248–3255.
Harlick, P.J.E., Tezel, F.H., 2004. An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76, 71–79.
Harlick, P.J.E., Tezel, F.H., 2002. Adsorption of carbon dioxide, methane, and nitrogen: pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30. Sep. Sci. Technol. 37, 33–60.
Harlick, P.J.., Tezel, F.., 2003. Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280. Sep. Purif. Technol. 33, 199–210.
Hartmann, M., Bischof, C., 1999. Mechanical Stability of Mesoporous Molecular Sieve MCM-48 Studied by Adsorption of Benzene, n-Heptane, and Cyclohexane. J. Phys. Chem. B 103, 6230–6235.
Huo, Q.; Margolese, D. I.; Ciesia, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D.1994, Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 368, 317-321.
Huo, Q.; Leon, R.; Petroff, P. M.; Stucky, G. D.1995, Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array, Science, 268, 1324-1327.
Hong, G.-B., Ruan, R.-T., Chang, C.-T., 2013. MCM-41 from spent glasses for volatile organic compounds treatment. Chem. Eng. J. 215–216, 472–478.
Hu, Q., Li, J.J., Hao, Z.P., Li, L.D., Qiao, S.Z., 2009. Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. Chem. Eng. J. 149, 281–288.
Huang, H.Y., Yang, R.T., Chinn, D., Munson, C.L., 2003. Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas. Ind. Eng. Chem. Res. 42, 2427–2433.
Hui, K.S., Chao, C.Y.H., 2008. Methane Emissions Abatement by Multi-Ion-Exchanged Zeolite A Prepared from Both Commercial-Grade Zeolite and Coal Fly Ash. Environ. Sci. Technol. 42, 7392–7397.
Hui, K.S., Chao, C.Y.H., 2006. Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash. Microporous Mesoporous Mater. 88, 145–151.
Hung, C., Bai, H., Karthik, M., 2009. Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: A comparative study. Sep. Purif. Technol. 64, 265–272.
Hung, C.-T., Bai, H., 2008. Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method. Chem. Eng. Sci. 63, 1997–2005.
Hwang, Y.K., Chang, J.-S., Kwon, Y.-U., Park, S.-E., 2004. Microwave synthesis of cubic mesoporous silica SBA-16. Microporous Mesoporous Mater. 68, 21–27.
Jang, H.T., Park, Y., Ko, Y.S., Lee, J.Y., Margandan, B., 2009. Highly siliceous MCM-48 from rice husk ash for CO2 adsorption. Int. J. Greenh. Gas Control 3, 545–549.
Jo, C., Kim, K., Ryoo, R., 2009. Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution. Microporous Mesoporous Mater. 124, 45–51.
Johansson, E.M., Córdoba, J.M., Odén, M., 2009. Synthesis and characterization of large mesoporous silica SBA-15 sheets with ordered accessible 18 nm pores. Mater. Lett. 63, 2129–2131.
Jullaphan, O., Witoon, T., Chareonpanich, M., 2009. Synthesis of mixed-phase uniformly infiltrated SBA-3-like in SBA-15 bimodal mesoporous silica from rice husk ash. Mater. Lett. 63, 1303–1306.
Katiyar, A., Ji, L., Smirniotis, P., Pinto, N.G., 2005. Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size. J. Chromatogr. A, 17th International Symposium on Preparative and Process ChromatographyIon Exchange, Adsorption/Desorption Processes and Related Separation Techniques 1069, 119–126.
Khatri, R.A., Chuang, S.S.C., Soong, Y., Gray, M., 2005. Carbon Dioxide Capture by Diamine-Grafted SBA-15:  A Combined Fourier Transform Infrared and Mass Spectrometry Study. Ind. Eng. Chem. Res. 44, 3702–3708.
Kim, K.-J., Ahn, H.-G., 2012. The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous Mesoporous Mater. 152, 78–83.
