跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林奕伸
研究生(外文):Yi-Shen Lin
論文名稱:黃耆及三七萃取物調節體重之研究
論文名稱(外文):Body weight regulation by Astragalus membranaceus root and Panax pseudoginseng root extracts
指導教授:沈祐成
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:健康餐飲暨產業管理學系碩士班
學門:民生學門
學類:餐旅服務學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:82
中文關鍵詞:黃耆與三七萃取物肥胖代謝症候群BMI抗氧化
外文關鍵詞:Astragalus membranaceus root and Panax pseudoginseng root extracts (APE)obesemetabolic syndromeBMIantioxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:466
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近十多年來肥胖人口急遽攀升,肥胖已被列為全球公共衛生的重要議題。肥胖會提高代謝症候群的風險,因此維持理想體重對代謝症候群有預防效果。有研究指出黃耆與三七的皂苷活性成分可減少脂肪細胞內的脂肪堆積,以及具有降低老鼠體內體脂肪累積之效果。本研究為探討黃耆與三七萃取物對於肥胖者體重之控制,招募27BMI35 之受試者,試驗採隨機雙盲交叉方式進行,分成二階段,每階段介入期 12 週,受試者每日食用五顆黃耆與三七萃取物或安慰劑 (早餐前吃兩顆 ; 晚餐前吃三顆)。試驗期間定期量測體位與採集血液測量血脂質、肝、腎功能、血糖等血液生化值,並做 24 小時回憶法飲食紀錄,最後完成試驗者共 21 位 (男性9位、女性12位)。結果顯示,受試者食用黃耆與三七萃取物 12 週後體重下降 0.34 kg (0.44%)、BMI 下降 0.14 kg/m2 (0.48%) 且體脂肪下降 0.12 %,而食用安慰劑 12 週後體重上升 0.45 kg (0.74%)、BMI 顯著上升 0.16 kg/m2 (0.59%) (p<0.05) 且體脂肪上升 0.12%,進一步將兩組 BMI 的變化進行獨立 T 檢定,發現實驗組比起安慰劑組 BMI 有顯著下降 0.3 kg/m2 (p<0.05)。血脂肪方面,實驗組 12 週後三酸甘油酯顯著減少 10.81 mg/dl (9.85%) (p<0.05)。另外,食用黃耆與三七萃取物 12 週後胰島素阻抗有下降趨勢,脂聯素則為上升趨勢;而血漿中脂質過氧化值 (TBARS) 有下降趨勢,總抗氧化能力 (TEAC) 和麩胱甘肽濃度 (GSH) 有顯著增加 (p<0.05),且在抗氧化酵素部分,麩胱甘肽還原酶活性 (GSH Rd) 和超氧化歧化酶活性 (SOD) 有增加之趨勢,麩胱甘肽過氧化酶活性 (GSH Px) 則顯著提升 (p<0.05),安慰劑組則無差異。試驗期間受試者肝腎功能均無副作用。綜合以上結果,食用黃耆與三七萃取物可能可以調節肥胖,適合做為體重管理之輔助品,並有增加體內抗氧化能力的效果。
Obese population worldwide has increased sharply in recent decades leading obesity to become a major global health issue. Obesity increases the risk of metabolic syndrome, and maintaining ideal body weight has a protective effect on many diseases. The purpose of this study is to investigate the effects of Astragalus membranaceus root and Panax pseudoginseng root extracts (APE) on a group of obese subjects (27BMI35). The study is a double blind randomized crossover human trial lasting twenty-eight weeks with two twelve-week phases and a four-week washout period in between the two phases. Subjects took either five APE or Placebo capsules every day during the two twelve-week phases (two capsules before breakfast and three capsules before dinner). Anthropometric measurements and biochemical indicators were measured during the study. A total of