跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 15:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周昌勝
研究生(外文):CHEW JOHN SERN
論文名稱:關於反斐波那契數列之研究
論文名稱(外文):On Anti-Fibonacci Numbers
指導教授:王道明
指導教授(外文):WANG TAO MING
口試委員:黃國卿陳淑珍
口試委員(外文):Huang Kuo ChingChen Chur Jen
口試日期:2017-06-23
學位類別:碩士
校院名稱:東海大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:29
中文關鍵詞:反斐波那契數列
外文關鍵詞:Anti-Fibonacci Numbers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
Integer sequences have been collected by Neil Sloane since he was a graduate
student in 1965. The integer sequences database was at first stored on file cards, which
were later transferred to computer punched cards. Until year 1996 the database of the
sequences had reached 16,000 records, Sloane decided to stored the sequences on-line.
The website is located at http://OEIS.org, and there have been already collected more
than 200,000 sequences. In this thesis, I study an integer sequence which is called
Anti-Fibonacci numbers. The definition is due to Philippe Lalloue (on May 2008) and
on October 2014 Doug Hofstader named it as Anti-Fibonacci number. We establish the
formula for the general term of Anti-Fibonacci numbers. Besides that, we also provide a
programming code for generating Anti-Fibonacci numbers with different initial terms by
MATLAB.
1 Background and Introduction
1.1 Integer Sequence
1.2 Utterly Odd Numbers
1.3 Fibonacci Numbers
1.4 Anti-Fibonacci Numbers Definition By Doug Hofstader

2 Anti-Fibonacci Numbers
2.1 Introduction and Background
2.2 Anti-Fibonacci Numbers of the Second Kind
2.3 Formula via the Utterly Odd Number Method

3 Unique Factorization Method v.s. Utterly Odd Number Method
3.1 Unique Factorization Method
3.2 Utterly Odd Method
3.3 Comparison

4 Utterly Even Numbers
4.1 Introduction
4.2 Utterly Odd Numbers v.s. Utterly Even Numbers
4.3 Application to Anti-Fibonacci Numbers

5 Future Studies

Appendix Anti-Fibonacci Coding and Output

[1] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences.

[2] Doug Hofstadter, Anti-Fibonacci numbers. Manuscript, 2014.

[3] Anti-Fibonacci Number by Thomas Zaslavsky,Binghamton University (SUNY),
September 26, 2016

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top