Kipkemboi, P., Fogden, A., Alfredsson, V., Flodström, K., 2001. Triblock Copolymers as Templates in Mesoporous Silica Formation:  Structural Dependence on Polymer Chain Length and Synthesis Temperature. Langmuir 17, 5398–5402.
Kosuge, K., Kubo, S., Kikukawa, N., Takemori, M., 2007. Effect of Pore Structure in Mesoporous Silicas on VOC Dynamic Adsorption/Desorption Performance. Langmuir 23, 3095–3102.
Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., 1992. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712.
Kruk, M., Jaroniec, M., Ko, C.H., Ryoo, R., 2000a. Characterization of the Porous Structure of SBA-15. Chem. Mater. 12, 1961–1968.
Kruk, M., Jaroniec, M., Sayari, A., 2000b. New insights into pore-size expansion of mesoporous silicates using long-chain amines. Microporous Mesoporous Mater. 35–36, 545–553.
Kulkarni, A.R., Sholl, D.S., 2012. Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO2 from Air. Ind. Eng. Chem. Res. 51, 8631–8645.
Lin, C.-L., Pang, Y.-S., Chao, M.-C., Chen, B.-C., Lin, H.-P., Tang, C.-Y., Lin, C.-Y., 2008. Synthesis of SBA-16 and SBA-15 mesoporous silica crystals templated with neutral block copolymer surfactants. J. Phys. Chem. Solids. 69, 415–419.
Lin, L.-Y., Bai, H., 2013. Efficient Method for Recycling Silica Materials from Waste Powder of the Photonic Industry. Environ. Sci. Technol. 47, 4636–4643.
Lin, L.-Y., Bai, H., 2012. Aerosol processing of low-cost mesoporous silica spherical particles from photonic industrial waste powder for CO2 capture. Chem. Eng. J. 197, 215–222.
Lin, L.-Y., Kuo, J.-T., Bai, H., 2011. Silica materials recovered from photonic industrial waste powder: Its extraction, modification, characterization and application. J. Hazard. Mater. 192, 255–262.
Linneen, N., Pfeffer, R., Lin, Y.S., 2013. CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine. Microporous Mesoporous Mater. 176, 123–131.
Lin, Y.-C., Bai, H., Chang, C.-L., 2005. Applying Hexagonal Nanostructured Zeolite Particles for Acetone Removal. J. Air Waste Manag. Assoc. 55, 834–840.
Liu, S.-H., Lin, Y.-C., Chien, Y.-C., Hyu, H.-R., 2011. Adsorption of CO2 from Flue Gas Streams by a Highly Efficient and Stable Aminosilica Adsorbent. J. Air Waste Manag. Assoc. 61, 226–233.
Liu, S.-H., Wu, C.-H., Lee, H.-K., Liu, S.-B., 2010. Highly Stable Amine-modified Mesoporous Silica Materials for Efficient CO2 Capture. Top. Catal. 53, 210–217.
Liu, X., Zhou, L., Fu, X., Sun, Y., Su, W., Zhou, Y., 2007. Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of and. Chem. Eng. Sci. 62, 1101–1110.
Liu, Y., Guo, Y., Zhu, Y., An, D., Gao, W., Wang, Z., Ma, Y., Wang, Z., 2011. A sustainable route for the preparation of activated carbon and silica from rice husk ash. J. Hazard. Mater. 186, 1314–1319.
Liu, Y., Shi, J., Chen, J., Ye, Q., Pan, H., Shao, Z., Shi, Y., 2010. Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous Mesoporous Mater. 134, 16–21.
Li, Y., Wen, X., Li, L., Wang, F., Zhao, N., Xiao, F., Wei, W., Sun, Y., 2013. Synthesis of amine-modified mesoporous materials for CO2 capture by a one-pot template-free method. J. Sol-Gel Sci. Technol. 66, 353–362.