twenty one subjects (nine males and twelve females) completed the study. The study showed that subjects who took APE capsules lost 0.34 kg in body weight and lowered their BMI by 0.14 kg/m2 and body fat by 0.12%. Subjects who took the Placebo capsules increased their body weight by 0.45 kg, BMI by 0.16 kg/m2, and body fat by 0.12%. Compared with the Placebo group, BMI was significantly lower (p<0.05) by 0.3 kg/m2 in the APE group. In addition, subjects who took APE have trend of insulin resistance index decrease and adiponectin level increase. Furthermore, after 12 weeks, the antioxidative activity of the APE group showed thiobarbituric acid-reactive substances (TBARS) was decreased trend, glutathione reductase (GSH Rd) and superoxide dismutase (SOD) were increased trend. The total antioxidant capacity (TEAC), glutathione (GSH), and glutathione peroxidase (GSH Px) were siginificantly increased, but no different in the Placebo group. The biochemical levels and physiological functions of the subjects both in the APE and the Placebo groups were within the normal ranges and had no side effects. Based on the results, the study suggests that APE may be a part of an effective weight management product. APE also could to improve the antioxidative capacity.
圖次 IV
表次 V
中文摘要 VI
Abstract VIII
壹、前言 1
貳、文獻整理 2
一、肥胖 2
二、肥胖之定義與標準 3
三、肥胖與代謝症候群 3
四、自由基與氧化壓力 6
(一) 自由基 6
(二) 自由基之生成 6
(三) 自由基之危害 7
(四) 抗氧化酵素系統 7
五、肥胖與氧化壓力 9
六、減重方式 11
(一) 飲食控制 11
(二) 運動消耗 11
(三) 商業性代餐之減重法 11
(四) 藥物治療 12
七、中草藥抗肥胖之功能 12
(一) 脂酶抑制劑 13
(二) 抑制食慾 13
(三) 刺激能量消耗 13
(四) 抑制脂肪細胞分化 14
(五) 調控脂質代謝 14
八、黃耆介紹 15
(一) 黃耆 15
(二) 黃耆之功效 16
(三) 黃耆皂苷與抗肥胖 16
九、三七介紹 17
(一) 三七 17
(二) 三七之功效 18
(三) 三七皂苷與抗肥胖 19
參、研究目的 21
肆、試驗設計與流程 22
一、試驗設計 22
二、試驗流程 23
伍、試驗材料與方法 24
一、試驗材料 24
二、試驗藥品 25
(一) 標準品 25
(二) 一般試藥 25
(三) 酵素分析套組 26
三、試驗儀器 27
四、試驗方法 28
(一) 人體試驗 28
(二) 體位測量 30
(三) 血清生化分析 31
(五) 血漿抗氧化活性測定 37
(六) 抗氧化酵素活性測定 38
(七) 統計方法 41
陸、結果與討論 42
一、臨床試驗分析 42
(一) 受試者特性 42
(二) 受試者體重、身體質量指數與體脂變化 42
(三) 受試者腰臀圍變化 43
(四) 受試者血脂變化 44
(五) 受試者血壓變化 44
(六) 受試者空腹血糖、胰島素以及胰島素阻抗性變化 44
(七) 受試者肝功能指標之變化 45
(八) 受試者腎功能指標之變化 45
(九) 受試者脂聯素變化 46
二、血漿抗氧化活性測定 46
(一) 血漿中總抗氧化能力 (TEAC) 46
(二) 血漿中脂質過氧化物含量 (TBARS) 47
(三) 血漿中麩胱甘肽含量 (GSH) 47
三、抗氧化酵素活性測定 48
(一) 血球中 麩胱甘肽還原酶活性測定 (GSH Rd) 48
(二) 血球中麩胱甘肽過氧化酶活性測定 (GSH Px) 48
(三) 血球中超氧歧化酶活性測定 (SOD) 49
四、討論 50
柒、結論 51
捌、參考文獻 64
玖、附錄 74
衛生福利部 (2011) (2017)

