林怡君 (2002) 百合中三個調控開花起始之AP1 group MADS box 基因的分子選殖與功能分析,國立中興大學農業生物科技學研究所碩士論文。涂翠琴 (2011) 洋桔梗中與花器發育相關之MADS box基因之特性與功能性分析,國立中興大學農業生物科技學研究所碩士論文。陳星宇 (2000) 洋桔梗中與胚珠發育及花器形成相關 MADS box 基因之分子選殖與特性分析,國立中興大學生物科技學研究所碩士論文。陳星宇 (2007) 洋桔梗中與胚珠發育及花器形成相關 MADS box 基因之分子選殖與特性分析,國立中興大學生物科技學研究所博士論文。
陳銘坤、張玉雲、李坤紘及楊長賢 (2009) 植物基因體研究與應用洋桔梗開花時間及花型改良潛力. 植物種苗生技 No.17, 54-57。劉友珍 (2005) 洋桔梗中 E 功能性之 MADS box 基因的選殖與特性分析,國立中興大學生物科技學研究所碩士論文。Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F., and Yanofsky, M.F. (2000). MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 24: 457-466.
Angenent, G.C., Busscher, M., Franken, J., Mol, J.N., and van Tunen, A.J. (1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983-993.
Angenent, G.C., Franken, J., Busscher, M., Weiss, D., and van Tunen, A.J. (1994). Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J.5: 33-44.
Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J., and van Tunen, A.J. (1995). A novel class of MADS box genes is involved in ovule development in petunia. Plant cell 7: 1569-1582.
Berbel, A., Navarro, C., Ferrandiz, C., Canas, L.A., Madueno, F., and Beltran, J.P. (2001). Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J. 25: 441-451.
Bernier, G. (1988). The Control of Floral Evocation and Morphogenesis. Annu Rev Plant Phys. 39: 175-219.
Chen, M.K., Lin, I.C., and Yang, C.H. (2008). Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant & cell physiol. 49: 704-717.
Chuang, C.F., Running, M.P., Williams, R.W., and Meyerowitz, E.M. (1999). The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev. 13: 334-344.
Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119: 397-418.
Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1995). Clavata3 is a specific regulator of shoot and floral meristem development affecting the same processes as Clavata1. Development 121: 2057-2067.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.
Angenent, G.C.and Colombo, L. (1996). Molecular control of ovule development. Trends Plant Sci. 1:228-323.
Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., and Yanofsky, M.F. (2004). The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14: 1935-1940.
Favaro, R., Immink, R.G., Ferioli, V., Bernasconi, B., Byzova, M., Angenent, G.C., Kater, M., and Colombo, L. (2002). Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol. Genet. Genomics 268: 152-159.
Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.M., and Colombo, L. (2003). MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15: 2603-2611.
Ferrandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127: 725-734.
Ferrario, S., Immink, R.G., Shchennikova, A., Busscher-Lange, J., and Angenent, G.C. (2003). The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15: 914-925.
Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L., and Kater, M.M. (2004). Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant physiol. 135: 2207-2219.
Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1994). Regulation of the arabidopsis floral homeotic gene APETALA1. Cell 76: 131-143.
Harbaugh, B.K., Roh, M.S., Lawson, R.H., Pemberton, B. (1992). Rosetting of Lisianthus Cultivars exposed to high temperatures, HortScience 27(28): 885-887.
Hempel, F.D., and Feldman, L.J. (1994). Bi-directional inflorescence development in Arabidopsis Thaliana: Acropetal initiation of flowers and basipetal initiation of paraclades. Planta 192: 276-286.
Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
Hsu, H.F., Huang, C.H., Chou, L.T., and Yang, C.H. (2003). Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44: 783-794.
Huijser, P., Klein, J., Lonnig, W.E., Meijer, H., Saedler, H., and Sommer, H. (1992). Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11: 1239-1249.
Jack, T. (2001). Plant development going MADS. Plant Mol. Biol. 46: 515-520.
Jeon, J.S., Lee, S., Jung, K.H., Yang, W.S., Yi, G.H., Oh, B.G., and An, G.H. (2000). Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol. Breeding 6: 581-592.
Bowman, J. L., Alvarex, J., Weigel, D., Meyerowitz, E.M. and Smyth, D.R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119: 721-743.
Kater, M.M., Dreni, L., and Colombo, L. (2006). Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J. Exp. Bot. 57: 3433-3444.
Kaufmann, K., Melzer, R., and Theissen, G. (2005). MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183-198.
Kayes, J.M., and Clark, S.E. (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125: 3843-3851.
Kempin, S.A., Savidge, B., and Yanofsky, M.F. (1995). Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267: 522-525.
Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57-66.
Kyozuka, J., Harcourt, R., Peacock, W.J., and Dennis, E.S. (1997). Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol. Biol. 35: 573-584.
Lawton-Rauh, A.L., Alvarez-Buylla, E.R., and Purugganan, M.D. (2000). Molecular evolution of flower development. Trends Ecol. Evol. 15: 144-149.
Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldmann, K.A., and Amasino, R.M. (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75-83.
Levine, M., and Davidson, E.H. (2005). Gene regulatory networks for development. P. Natl. Acad. Sci. U.S.A. 102: 4936-4942.
Levy, Y.Y., and Dean, C. (1998). The transition to flowering. Plant Cell 10: 1973-1989.
Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant cell 11: 1007-1018.
Litt, A., and Irish, V.F. (2003). Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165: 821-833.
Liu, Z., and Meyerowitz, E.M. (1995). LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development 121: 975-991.
Malcomber, S.T., and Kellogg, E.A. (2005). SEPALLATA gene diversification: brave new whorls. Trends Plant Sci. 10: 427-435.
Mandel, M.A., and Yanofsky, M.F. (1995). A gene triggering flower formation in Arabidopsis. Nature 377: 522-524.
Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
DornelasI, M.C., D.O. (2005). From leaf to flower: revisiting Goethe's concepts on the ‥metamorphosis‥ of plants. Braz. J. Plant Physiol. 17: 335-343.
Messenguy, F., and Dubois, E. (2003). Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316: 1-21.
Moandel, M.A., Yanofsky, M.F. (1998). The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod. 11: 22-28.
Morelli, G., and Ruberti, I. (2002). Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci. 7: 399-404.
Mouradov, A., Glassick, T.V., Hamdorf, B.A., Murphy, L.C., Marla, S.S., Yang, Y., and Teasdale, R.D. (1998). Family of MADS-Box genes expressed early in male and female reproductive structures of monterey pine. Plant Physiol. 117: 55-62.
Nakano, Y., Kawashima, H., Kinoshita, T., Yoshikawa, H., and Hisamatsu, T. (2011). Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression. Physiol. plantarum 141: 383-393.
Norman, C., Runswick, M., Pollock, R., and Treisman, R. (1988). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55: 989-1003.
Ohkawa, K., A. Kano, K. Kanematsu, and M. Korenaga. (1991). Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn, Sci. Hortic-Amterdam 48:171-176.
Passmore, S., Maine, G.T., Elble, R., Christ, C., and Tye, B.K. (1988). Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells. J. M. Biol. 204: 593-606.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.
Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L., and Yanofsky, M.F. (2001). APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26: 385-394.
Pnueli, L., Hareven, D., Broday, L., Hurwitz, C., and Lifschitz, E. (1994). The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. Plant Cell 6: 175-186.
Poethig, R.S. (1990). Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923-930.
Purugganan, M.D., Rounsley, S.D., Schmidt, R.J., and Yanofsky, M.F. (1995). Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140: 345-356.
Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biol. Chem. 378: 1079-1101.
Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269.
Running, M.P., Fletcher, J.C., and Meyerowitz, E.M. (1998). The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis. Development 125: 2545-2553.
Schultz, E.A., and Haughn, G.W. (1991). LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. Plant Cell 3: 771-781.
Schwarz-Sommer, Z., HuijSer, P., Nacken,W.,Saedler, H. and Sommer, H. (1990). Genetic control of flower development by homeotic genes in Antirrhinum Majus. Science 250: 931-936
Sessions, A., Yanofsky, M.F., and Weigel, D. (1998). Patterning the floral meristem. Semin. Cell Dev. Biol. 9: 221-226.
Shinners, L.H. (1957). Synopsis of the genus Eustoma (Gentianaceae). Southwest. Nat. 2: 38-43.
Sung, S.K., Yu, G.H., and An, G. (1999). Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol. 120: 969-978.
Theisen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4: 75-85.
Theissen, G., and Saedler, H. (1995). MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law' revisited. Curr. Opin. Genet. Dev. 5: 628-639.
Theissen, G., and Saedler, H. (2001). Plant biology: Floral quartets. Nature 409: 469-471.
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516.
Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U., and Saedler, H. (2000). A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149.
Tzeng, T.Y., Hsiao, C.C., Chi, P.J., and Yang, C.H. (2003). Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol. 133: 1091-1101.
Vandenbussche, M., Theissen, G., Van de Peer, Y., and Gerats, T. (2003). Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res. 31: 4401-4409.
Wang, L.L., Liang, H.M., Pang, J.L., and Zhu, M.Y. (2004). Regulation network and biological roles of LEAFY in Arabidopsis thaliana in floral development. Yi chuan 26: 137-142.
Weigel, D., and Nilsson, O. (1995). A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495-500.
Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.
Wood, C.E., Jr. and R. E. Weaver, Jr. ( 1982). The genera of Gentianaceae in the Southeastern United States. J. Arnold Arbor. 63: 441-487.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E.M. (1990). The Protein Encode by the Arabidopsis Homeotic Gene AGAMOUS Resembles Transcription Factors. Nature 346: 35-39.
Yu, H., and Goh, C.J. (2000). Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol. 123: 1325-1336.