Aaron, D., Tsouris, C., 2005. Separation of CO2 from Flue Gas: A Review. Sep. Sci. Technol. 40, 321–348.
An, D., Guo, Y., Zhu, Y., Wang, Z., 2010. A green route to preparation of silica powders with rice husk ash and waste gas. Chem. Eng. J. 162, 509–514.
An, D., Guo, Y., Zou, B., Zhu, Y., Wang, Z., 2011. A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenergy 35, 1227–1234.
Anunziata, O.A., Beltramone, A.R., Martínez, M.L., Belon, L.L., 2007. Synthesis and characterization of SBA-3, SBA-15, and SBA-1 nanostructured catalytic materials. J. Colloid Interface Sci. 315, 184–190.
Apiratikul, R., Pavasant, P., 2008. Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chem. Eng. J. 144, 245–258.
Areerob, T., Grisdanurak, N., Chiarakorn, S., 2011. Improvement of BTEX Adsorption Using Silylated RH-MCM-41 Synthesized from Rice Husk Silica. Mater. Sci. Forum 700, 231–235.
Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., 1992. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843.
Belmabkhout, Y., Sayari, A., 2010. Isothermal versus Non-isothermal Adsorption−Desorption Cycling of Triamine-Grafted Pore-Expanded MCM-41 Mesoporous Silica for CO2 Capture from Flue Gas. Energy Fuels 24, 5273–5280.
Bhagiyalakshmi, M., Yun, L.J., Anuradha, R., Jang, H.T., 2010. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. J. Hazard. Mater. 175, 928–938.
Bhagiyalakshmi, M., Yun, L.J., Anuradha, R., Jang, H.T., 2009. Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption. J. Porous Mater. 17, 475–484.
Brady, R., Woonton, B., Gee, M.L., O’Connor, A.J., 2008. Hierarchical mesoporous silica materials for separation of functional food ingredients — A review. Innov. Food Sci. Emerg. Technol., Food Innovation: Emerging Science, Technologies and Applications (FIESTA) Conference 9, 243–248.
Chandrasekar, G., Ahn, W.-S., 2008. Synthesis of cubic mesoporous silica and carbon using fly ash. J. Non-Cryst. Solids 354, 4027–4030.
Chandrasekar, G., Son, W.-J., Ahn, W.-S., 2008a. Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption. J. Porous Mater. 16, 545–551.
Chandrasekar, G., You, K.-S., Ahn, J.-W., Ahn, W.-S., 2008b. Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Microporous Mesoporous Mater. 111, 455–462.
Chang, H.-L., Chun, C.-M., Aksay, I.A., Shih, W.-H., 1999. Conversion of Fly Ash into Mesoporous Aluminosilicate. Ind. Eng. Chem. Res. 38, 973–977.
Chang, S.-H., Wang, K.-S., Li, H.-C., Wey, M.-Y., Chou, J.-D., 2009. Enhancement of Rhodamine B removal by low-cost fly ash sorption with Fenton pre-oxidation. J. Hazard. Mater. 172, 1131–1136.
Chareonpanich, M., Nanta-ngern, A., Limtrakul, J., 2007. Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique. Mater. Lett. 61, 5153–5156.
Chatti, R., Bansiwal, A.K., Thote, J.A., Kumar, V., Jadhav, P., Lokhande, S.K., Biniwale, R.B., Labhsetwar, N.K., Rayalu, S.S., 2009. Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies. Microporous Mesoporous Mater. 121, 84–89.
Chen, C., You, K.-S., Ahn, J.-W., Ahn, W.-S., 2010. Synthesis of mesoporous silica from bottom ash and its application for CO2 sorption. Korean J. Chem. Eng. 27, 1010–1014.
Cheng, C.-F., Lin, Y.-C., Cheng, H.-H., Chen, Y.-C., 2003. The effect and model of silica concentrations on physical properties and particle sizes of three-dimensional SBA-16 nanoporous materials. Chem. Phys. Lett. 382, 496–501.
Chiang, Y.-C., Chiang, P.-C., Huang, C.-P., 2001. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39, 523–534.
Choi, M., Heo, W., Kleitz, F., Ryoo, R., 2003. Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness Electronic supplementary information (ESI) available: Chem. Commun. 1340.
Dasgupta, S., Nanoti, A., Gupta, P., Jena, D., Goswami, A.N., Garg, M.O., 2009. Carbon Di-Oxide Removal with Mesoporous Adsorbents in a Single Column Pressure Swing Adsorber. Sep. Sci. Technol. 44, 3973–3983.
Díaz, E., Ordóñez, S., Vega, A., Coca, J., 2004. Characterization of Co, Fe and Mn-exchanged zeolites by inverse gas chromatography. J. Chromatogr. A 1049.
Dou, B., Hu, Q., Li, J., Qiao, S., Hao, Z., 2011. Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. J. Hazard. Mater. 186, 1615–1624.
Dou, B., Li, J., Hu, Q., Ma, C., He, C., Li, P., Hu, Q., Hao, Z., Qiao, S., 2010. Hydrophobic micro/mesoporous silica spheres assembled from zeolite precursors in acidic media for aromatics adsorption. Microporous Mesoporous Mater. 133, 115–123.
Drage, T.C., Arenillas, A., Smith, K.M., Snape, C.E., 2008. Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater. 116, 504–512.
Feng, X., Hu, G., Hu, X., Xie, G., Xie, Y., Lu, J., Luo, M., 2013. Tetraethylenepentamine-Modified Siliceous Mesocellular Foam (MCF) for CO2 Capture. Ind. Eng. Chem. Res. 52, 4221–4228.
Fisher, J.C., Tanthana, J., Chuang, S.S.C., 2009. Oxide-supported tetraethylenepentamine for CO2 capture. Environ. Prog. Sustain. Energy 28, 589–598.
Franchi, R.S., Harlick, P.J.E., Sayari, A., 2005. Applications of Pore-Expanded Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2. Ind. Eng. Chem. Res. 44, 8007–8013.
Ghoshal, A.K., Manjare, S.D., 2002. Selection of appropriate adsorption technique for recovery of VOCs: an analysis. J. Loss Prev. Process Ind. 15, 413–421.
Gibson, L.T., 2014. Mesosilica materials and organic pollutant adsorption: part A removal from air. Chem. Soc. Rev. 43, 5163.
Gray, M.., Soong, Y., Champagne, K.., Baltrus, J., Stevens Jr, R.., Toochinda, P., Chuang, S.S.., 2004. CO2 capture by amine-enriched fly ash carbon sorbents. Sep. Purif. Technol. 35, 31–36.
Grisdanurak, N., Chiarakorn, S., Wittayakun, J., 2003. Utilization of mesoporous molecular sieves synthesized from natural source rice husk silica to Chlorinated Volatile Organic Compounds (CVOCs) adsorption. Korean J. Chem. Eng. 20, 950–955.
Halina, M., Ramesh, S., Yarmo, M.A., Kamarudin, R.A., 2007. Non-hydrothermal synthesis of mesoporous materials using sodium silicate from coal fly ash. Mater. Chem. Phys. 101, 344–351.
Harlick, P.J.E., Sayari, A., 2006. Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption. Ind. Eng. Chem. Res. 45, 3248–3255.
Harlick, P.J.E., Tezel, F.H., 2004. An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76, 71–79.
Harlick, P.J.E., Tezel, F.H., 2002. Adsorption of carbon dioxide, methane, and nitrogen: pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30. Sep. Sci. Technol. 37, 33–60.
Harlick, P.J.., Tezel, F.., 2003. Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280. Sep. Purif. Technol. 33, 199–210.
Hartmann, M., Bischof, C., 1999. Mechanical Stability of Mesoporous Molecular Sieve MCM-48 Studied by Adsorption of Benzene, n-Heptane, and Cyclohexane. J. Phys. Chem. B 103, 6230–6235.
Huo, Q.; Margolese, D. I.; Ciesia, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D.1994, Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 368, 317-321.
Huo, Q.; Leon, R.; Petroff, P. M.; Stucky, G. D.1995, Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array, Science, 268, 1324-1327.
Hong, G.-B., Ruan, R.-T., Chang, C.-T., 2013. MCM-41 from spent glasses for volatile organic compounds treatment. Chem. Eng. J. 215–216, 472–478.
Hu, Q., Li, J.J., Hao, Z.P., Li, L.D., Qiao, S.Z., 2009. Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. Chem. Eng. J. 149, 281–288.
Huang, H.Y., Yang, R.T., Chinn, D., Munson, C.L., 2003. Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas. Ind. Eng. Chem. Res. 42, 2427–2433.
Hui, K.S., Chao, C.Y.H., 2008. Methane Emissions Abatement by Multi-Ion-Exchanged Zeolite A Prepared from Both Commercial-Grade Zeolite and Coal Fly Ash. Environ. Sci. Technol. 42, 7392–7397.
Hui, K.S., Chao, C.Y.H., 2006. Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash. Microporous Mesoporous Mater. 88, 145–151.
Hung, C., Bai, H., Karthik, M., 2009. Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: A comparative study. Sep. Purif. Technol. 64, 265–272.
Hung, C.-T., Bai, H., 2008. Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method. Chem. Eng. Sci. 63, 1997–2005.
Hwang, Y.K., Chang, J.-S., Kwon, Y.-U., Park, S.-E., 2004. Microwave synthesis of cubic mesoporous silica SBA-16. Microporous Mesoporous Mater. 68, 21–27.
Jang, H.T., Park, Y., Ko, Y.S., Lee, J.Y., Margandan, B., 2009. Highly siliceous MCM-48 from rice husk ash for CO2 adsorption. Int. J. Greenh. Gas Control 3, 545–549.
Jo, C., Kim, K., Ryoo, R., 2009. Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution. Microporous Mesoporous Mater. 124, 45–51.
Johansson, E.M., Córdoba, J.M., Odén, M., 2009. Synthesis and characterization of large mesoporous silica SBA-15 sheets with ordered accessible 18 nm pores. Mater. Lett. 63, 2129–2131.
Jullaphan, O., Witoon, T., Chareonpanich, M., 2009. Synthesis of mixed-phase uniformly infiltrated SBA-3-like in SBA-15 bimodal mesoporous silica from rice husk ash. Mater. Lett. 63, 1303–1306.
Katiyar, A., Ji, L., Smirniotis, P., Pinto, N.G., 2005. Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size. J. Chromatogr. A, 17th International Symposium on Preparative and Process ChromatographyIon Exchange, Adsorption/Desorption Processes and Related Separation Techniques 1069, 119–126.
Khatri, R.A., Chuang, S.S.C., Soong, Y., Gray, M., 2005. Carbon Dioxide Capture by Diamine-Grafted SBA-15: A Combined Fourier Transform Infrared and Mass Spectrometry Study. Ind. Eng. Chem. Res. 44, 3702–3708.
Kim, K.-J., Ahn, H.-G., 2012. The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous Mesoporous Mater. 152, 78–83.
Kipkemboi, P., Fogden, A., Alfredsson, V., Flodström, K., 2001. Triblock Copolymers as Templates in Mesoporous Silica Formation: Structural Dependence on Polymer Chain Length and Synthesis Temperature. Langmuir 17, 5398–5402.
Kosuge, K., Kubo, S., Kikukawa, N., Takemori, M., 2007. Effect of Pore Structure in Mesoporous Silicas on VOC Dynamic Adsorption/Desorption Performance. Langmuir 23, 3095–3102.
Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., 1992. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712.
Kruk, M., Jaroniec, M., Ko, C.H., Ryoo, R., 2000a. Characterization of the Porous Structure of SBA-15. Chem. Mater. 12, 1961–1968.
Kruk, M., Jaroniec, M., Sayari, A., 2000b. New insights into pore-size expansion of mesoporous silicates using long-chain amines. Microporous Mesoporous Mater. 35–36, 545–553.
Kulkarni, A.R., Sholl, D.S., 2012. Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO2 from Air. Ind. Eng. Chem. Res. 51, 8631–8645.
Lin, C.-L., Pang, Y.-S., Chao, M.-C., Chen, B.-C., Lin, H.-P., Tang, C.-Y., Lin, C.-Y., 2008. Synthesis of SBA-16 and SBA-15 mesoporous silica crystals templated with neutral block copolymer surfactants. J. Phys. Chem. Solids. 69, 415–419.
Lin, L.-Y., Bai, H., 2013. Efficient Method for Recycling Silica Materials from Waste Powder of the Photonic Industry. Environ. Sci. Technol. 47, 4636–4643.
Lin, L.-Y., Bai, H., 2012. Aerosol processing of low-cost mesoporous silica spherical particles from photonic industrial waste powder for CO2 capture. Chem. Eng. J. 197, 215–222.
Lin, L.-Y., Kuo, J.-T., Bai, H., 2011. Silica materials recovered from photonic industrial waste powder: Its extraction, modification, characterization and application. J. Hazard. Mater. 192, 255–262.