邱怡珍、黃文品、董玟妤、方玫懿和郭宗甫 (2010)。藥用植物黃耆之療效。中華傳統獸醫學會會刊,14 : 46-52。

李忠英、羅躍中 (2010)。三七粉中總黃酮的檢測。安徽農業科學。14942-14943。

何達智 (2017)。分離三七人參皂苷Rg1與人參皂苷Rb1之研究。高雄應用科技大學化學工程與材料工程系碩士班。1-77。

林宏 (2003)。針灸減肥概況。中華中醫藥雜誌。173-176。

林富楨、許士凱 (2001)。抗衰老醫學。合計圖書出版。

周新惠、趙榮華、張榮平、朱培芳 (2013)。三七不同加熱炮製品中 5 種皂苷類成分的含量測定。雲南中醫學院學報。36 : 11-14。

林鬱進、張永勳、蔡新聲 (1995)。黃耆類藥材之鑑定研究 Ⅰ. 膜莢黃耆、蒙古黃耆與多序岩黃耆之辨偽。中華農業研究。44 : 101-113。

陳伊美 (2016)。均衡營養代餐包配合熱量限制對減重效益之研究。中山醫學大學營養學研究所。1-107。

陳海林 (2011)。針刺治療單純性肥胖 50 例。浙江中醫藥大學學報。1, 049。

陳惠英、顏國欽 (1998)。自由基、抗氧化防禦與人體健康。臺灣營養學會雜誌。23 : 105-121。

張豐麟 (2001)。身體脂肪與體重控制之相關探討。中華體育季刊。15: 123-129。

黃品潔 (2011)。黃耆基原鑑定及多序岩黃耆活性成分之探討。宜蘭大學食品科學研究所。1-171。

劉東平、楊軍、丁丹 (2012)。三七及其有效成分對血液系統的藥理活性研究概況。 中醫藥資訊。29 : 172-174。

劉永利、趙振霞、蘇建、王敏、馮麗 (2017)。三七粉品質評價研究。中國藥事 31 : 407-411。

鄭青、黃嬌珍、李國棟、符先先 (2013)。單純性肥胖與胰島素抵抗的研究進展。中國醫師進修雜誌,73-76。

蕭伶茲、黃麗卿、黃偉新 (2015)。新減重藥物的發展。家庭醫學與基層醫療。30 : 108-112。

羅桂賢、劉玥欣、葉豆丹 (2017)。三九三七粉配方顆粒的優勢分析。吉林中醫藥。 37 : 520-524。





















Abidov, M., del Rio, M., Ramazanov, T., Klimenov, A., Dzhamirze, S., and Kalyuzhin, O. (2006). Effects of Aralia mandshurica and Engelhardtia chrysolepis extracts on some parameters of lipid metabolism in women with nondiabetic obesity. Bulletin of experimental biology and medicine 141, 343-346.

Alberti, K.G.M., Zimmet, P., and Shaw, J. (2005). The metabolic syndrome—a new worldwide definition. The Lancet 366, 1059-1062.

Arnao, M., Cano, A., Hernandez-Ruiz, J., Garcıa-Cánovas, F., and Acosta, M. (1996). Inhibition byl-ascorbic acid and other antioxidants of the 2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic Acid) oxidation catalyzed by peroxidase: A new approach for determining total antioxidant status of foods. Analytical Biochemistry 236, 255-261.

Aruoma, O. (1994). Nutrition and health aspects of free radicals and antioxidants. Food and Chemical Toxicology 32, 671-683.

Baranov, V., Baranova, N., Belovintseva, M., ZKh, Z., and Nasledova, I. (1976). Changes in carbohydrate and lipid metabolism and in the structure of the fatty tissue and pancreatic insular apparatus of rats under conditions of prolonged overeating. Problemy endokrinologii 22, 76-80.

Bellomo, G., Mirabelli, F., DiMonte, D., Richelmi, P., Thor, H., Orrenius, C., and Orrenius, S. (1987). Formation and reduction of glutathione-protein mixed disulfides during oxidative stress: A study with isolated hepatocytes and menadione (2-methyl-1, 4-naphthoquinone). Biochemical pharmacology 36, 1313-1320.

Cadenas, E. (1989). Biochemistry of oxygen toxicity. Annual review of biochemistry 58, 79-110.

Chang, W.-L., Ho, Y.-H., Huang, Y.-C., Huang, S.-F., Lin, J.-Y., Lin, H.-C., and Chang, T.-C. (2013). The inhibitory effect of ginsenoside Rg1 on glucose and lipid production in human HepG2 cells. 調適醫學 5, 181-188.

Chen, Y.Q., Rong, L., and Qiao, J.O. (2014). Anti‑inflammatory effects of Panax notoginseng saponins ameliorate acute lung injury induced by oleic acid and lipopolysaccharide in rats. Molecular medicine reports 10, 1400-1408.
Cho, W.C., and Leung, K.N. (2007). In vitro and in vivo anti-tumor effects of Astragalus membranaceus. Cancer letters 252, 43-54.

Cole, T.J., Bellizzi, M.C., Flegal, K.M., and Dietz, W.H. (2000). Establishing a standard definition for child overweight and obesity worldwide: international survey. Bmj 320, 1240.

Davidson, M.H., Hauptman, J., DiGirolamo, M., Foreyt, J.P., Halsted, C.H., Heber, D.,
Draper, H., and Hadley, M. (1990). [43] Malondialdehyde determination as index of lipid Peroxidation. In Methods in enzymology (Elsevier), pp. 421-431.

Heimburger, D.C., Lucas, C.P., Robbins, D.C., and Chung, J. (1999). Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial. Jama 281, 235-242.

Flohe, L., Günzler, W., and Schock, H. (1973). Glutathione peroxidase: a selenoenzyme. FEBS letters 32, 132-134.

Forman, H.J., Zhang, H., and Rinna, A. (2009). Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular aspects of medicine 30, 1-12.
Frankel, E.N. (1991). Recent advances in lipid oxidation. Journal of the Science of Food and Agriculture 54, 495-511.

Fridovich, I. (1975). Superoxide dismutases. Annual review of biochemistry 44, 147-159.

Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., and Shimomura, I. (2017). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of clinical investigation 114, 1752-1761.

Haffner, S.M., and Miettinen, H. (1997). Insulin resistance implications for type II diabetes mellitus and coronary heart disease. The American journal of medicine 103, 152-162.

Hotta, K., Funahashi, T., Arita, Y., Takahashi, M., Matsuda, M., Okamoto, Y., Iwahashi, H., Kuriyama, H., Ouchi, N., and Maeda, K. (2000). Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arteriosclerosis, thrombosis, and vascular biology 20, 1595-1599.

Hu, M., Dillard, C., and Tappel, A. (1988). Aurothioglucose effect on sulfhydryls and glutathione-metabolizing enzymes: in vivo inhibition of selenium-dependent glutathione peroxidase. Research communications in chemical pathology and pharmacology 59, 147-160.

Huang, Y.-C., Lin, C.-Y., Huang, S.-F., Lin, H.-C., Chang, W.-L., and Chang, T.-C. (2010). Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. Journal of agricultural and food chemistry 58, 6039-6047.

Huang, XP., Qiu, YY., Wang, B., Ding, H., Tang, YH., Zeng, R., and Deng, CQ. (2014). Effects of Astragaloside IV combined with the active components of Panax notoginseng on oxidative stress injury and nuclear factor-erythroid 2-related factor 2/heme oxygenase-1 signaling pathway after cerebral ischemia-reperfusion in mice. Pharmacognosy magazine 10, 402.

Jiang, L., Zhang, NX., Mo, W., Wan, R., Ma, CG., Li, X., Gu, YL., Yang, XY., Tang, QQ., and Song, HY. (2008). