跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊天心
研究生(外文):Tien-Hsin Chuang
論文名稱:洋桔梗中花器發育相關之MADS box中的A功能性基因之特性與功能性分析
論文名稱(外文):Characterization and Functional Analysis of A functional MADS Box Genes in Regulating Floral Organ Formation in Eustoma grandiflorum
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
口試委員:呂維茗林彩雲
口試委員(外文):Wei-Ming LeuTsai-Yun Lin
口試日期:2013-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:56
中文關鍵詞:洋桔梗EgAP1
外文關鍵詞:EustomaEgAP1
相關次數:
  • 被引用被引用:2
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對洋桔梗(Eustoma gradiflorum)中A功能性的MADS box基因, EgAPETALA1 (EgAP1)之特性及功能性進行分析。其中EgAP1在洋桔梗的各部位表現情形為葉子的表現稍弱,但在小花苞的花萼有大量表現。異位表現EgAP1在阿拉伯芥中,會造成轉基因阿拉伯芥提早開花7天以及終結花序的形成,甚至出現花瓣雄蕊化的構造。將EgAP1異位表現於阿拉伯芥的ap1突變株,則ap1花瓣缺失的性狀可挽救成類野生型。經由統計分析得知,ap1-11突變中高達73.7%的花朵沒有花瓣,而ap1-12突變株中有高達89.1%的花沒有花瓣。不過在35S::EgAP1 ap1-11轉基因植株可觀察到有花瓣的花朵比率上升24.8%,而有四片花瓣的花朵比率則增加4.0%;而35S::EgAP1 ap1-12轉基因植株中有花瓣的花朵比率增加65.7%,而有四片花瓣的花朵比率則增加7.4%。而EgAP1轉基因突變株皆比ap1突變株早一個星期開花。以上結果顯示EgAP1的功能與開花起始以及花器的形成相關。除此之外,本研究將異位表現A功能性之基因EgAP1與EgFRUITFULL (EgFUL)轉基因之洋桔梗繼代且已鑑定完成,而未來將對異位表現A功能性基因之洋桔梗的開花時間與花型結構做更進一步分析。
In this study, an Eustoma gradiflorum A functional MADS box gene EgAPETALA1 (EgAP1) was isolated and characterized. EgAP1 was weakly detected in the leaf and highly expressed in the sepals of the young flower buds. Ectopic expression of EgAP1 in transgenic Arabidopsis plants showed phenotypes by flowering early and producing terminal flowers. In addition, petal converted into stamen-like structures was also observed. 35S::EgAP1 was able to complement the ap1 flower defects in Arabidopsis ap1 mutant plants. Approximately 73.7% and 89.1% of flowers in ap1-11 and ap1-12 plant did not produce any petals. When 35S::EgAP1 was introduced into these ap1 mutants, an approximately 24.8 and 65.7% increase of petal production was observed in ap1-11 and ap1-12 flowers. Flowers with four petals increased from 0 to 4.0 and 7.4% in these 35S::EgAP1 ap1-11 and 35S::EgAP1 ap1-12 plants. These results strongly indicated that the function of EgAP1 is involved in the flower formation as well as in floral induction. In addition, transgenic E. gradiflorum plants over-expressing EgAP1 and EgFRUITFULL (EgFUL), an A functional MADS box gene, were generated and identified in this study. Flowering time and flower organ formation will be analyzed in these transgenic E. gradiflorum plants in the future.
中文摘要 i
英文摘要 ii
前言 1
材料與方法 7
結果 14
一、洋桔梗開花基因EgAP1之選殖 14
二、EgAP1基因序列分析 14
三、EgAP1演化樹之分析 15
四、EgAP1各部位表現之分析 15
五、35S::EgAP1載體之構築 15
六、35S::EgAP1載轉基因阿拉伯芥植株之分析與表現鑑定 16
七、EgAP1 RNAi載體之構築 16
八、異位表現EgAP1可以挽救ap1突變株之性狀 17
九、農桿菌媒介之洋桔梗基因轉殖與轉基因洋桔梗之鑑定 18
十、大量表現35S::EgFUL植株的T1代種子實驗 18
討論 19
參考文獻 22
圖表 29
林怡君 (2002) 百合中三個調控開花起始之AP1 group MADS box 基因的分子選殖與功能分析,國立中興大學農業生物科技學研究所碩士論文。
涂翠琴 (2011) 洋桔梗中與花器發育相關之MADS box基因之特性與功能性分析,國立中興大學農業生物科技學研究所碩士論文。
陳星宇 (2000) 洋桔梗中與胚珠發育及花器形成相關 MADS box 基因之分子選殖與特性分析,國立中興大學生物科技學研究所碩士論文。
陳星宇 (2007) 洋桔梗中與胚珠發育及花器形成相關 MADS box 基因之分子選殖與特性分析,國立中興大學生物科技學研究所博士論文。
陳銘坤、張玉雲、李坤紘及楊長賢 (2009) 植物基因體研究與應用洋桔梗開花時間及花型改良潛力. 植物種苗生技 No.17, 54-57。
劉友珍 (2005) 洋桔梗中 E 功能性之 MADS box 基因的選殖與特性分析,國立中興大學生物科技學研究所碩士論文。

Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F., and Yanofsky, M.F. (2000). MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 24: 457-466.