Lu, C., Bai, H., Wu, B., Su, F., Hwang, J.F., 2008. Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites. Energy Fuels 22, 3050–3056.
Lu, C., Su, F., Hsu, S.-C., Chen, W., Bai, H., Hwang, J.F., Lee, H.-H., 2009. Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles. Fuel Process. Technol. 90, 1543–1549.
Majchrzak-Kucęba, I., Nowak, W., 2009. Development of Fly Ash-Based Sorbent to Capture CO2 from Flue Gas, in: Yue, G., Zhang, H., Zhao, C., Luo, Z. (Eds.), Proceedings of the 20th International Conference on Fluidized Bed Combustion. Springer Berlin Heidelberg, Berlin, Heidelberg, 596–602.
Ma, X., Wang, X., Song, C., 2009. “Molecular Basket” Sorbents for Separation of CO2 and H2S from Various Gas Streams. J. Am. Chem. Soc. 131, 5777–5783.
Mel’nichenko, E.I., Krysenko, G.F., Mel’nichenko, M.N., 2006. (NH4)2SiF6 evaporation in the presence of SiO2. Russ. J. Inorg. Chem. 51, 27–31.
Mercedes Maroto-Valer, M., Lu, Z., Zhang, Y., Tang, Z., 2008. Sorbents for CO2 capture from high carbon fly ashes. Waste Manag. 28, 2320–2328. 2
Morgan III, M.H., Day, J.Y., Littman, H., 1985. Spout voidage distribution, stability and particle circulation rates in spouted beds of coarse particles—I. Theory. Chem. Eng. Sci. 40, 1367–1377.
Newalkar, B.L., Choudary, N.V., Kumar, P., Komarneni, S., Bhat, T.S.G., 2002. Exploring the Potential of Mesoporous Silica, SBA-15, as an Adsorbent for Light Hydrocarbon Separation. Chem. Mater. 14, 304–309.
Øye, G., Sjöblom, J., Stöcker, M., 2001. Synthesis, characterization and potential applications of new materials in the mesoporous range. Adv. Colloid Interface Sci. 89–90, 439–466.
Park, J.-E., Youn, H.-K., Yang, S.-T., Ahn, W.-S., 2012. CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash. Catal. Today, Alternative Sources of Catalytic Materials 190, 15–22.
Przepiórski, J., Skrodzewicz, M., Morawski, A.., 2004. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl. Surf. Sci. 225, 235–242.
Qi, G., Fu, L., Choi, B.H., Giannelis, E.P., 2012. Efficient CO2 sorbents based on silica foam with ultra-large mesopores. Energy Environ. Sci. 5, 7368.
Qi, G., Fu, L., Duan, X., Choi, B.H., Abraham, M., Giannelis, E.P., 2011. Mesoporous amine-bridged polysilsesquioxane for CO2 capture. Greenh. Gases Sci. Technol. 1, 278–284.
Ramalingam, S.G., Pré, P., Giraudet, S., Le Coq, L., Le Cloirec, P., Baudouin, O., Déchelotte, S., 2012. Different families of volatile organic compounds pollution control by microporous carbons in temperature swing adsorption processes. J. Hazard. Mater. 221–222, 242–247.
Raman, N.K., Anderson, M.T., Brinker, C.J., 1996. Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem. Mater. 8, 1682–1701.
Ravikovitch, P.I., Neimark, A.V., 2002. Experimental Confirmation of Different Mechanisms of Evaporation from Ink-Bottle Type Pores:  Equilibrium, Pore Blocking, and Cavitation. Langmuir 18, 9830–9837.
Ravikovitch, P.I., Wei, D., Chueh, W.T., Haller, G.L., Neimark, A.V., 1997. Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption. J. Phys. Chem. B 101, 3671–3679.
Rayalu, S.S., Bansiwal, A.K., Meshram, S.U., Labhsetwar, N., Devotta, S., 2006. Fly ash based zeolite analogues: versatile materials for energy and environment conservation. Catal. Surv. Asia 10, 74–88.