Linneen, N., Pfeffer, R., Lin, Y.S., 2013. CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine. Microporous Mesoporous Mater. 176, 123–131.
Lin, Y.-C., Bai, H., Chang, C.-L., 2005. Applying Hexagonal Nanostructured Zeolite Particles for Acetone Removal. J. Air Waste Manag. Assoc. 55, 834–840.
Liu, S.-H., Lin, Y.-C., Chien, Y.-C., Hyu, H.-R., 2011. Adsorption of CO2 from Flue Gas Streams by a Highly Efficient and Stable Aminosilica Adsorbent. J. Air Waste Manag. Assoc. 61, 226–233.
Liu, S.-H., Wu, C.-H., Lee, H.-K., Liu, S.-B., 2010. Highly Stable Amine-modified Mesoporous Silica Materials for Efficient CO2 Capture. Top. Catal. 53, 210–217.
Liu, X., Zhou, L., Fu, X., Sun, Y., Su, W., Zhou, Y., 2007. Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of and. Chem. Eng. Sci. 62, 1101–1110.
Liu, Y., Guo, Y., Zhu, Y., An, D., Gao, W., Wang, Z., Ma, Y., Wang, Z., 2011. A sustainable route for the preparation of activated carbon and silica from rice husk ash. J. Hazard. Mater. 186, 1314–1319.
Liu, Y., Shi, J., Chen, J., Ye, Q., Pan, H., Shao, Z., Shi, Y., 2010. Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous Mesoporous Mater. 134, 16–21.
Li, Y., Wen, X., Li, L., Wang, F., Zhao, N., Xiao, F., Wei, W., Sun, Y., 2013. Synthesis of amine-modified mesoporous materials for CO2 capture by a one-pot template-free method. J. Sol-Gel Sci. Technol. 66, 353–362.
Lu, C., Bai, H., Wu, B., Su, F., Hwang, J.F., 2008. Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites. Energy Fuels 22, 3050–3056.
Lu, C., Su, F., Hsu, S.-C., Chen, W., Bai, H., Hwang, J.F., Lee, H.-H., 2009. Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles. Fuel Process. Technol. 90, 1543–1549.
Majchrzak-Kucęba, I., Nowak, W., 2009. Development of Fly Ash-Based Sorbent to Capture CO2 from Flue Gas, in: Yue, G., Zhang, H., Zhao, C., Luo, Z. (Eds.), Proceedings of the 20th International Conference on Fluidized Bed Combustion. Springer Berlin Heidelberg, Berlin, Heidelberg, 596–602.
Ma, X., Wang, X., Song, C., 2009. “Molecular Basket” Sorbents for Separation of CO2 and H2S from Various Gas Streams. J. Am. Chem. Soc. 131, 5777–5783.
Mel’nichenko, E.I., Krysenko, G.F., Mel’nichenko, M.N., 2006. (NH4)2SiF6 evaporation in the presence of SiO2. Russ. J. Inorg. Chem. 51, 27–31.
Mercedes Maroto-Valer, M., Lu, Z., Zhang, Y., Tang, Z., 2008. Sorbents for CO2 capture from high carbon fly ashes. Waste Manag. 28, 2320–2328. 2
Morgan III, M.H., Day, J.Y., Littman, H., 1985. Spout voidage distribution, stability and particle circulation rates in spouted beds of coarse particles—I. Theory. Chem. Eng. Sci. 40, 1367–1377.
Newalkar, B.L., Choudary, N.V., Kumar, P., Komarneni, S., Bhat, T.S.G., 2002. Exploring the Potential of Mesoporous Silica, SBA-15, as an Adsorbent for Light Hydrocarbon Separation. Chem. Mater. 14, 304–309.
Øye, G., Sjöblom, J., Stöcker, M., 2001. Synthesis, characterization and potential applications of new materials in the mesoporous range. Adv. Colloid Interface Sci. 89–90, 439–466.
Park, J.-E., Youn, H.-K., Yang, S.-T., Ahn, W.-S., 2012. CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash. Catal. Today, Alternative Sources of Catalytic Materials 190, 15–22.
Przepiórski, J., Skrodzewicz, M., Morawski, A.., 2004. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl. Surf. Sci. 225, 235–242.
Qi, G., Fu, L., Choi, B.H., Giannelis, E.P., 2012. Efficient CO2 sorbents based on silica foam with ultra-large mesopores. Energy Environ. Sci. 5, 7368.
Qi, G., Fu, L., Duan, X., Choi, B.H., Abraham, M., Giannelis, E.P., 2011. Mesoporous amine-bridged polysilsesquioxane for CO2 capture. Greenh. Gases Sci. Technol. 1, 278–284.
Ramalingam, S.G., Pré, P., Giraudet, S., Le Coq, L., Le Cloirec, P., Baudouin, O., Déchelotte, S., 2012. Different families of volatile organic compounds pollution control by microporous carbons in temperature swing adsorption processes. J. Hazard. Mater. 221–222, 242–247.
Raman, N.K., Anderson, M.T., Brinker, C.J., 1996. Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem. Mater. 8, 1682–1701.
Ravikovitch, P.I., Neimark, A.V., 2002. Experimental Confirmation of Different Mechanisms of Evaporation from Ink-Bottle Type Pores: Equilibrium, Pore Blocking, and Cavitation. Langmuir 18, 9830–9837.
Ravikovitch, P.I., Wei, D., Chueh, W.T., Haller, G.L., Neimark, A.V., 1997. Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption. J. Phys. Chem. B 101, 3671–3679.
Rayalu, S.S., Bansiwal, A.K., Meshram, S.U., Labhsetwar, N., Devotta, S., 2006. Fly ash based zeolite analogues: versatile materials for energy and environment conservation. Catal. Surv. Asia 10, 74–88.
Richard, J.J., Junk, G.A., n.d. Determination of munitions present in water using macroreticular resins - Analytical Chemistry (ACS Publications).
Ruthven, D.M., Kaul, B.K., 1993. Adsorption of aromatic hydrocarbons in NaX zeolite. 2. Kinetics. Ind. Eng. Chem. Res. 32, 2053–2057. 9
Saadoun, M., Bessaı; s, B., Mliki, N., Ferid, M., Ezzaouia, H., Bennaceur, R., 2003. Formation of luminescent (NH4)2SiF6 phase from vapour etching-based porous silicon. Appl. Surf. Sci. 210, 240–248.
Sasahara, T., Kido, A., Ishihara, H., Sunayama, T., Egashira, M., 2005. Highly sensitive detection of volatile organic compounds by an adsorption/combustion-type sensor based on mesoporous silica. Sens. Actuators B Chem., 108, 478–483.
Sayari, A., 1996. Catalysis by Crystalline Mesoporous Molecular Sieves. Chem. Mater. 8, 1840–1852.
Selvam, P., Bhatia, S.K., Sonwane, C.G., 2001. Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. Ind. Eng. Chem. Res. 40, 3237–3261.
Serna-Guerrero, R., Belmabkhout, Y., Sayari, A., 2010. Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies. Adsorption 16, 567–575.
Siriwardane, R.V., Shen, M.-S., Fisher, E.P., Poston, J.A., 2001. Adsorption of CO2 on Molecular Sieves and Activated Carbon. Energy Fuels 15, 279–284.
Soler-Illia, G.J. de A.A., Crepaldi, E.L., Grosso, D., Sanchez, C., 2003. Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci. 8, 109–126.
Son, W.-J., Choi, J.-S., Ahn, W.-S., 2008. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40.
Subagyono, D.J.N., Liang, Z., Knowles, G.P., Chaffee, A.L., 2011. Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chem. Eng. Res. Des. 89, 1647–1657.
Su, F., Lu, C., Chen, H.-S., 2011. Adsorption, Desorption, and Thermodynamic Studies of CO2 with High-Amine-Loaded Multiwalled Carbon Nanotubes. Langmuir 27, 8090–8098.
Su, F., Lu, C., Chung, A.-J., Liao, C.-H., 2014. CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption. Appl. Energy 113, 706–712.
Su, F., Lu, C., Kuo, S.-C., Zeng, W., 2010. Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites. Energy Fuels 24, 1441–1448.
Szegedi, Á., Popova, M., Lázár, K., Klébert, S., Drotár, E., 2013. Impact of silica structure of copper and iron-containing SBA-15 and SBA-16 materials on toluene oxidation. Microporous Mesoporous Mater. 177, 97–104.
Szekely, J., Evans, J.W., Sohn, H. Y. 1976. Gas-Solid Reactions. Academic Press Inc: New York.
Taguchi, A., Schüth, F., 2005. Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1–45.
Taralunga, M., Mijoin, J., Magnoux, P., 2005. Catalytic destruction of chlorinated POPs—Catalytic oxidation of chlorobenzene over PtHFAU catalysts. Appl. Catal. B Environ. 60, 163–171.
Trong On, D., Desplantier-Giscard, D., Danumah, C., Kaliaguine, S., 2001. Perspectives in catalytic applications of mesostructured materials. Appl. Catal. Gen. 222, 299–357.
Tsou, J., Magnoux, P., Guisnet, M., Órfão, J.J.M., Figueiredo, J.L., 2005. Catalytic oxidation of volatile organic compounds: Oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts. Appl. Catal. B Environ. 57, 117–123.
Tsou, J., Pinard, L., Magnoux, P., Figueiredo, J.L., Guisnet, M., 2003. Catalytic oxidation of volatile organic compounds (VOCs): Oxidation of o-xylene over Pt/HBEA catalysts. Appl. Catal. B Environ. 46, 371–379.
Van Der Voort, P., Benjelloun, M., Vansant, E.F., 2002. Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity. J. Phys. Chem. B 106, 9027–9032.
Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 74, 3583–3597.
Vinh-Thang, H., Huang, Q., Eić, M., Trong-On, D., Kaliaguine, S., 2005. Adsorption of C7 Hydrocarbons on Biporous SBA-15 Mesoporous Silica. Langmuir 21, 5094–5101.
Walton, K.S., Abney, M.B., Douglas LeVan, M., 2006. CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 91, 78–84.
Wang, G., Zhang, Z., Wang, J., Li, N., Hao, Z., 2015. Study of the Influence of Pore Width on the Disposal of Benzene Employing Tunable OMCs. Ind. Eng. Chem. Res. 54, 1074–1080.
Wang, H.P., Lin, K.S., Huang, Y.., Li, M.., Tsaur, L.., 1998. Synthesis of zeolite ZSM-48 from rice husk ash. J. Hazard. Mater. 58, 147–152.
Wang, X., Li, H., Liu, H., Hou, X., 2011. AS-synthesized mesoporous silica MSU-1 modified with tetraethylenepentamine for CO2 adsorption. Microporous Mesoporous Mater. 142, 564–569.
Wan, Y., Zhao, D., 2007. On the controllable soft-templating approach to mesoporous silicates.
Wei, J., Shi, J., Pan, H., Zhao, W., Ye, Q., Shi, Y., 2008. Adsorption of carbon dioxide on organically functionalized SBA-16. Microporous Mesoporous Mater. 116, 394–399.
Witoon, T. 2012. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture. Mater. Chem. Phys. 137, 235–245.
Son, W.-J., Choi, J.-S., Ahn, W.-S., 2008. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40.
Wu, Q., Zhang, F., Yang, J., Li, Q., Tu, B., Zhao, D., 2011. Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure. Microporous Mesoporous Mater. 143, 406–412.
Wu, T.-M., Wu, G.-R., Kao, H.-M., Wang, J.-L., 2006. Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds. J. Chromatogr. 1105, 168–175.
Xu, X., Song, C., Andrésen, J.M., Miller, B.G., Scaroni, A.W., 2003. Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62, 29–45.
Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W., 2002. Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture. Energy Fuels 16, 1463–1469.
Xu, X., Song, C., Miller, B.G., Scaroni, A.W., 2005. Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Process. Technol. 86, 1457–1472.
Yan, X., Zhang, L., Zhang, Y., Qiao, K., Yan, Z., Komarneni, S., 2011a. Amine-modified mesocellular silica foams for CO2 capture. Chem. Eng. J. 168, 918–924.
Yan, X., Zhang, L., Zhang, Y., Yang, G., Yan, Z., 2011b. Amine-Modified SBA-15: Effect of Pore Structure on the Performance for CO2 Capture. Ind. Eng. Chem. Res. 50, 3220–3226.
Yue, M.B., Chun, Y., Cao, Y., Dong, X., Zhu, J.H., 2006. CO2 Capture by As-Prepared SBA-15 with an Occluded Organic Template. Adv. Funct. Mater. 16, 1717–1722.
Yue, M.B., Sun, L.B., Cao, Y., Wang, Y., Wang, Z.J., Zhu, J.H., 2008. Efficient CO2 Capturer Derived from As-Synthesized MCM-41 Modified with Amine. Chem. – Eur. J. 14, 3442–3451.
Yu, J., Le, Y., Cheng, B., 2012. Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Adv. 2, 6784.
Zeleňák, V., Badaničová, M., Halamová, D., Čejka, J., Zukal, A., Murafa, N., Goerigk, G., 2008. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture. Chem. Eng. J. 144, 336–342.
Zhang, B., Chen, Y., Wei, L., Zu, Z., 2012. Preparation of molecular sieve X from coal fly ash for the adsorption of volatile organic compounds. Microporous Mesoporous Mater. 156, 36–39.
Zhang, W., Qu, Z., Li, X., Wang, Y., Ma, D., Wu, J., 2012. Comparison of dynamic adsorption/desorption characteristics of toluene on different porous materials. J. Environ. Sci. 24, 520–528.
Zhao, A., Samanta, A., Sarkar, P., Gupta, R., 2013. Carbon Dioxide Adsorption on Amine-Impregnated Mesoporous SBA-15 Sorbents: Experimental and Kinetics Study. Ind. Eng. Chem. Res. 52, 6480–6491.
Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D., 1998a. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 120, 6024–6036.
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D., 1998b. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 279, 548–552.
Zhao, J., Simeon, F., Wang, Y., Luo, G., Hatton, T.A., 2012. Polyethylenimine-impregnated siliceous mesocellular foam particles as high capacity CO2 adsorbents. RSC Adv. 2, 6509–6519.
Zhao, K., Fan, Y., Wang, R., Xu, N., 2008. Preparation of Closed Macroporous Al2O3 Membranes with a Three-dimensionally Ordered Structure. Chem. Lett. 37, 420–421.
Zhao, X.S., Ma, Q., Lu, G.Q. (Max), 1998. VOC Removal: Comparison of MCM-41 with Hydrophobic Zeolites and Activated Carbon. Energy Fuels 12, 1051–1054.
Zheng, F., Tran, D.N., Busche, B.J., Fryxell, G.E., Addleman, R.S., Zemanian, T.S., Aardahl, C.L., 2005. Ethylenediamine-Modified SBA-15 as Regenerable CO2 Sorbent. Ind. Eng. Chem. Res. 44, 3099–3105.
Zhou, X., Qiao, S., Hao, N., Wang, X., Yu, C., Wang, L., Zhao, D., Lu, G.Q., 2007. Synthesis of Ordered Cubic Periodic Mesoporous Organosilicas with Ultra-Large Pores. Chem. Mater. 19, 1870–1876.
李佳錡,以TFT-LCD廠粉末廢棄物資源化合成中孔洞材料及其二氧化碳氣體捕獲之研究,2011,碩士論文,國立交通大學環境工程所。林君玲,三區塊共聚高分子應用於中孔洞氧化矽晶體合成的研究,2006,碩士論文,國立成功大學化學系研究所。林怡君,液相法製造程序對中孔洞沸石型吸附材特性及丙酮吸附量影響之研究,2006,碩士論文,國立交通大學環境工程所。林亮毅,光電廢棄物資源化製備奈米吸附材料及其應用於二氧化碳捕獲之研究,2012,博士論文,國立交通大學環境工程所。林崇瑋,運用擴張劑合成不同孔洞結構之中孔洞吸附材料及其應用於二氧化碳捕獲之研究,2011,碩士論文,國立交通大學環境工程所。邱正宏,吸附於活性碳表面上揮發性有機物之熱脫附動力學研究,1993,碩士論文,國立中山大學環境工程所。洪錦德,氣膠法合成之中孔洞矽質材料特性分析及其空氣污染應用,2009,博士論文,國立交通大學環境工程所。陳安綺,以微波輔助鹼性過氧化氫前處理法 促進稻殼轉化乙醇之研究,2015,碩士論文,國立交通大學環境工程所。趙婉宇,以氫氟酸搭配鹼性過氧化氫浸泡前處理法提升稻殼產醣效率之研究,2013,碩士論文,國立交通大學環境工程所。蔡忠憲,回收鹼性前處理液對稻殼產醣效率影響之研究,2014,碩士論文,國立交通大學環境工程所。顏秀慧,沸石對揮發性有機物吸附行為之研究,1997,博士論文,國立台灣大學環境工程所。