Angenent, G.C., Busscher, M., Franken, J., Mol, J.N., and van Tunen, A.J. (1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983-993.
Angenent, G.C., Franken, J., Busscher, M., Weiss, D., and van Tunen, A.J. (1994). Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J.5: 33-44.
Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J., and van Tunen, A.J. (1995). A novel class of MADS box genes is involved in ovule development in petunia. Plant cell 7: 1569-1582.
Berbel, A., Navarro, C., Ferrandiz, C., Canas, L.A., Madueno, F., and Beltran, J.P. (2001). Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J. 25: 441-451.
Bernier, G. (1988). The Control of Floral Evocation and Morphogenesis. Annu Rev Plant Phys. 39: 175-219.
Chen, M.K., Lin, I.C., and Yang, C.H. (2008). Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant & cell physiol. 49: 704-717.
Chuang, C.F., Running, M.P., Williams, R.W., and Meyerowitz, E.M. (1999). The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev. 13: 334-344.
Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119: 397-418.
Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1995). Clavata3 is a specific regulator of shoot and floral meristem development affecting the same processes as Clavata1. Development 121: 2057-2067.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.
Angenent, G.C.and Colombo, L. (1996). Molecular control of ovule development. Trends Plant Sci. 1:228-323.
Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., and Yanofsky, M.F. (2004). The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14: 1935-1940.
Favaro, R., Immink, R.G., Ferioli, V., Bernasconi, B., Byzova, M., Angenent, G.C., Kater, M., and Colombo, L. (2002). Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol. Genet. Genomics 268: 152-159.
Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.M., and Colombo, L. (2003). MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15: 2603-2611.
Ferrandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127: 725-734.
Ferrario, S., Immink, R.G., Shchennikova, A., Busscher-Lange, J., and Angenent, G.C. (2003). The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15: 914-925.
Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L., and Kater, M.M. (2004). Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant physiol. 135: 2207-2219.
Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1994). Regulation of the arabidopsis floral homeotic gene APETALA1. Cell 76: 131-143.
Harbaugh, B.K., Roh, M.S., Lawson, R.H., Pemberton, B. (1992). Rosetting of Lisianthus Cultivars exposed to high temperatures, HortScience 27(28): 885-887.
Hempel, F.D., and Feldman, L.J. (1994). Bi-directional inflorescence development in Arabidopsis Thaliana: Acropetal initiation of flowers and basipetal initiation of paraclades. Planta 192: 276-286.
Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
Hsu, H.F., Huang, C.H., Chou, L.T., and Yang, C.H. (2003). Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44: 783-794.
Huijser, P., Klein, J., Lonnig, W.E., Meijer, H., Saedler, H., and Sommer, H. (1992). Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11: 1239-1249.
Jack, T. (2001). Plant development going MADS. Plant Mol. Biol. 46: 515-520.
Jeon, J.S., Lee, S., Jung, K.H., Yang, W.S., Yi, G.H., Oh, B.G., and An, G.H. (2000). Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol. Breeding 6: 581-592.
Bowman, J. L., Alvarex, J., Weigel, D., Meyerowitz, E.M. and Smyth, D.R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119: 721-743.
Kater, M.M., Dreni, L., and Colombo, L. (2006). Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J. Exp. Bot. 57: 3433-3444.
Kaufmann, K., Melzer, R., and Theissen, G. (2005). MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183-198.
Kayes, J.M., and Clark, S.E. (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125: 3843-3851.
Kempin, S.A., Savidge, B., and Yanofsky, M.F. (1995). Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267: 522-525.
Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57-66.
Kyozuka, J., Harcourt, R., Peacock, W.J., and Dennis, E.S. (1997). Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol. Biol. 35: 573-584.
Lawton-Rauh, A.L., Alvarez-Buylla, E.R., and Purugganan, M.D. (2000). Molecular evolution of flower development. Trends Ecol. Evol. 15: 144-149.
Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldmann, K.A., and Amasino, R.M. (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75-83.
Levine, M., and Davidson, E.H. (2005). Gene regulatory networks for development. P. Natl. Acad. Sci. U.S.A. 102: 4936-4942.
Levy, Y.Y., and Dean, C. (1998). The transition to flowering. Plant Cell 10: 1973-1989.
Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant cell 11: 1007-1018.
Litt, A., and Irish, V.F. (2003). Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165: 821-833.
Liu, Z., and Meyerowitz, E.M. (1995). LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development 121: 975-991.
Malcomber, S.T., and Kellogg, E.A. (2005). SEPALLATA gene diversification: brave new whorls. Trends Plant Sci. 10: 427-435.
Mandel, M.A., and Yanofsky, M.F. (1995). A gene triggering flower formation in Arabidopsis. Nature 377: 522-524.
Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
DornelasI, M.C., D.O. (2005). From leaf to flower: revisiting Goethe's concepts on the ‥metamorphosis‥ of plants. Braz. J. Plant Physiol. 17: 335-343.
Messenguy, F., and Dubois, E. (2003). Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316: 1-21.
Moandel, M.A., Yanofsky, M.F. (1998). The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod. 11: 22-28.
Morelli, G., and Ruberti, I. (2002). Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci. 7: 399-404.
Mouradov, A., Glassick, T.V., Hamdorf, B.A., Murphy, L.C., Marla, S.S., Yang, Y., and Teasdale, R.D. (1998). Family of MADS-Box genes expressed early in male and female reproductive structures of monterey pine. Plant Physiol. 117: 55-62.
Nakano, Y., Kawashima, H., Kinoshita, T., Yoshikawa, H., and Hisamatsu, T. (2011). Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression. Physiol. plantarum 141: 383-393.
Norman, C., Runswick, M., Pollock, R., and Treisman, R. (1988). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55: 989-1003.
Ohkawa, K., A. Kano, K. Kanematsu, and M. Korenaga. (1991). Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn, Sci. Hortic-Amterdam 48:171-176.
Passmore, S., Maine, G.T., Elble, R., Christ, C., and Tye, B.K. (1988). Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells. J. M. Biol. 204: 593-606.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.
Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L., and Yanofsky, M.F. (2001). APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26: 385-394.
Pnueli, L., Hareven, D., Broday, L., Hurwitz, C., and Lifschitz, E. (1994). The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. Plant Cell 6: 175-186.
Poethig, R.S. (1990). Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923-930.
Purugganan, M.D., Rounsley, S.D., Schmidt, R.J., and Yanofsky, M.F. (1995). Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140: 345-356.
Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biol. Chem. 378: 1079-1101.
Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269.
Running, M.P., Fletcher, J.C., and Meyerowitz, E.M. (1998). The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis. Development 125: 2545-2553.
Schultz, E.A., and Haughn, G.W. (1991). LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. Plant Cell 3: 771-781.
Schwarz-Sommer, Z., HuijSer, P., Nacken,W.,Saedler, H. and Sommer, H. (1990). Genetic control of flower development by homeotic genes in Antirrhinum Majus. Science 250: 931-936
Sessions, A., Yanofsky, M.F., and Weigel, D. (1998). Patterning the floral meristem. Semin. Cell Dev. Biol. 9: 221-226.
Shinners, L.H. (1957). Synopsis of the genus Eustoma (Gentianaceae). Southwest. Nat. 2: 38-43.
Sung, S.K., Yu, G.H., and An, G. (1999). Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol. 120: 969-978.
Theisen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4: 75-85.
Theissen, G., and Saedler, H. (1995). MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law' revisited. Curr. Opin. Genet. Dev. 5: 628-639.
Theissen, G., and Saedler, H. (2001). Plant biology: Floral quartets. Nature 409: 469-471.
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516.
Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U., and Saedler, H. (2000). A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149.
Tzeng, T.Y., Hsiao, C.C., Chi, P.J., and Yang, C.H. (2003). Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol. 133: 1091-1101.
Vandenbussche, M., Theissen, G., Van de Peer, Y., and Gerats, T. (2003). Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res. 31: 4401-4409.
Wang, L.L., Liang, H.M., Pang, J.L., and Zhu, M.Y. (2004). Regulation network and biological roles of LEAFY in Arabidopsis thaliana in floral development. Yi chuan 26: 137-142.
Weigel, D., and Nilsson, O. (1995). A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495-500.
Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.
Wood, C.E., Jr. and R. E. Weaver, Jr. ( 1982). The genera of Gentianaceae in the Southeastern United States. J. Arnold Arbor. 63: 441-487.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E.M. (1990). The Protein Encode by the Arabidopsis Homeotic Gene AGAMOUS Resembles Transcription Factors. Nature 346: 35-39.
Yu, H., and Goh, C.J. (2000). Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol. 123: 1325-1336.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top