Richard, J.J., Junk, G.A., n.d. Determination of munitions present in water using macroreticular resins - Analytical Chemistry (ACS Publications).
Ruthven, D.M., Kaul, B.K., 1993. Adsorption of aromatic hydrocarbons in NaX zeolite. 2. Kinetics. Ind. Eng. Chem. Res. 32, 2053–2057. 9
Saadoun, M., Bessaı; s, B., Mliki, N., Ferid, M., Ezzaouia, H., Bennaceur, R., 2003. Formation of luminescent (NH4)2SiF6 phase from vapour etching-based porous silicon. Appl. Surf. Sci. 210, 240–248.
Sasahara, T., Kido, A., Ishihara, H., Sunayama, T., Egashira, M., 2005. Highly sensitive detection of volatile organic compounds by an adsorption/combustion-type sensor based on mesoporous silica. Sens. Actuators B Chem., 108, 478–483.
Sayari, A., 1996. Catalysis by Crystalline Mesoporous Molecular Sieves. Chem. Mater. 8, 1840–1852.
Selvam, P., Bhatia, S.K., Sonwane, C.G., 2001. Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. Ind. Eng. Chem. Res. 40, 3237–3261.
Serna-Guerrero, R., Belmabkhout, Y., Sayari, A., 2010. Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies. Adsorption 16, 567–575.
Siriwardane, R.V., Shen, M.-S., Fisher, E.P., Poston, J.A., 2001. Adsorption of CO2 on Molecular Sieves and Activated Carbon. Energy Fuels 15, 279–284.
Soler-Illia, G.J. de A.A., Crepaldi, E.L., Grosso, D., Sanchez, C., 2003. Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci. 8, 109–126.
Son, W.-J., Choi, J.-S., Ahn, W.-S., 2008. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40.
Subagyono, D.J.N., Liang, Z., Knowles, G.P., Chaffee, A.L., 2011. Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chem. Eng. Res. Des. 89, 1647–1657.
Su, F., Lu, C., Chen, H.-S., 2011. Adsorption, Desorption, and Thermodynamic Studies of CO2 with High-Amine-Loaded Multiwalled Carbon Nanotubes. Langmuir 27, 8090–8098.
Su, F., Lu, C., Chung, A.-J., Liao, C.-H., 2014. CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption. Appl. Energy 113, 706–712.
Su, F., Lu, C., Kuo, S.-C., Zeng, W., 2010. Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites. Energy Fuels 24, 1441–1448.
Szegedi, Á., Popova, M., Lázár, K., Klébert, S., Drotár, E., 2013. Impact of silica structure of copper and iron-containing SBA-15 and SBA-16 materials on toluene oxidation. Microporous Mesoporous Mater. 177, 97–104.
Szekely, J., Evans, J.W., Sohn, H. Y. 1976. Gas-Solid Reactions. Academic Press Inc: New York.
Taguchi, A., Schüth, F., 2005. Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1–45.
Taralunga, M., Mijoin, J., Magnoux, P., 2005. Catalytic destruction of chlorinated POPs—Catalytic oxidation of chlorobenzene over PtHFAU catalysts. Appl. Catal. B Environ. 60, 163–171.
Trong On, D., Desplantier-Giscard, D., Danumah, C., Kaliaguine, S., 2001. Perspectives in catalytic applications of mesostructured materials. Appl. Catal. Gen. 222, 299–357.
Tsou, J., Magnoux, P., Guisnet, M., Órfão, J.J.M., Figueiredo, J.L., 2005. Catalytic oxidation of volatile organic compounds: Oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts. Appl. Catal. B Environ. 57, 117–123.
Tsou, J., Pinard, L., Magnoux, P., Figueiredo, J.L., Guisnet, M., 2003. Catalytic oxidation of volatile organic compounds (VOCs): Oxidation of o-xylene over Pt/HBEA catalysts. Appl. Catal. B Environ. 46, 371–379.
