|
[1] W. S. McCulloch, W. Pitt, “A Logical Calculus of the Ideas Immanent in Nervous Activity,” Bulletin of Mathematical Biophysics, Vol.5, 1943, pp.115-133. [2] L. A. Zadeh, “Fuzzy Sets,” Information Contr, Vol.8, 1965, pp. 338-353. [3] D. E. Rumelhart, “Learning Representations by Back-Propagating Errors,” Nature, Vol. 323, 1986, pp. 533-536. [4] A. Fanni, A. Giua, E. Sandoli, “Neural Newtworks for Multiple Fault in Analog Circuits,” The IEEE International Workshop on Defect and Fault Tolerance in VLSI, 1993, pp.303-310. [5] P. V. Goode, M. Y. Chow, “Neural/Fuzzy Systems for Incipient Fault Detection in Induction Motors,” Proceedings of IECON’93, 1993. [6] M. Y. Chow, P. V. Goode, “Adaptation of a Neural/Fuzzy Fault Detection System,” Proceedings of Conference of Decision and Control, 1993. [7] M. Y. Chow, “The advantages of machine fault detection using artificial neural network and fuzzy logic technologies,” Proceedings of the IEEE International Conference on Industrial Technology, 1994, pp.83-87. [8] R. Szczesny., P. Kurzynski, H. Piqueb., K. Hwan., “Knowledge-base system approach to power electronic systems fault diagnosis,” IEEE International Symposium on Industrial Electronics, Vol. 2, 1996, pp.1005-1010. [9] Z. E. Aygen, S. Seker, M. Bagnyanik, F.G. Bagnyanik, E. Ayaz, “Fault Section Estimation in Electrical Power Systems Using Artificial Neural Network Approach, ” Transmission and Distribution Conference of IEEE, Vol. 2, 1999 pp.466 – 469. [10] F. Filippetti., G. Franceschini., C. Tassoni., P. Vas, “Recent Developments of Induction Motor Drives Fault Diagnosis Using AI Techniques,” IEEE Transactions on Industrial Electronics, Vol. 47, No.5, 2000, pp.994-1004. [11] Z. Ye., B. Wu., “A Review on Induction Motor Online Fault Diagnosis,” PIEMC 2000 Power Electronics and MotionControl Conference, Vol.3, 2000, pp.1353-1358. [12] B. Raison, G. Rostaing, J. P. Rognon, ”Signal Processing Tools for Monitoring Induction Drive,” Industrial Electronics Society, IECON ''99 Proceedings. The 25th Annual Conference of the IEEE, Vol.3, 1999, pp.1198-1203. [13] G. Betta, C. Liguori, A. Paolillo, A. Pietrosanto, “A DSP-based FFT analyzer for the fault diagnosis of rotating machine based on vibration analysis,” IEEE Transactions on Instrumentation and Measurement, Vol. 51, No.6, 2002, pp. 1316-1322. [14] X. Q. Liu, H. Y. Zhang, J. Liu, J. Yang, “Fault Detection and Diagnosis of Permanent-Magnet DC Motor based on Parameter Estimation and Neural Network,” IEEE Transactions on Industrial Electronics, Vol. 47, 2000, No. 5, pp. 1021-1030. [15] S. Zhang, T. Asakura, X. Xu and B. Xu, “Fault Diagnosis System for Rotary Machines Based on Fuzzy Neural Networks,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Vol. 1, 2003, pp. 199-204. [16] P. S. Heyns, W. G. Smit. “On-line vibration monitoring for detecting fan blade damage,” Proceedings of the 14th International Congress of COMADEM, 2001, pp. 681-687. [17] A. J. Oberholster, P. S. Heyns. “On-line fan blade damage detection using neural networks”, Mechanical Systems and Signal Processing, Vol. 20, 2006, pp. 78-93. [18] 蘇木春、張孝德 機器學習-類神經網路、模糊系統以及基因演算法則(二版)全華科技圖書股份有限公司 2002.
|