Van Der Voort, P., Benjelloun, M., Vansant, E.F., 2002. Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity. J. Phys. Chem. B 106, 9027–9032.
Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 74, 3583–3597.
Vinh-Thang, H., Huang, Q., Eić, M., Trong-On, D., Kaliaguine, S., 2005. Adsorption of C7 Hydrocarbons on Biporous SBA-15 Mesoporous Silica. Langmuir 21, 5094–5101.
Walton, K.S., Abney, M.B., Douglas LeVan, M., 2006. CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 91, 78–84.
Wang, G., Zhang, Z., Wang, J., Li, N., Hao, Z., 2015. Study of the Influence of Pore Width on the Disposal of Benzene Employing Tunable OMCs. Ind. Eng. Chem. Res. 54, 1074–1080.
Wang, H.P., Lin, K.S., Huang, Y.., Li, M.., Tsaur, L.., 1998. Synthesis of zeolite ZSM-48 from rice husk ash. J. Hazard. Mater. 58, 147–152.
Wang, X., Li, H., Liu, H., Hou, X., 2011. AS-synthesized mesoporous silica MSU-1 modified with tetraethylenepentamine for CO2 adsorption. Microporous Mesoporous Mater. 142, 564–569.
Wan, Y., Zhao, D., 2007. On the controllable soft-templating approach to mesoporous silicates.
Wei, J., Shi, J., Pan, H., Zhao, W., Ye, Q., Shi, Y., 2008. Adsorption of carbon dioxide on organically functionalized SBA-16. Microporous Mesoporous Mater. 116, 394–399.
Witoon, T. 2012. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture. Mater. Chem. Phys. 137, 235–245.
Son, W.-J., Choi, J.-S., Ahn, W.-S., 2008. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40.
Wu, Q., Zhang, F., Yang, J., Li, Q., Tu, B., Zhao, D., 2011. Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure. Microporous Mesoporous Mater. 143, 406–412.
Wu, T.-M., Wu, G.-R., Kao, H.-M., Wang, J.-L., 2006. Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds. J. Chromatogr. 1105, 168–175.
Xu, X., Song, C., Andrésen, J.M., Miller, B.G., Scaroni, A.W., 2003. Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62, 29–45.
Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W., 2002. Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture. Energy Fuels 16, 1463–1469.
Xu, X., Song, C., Miller, B.G., Scaroni, A.W., 2005. Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Process. Technol. 86, 1457–1472.
Yan, X., Zhang, L., Zhang, Y., Qiao, K., Yan, Z., Komarneni, S., 2011a. Amine-modified mesocellular silica foams for CO2 capture. Chem. Eng. J. 168, 918–924.
Yan, X., Zhang, L., Zhang, Y., Yang, G., Yan, Z., 2011b. Amine-Modified SBA-15: Effect of Pore Structure on the Performance for CO2 Capture. Ind. Eng. Chem. Res. 50, 3220–3226.
Yue, M.B., Chun, Y., Cao, Y., Dong, X., Zhu, J.H., 2006. CO2 Capture by As-Prepared SBA-15 with an Occluded Organic Template. Adv. Funct. Mater. 16, 1717–1722.
Yue, M.B., Sun, L.B., Cao, Y., Wang, Y., Wang, Z.J., Zhu, J.H., 2008. Efficient CO2 Capturer Derived from As-Synthesized MCM-41 Modified with Amine. Chem. – Eur. J. 14, 3442–3451.
Yu, J., Le, Y., Cheng, B., 2012. Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Adv. 2, 6784.
Zeleňák, V., Badaničová, M., Halamová, D., Čejka, J., Zukal, A., Murafa, N., Goerigk, G., 2008. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture. Chem. Eng. J. 144, 336–342.
Zhang, B., Chen, Y., Wei, L., Zu, Z., 2012. Preparation of molecular sieve X from coal fly ash for the adsorption of volatile organic compounds. Microporous Mesoporous Mater. 156, 36–39.
Zhang, W., Qu, Z., Li, X., Wang, Y., Ma, D., Wu, J., 2012. Comparison of dynamic adsorption/desorption characteristics of toluene on different porous materials. J. Environ. Sci. 24, 520–528.
Zhao, A., Samanta, A., Sarkar, P., Gupta, R., 2013. Carbon Dioxide Adsorption on Amine-Impregnated Mesoporous SBA-15 Sorbents: Experimental and Kinetics Study. Ind. Eng. Chem. Res. 52, 6480–6491.
Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D., 1998a. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 120, 6024–6036.
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D., 1998b. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 279, 548–552.
Zhao, J., Simeon, F., Wang, Y., Luo, G., Hatton, T.A., 2012. Polyethylenimine-impregnated siliceous mesocellular foam particles as high capacity CO2 adsorbents. RSC Adv. 2, 6509–6519.
Zhao, K., Fan, Y., Wang, R., Xu, N., 2008. Preparation of Closed Macroporous Al2O3 Membranes with a Three-dimensionally Ordered Structure. Chem. Lett. 37, 420–421.
Zhao, X.S., Ma, Q., Lu, G.Q. (Max), 1998. VOC Removal:  Comparison of MCM-41 with Hydrophobic Zeolites and Activated Carbon. Energy Fuels 12, 1051–1054.
Zheng, F., Tran, D.N., Busche, B.J., Fryxell, G.E., Addleman, R.S., Zemanian, T.S., Aardahl, C.L., 2005. Ethylenediamine-Modified SBA-15 as Regenerable CO2 Sorbent. Ind. Eng. Chem. Res. 44, 3099–3105.
Zhou, X., Qiao, S., Hao, N., Wang, X., Yu, C., Wang, L., Zhao, D., Lu, G.Q., 2007. Synthesis of Ordered Cubic Periodic Mesoporous Organosilicas with Ultra-Large Pores. Chem. Mater. 19, 1870–1876.
李佳錡,以TFT-LCD廠粉末廢棄物資源化合成中孔洞材料及其二氧化碳氣體捕獲之研究,2011,碩士論文,國立交通大學環境工程所。
林君玲,三區塊共聚高分子應用於中孔洞氧化矽晶體合成的研究,2006,碩士論文,國立成功大學化學系研究所。
林怡君,液相法製造程序對中孔洞沸石型吸附材特性及丙酮吸附量影響之研究,2006,碩士論文,國立交通大學環境工程所。
林亮毅,光電廢棄物資源化製備奈米吸附材料及其應用於二氧化碳捕獲之研究,2012,博士論文,國立交通大學環境工程所。
林崇瑋,運用擴張劑合成不同孔洞結構之中孔洞吸附材料及其應用於二氧化碳捕獲之研究,2011,碩士論文,國立交通大學環境工程所。
邱正宏,吸附於活性碳表面上揮發性有機物之熱脫附動力學研究,1993,碩士論文,國立中山大學環境工程所。
洪錦德,氣膠法合成之中孔洞矽質材料特性分析及其空氣污染應用,2009,博士論文,國立交通大學環境工程所。
陳安綺,以微波輔助鹼性過氧化氫前處理法 促進稻殼轉化乙醇之研究,2015,碩士論文,國立交通大學環境工程所。
趙婉宇,以氫氟酸搭配鹼性過氧化氫浸泡前處理法提升稻殼產醣效率之研究,2013,碩士論文,國立交通大學環境工程所。
蔡忠憲,回收鹼性前處理液對稻殼產醣效率影響之研究,2014,碩士論文,國立交通大學環境工程所。
顏秀慧,沸石對揮發性有機物吸附行為之研究,1997,博士論文,國立台灣大學環境工程所。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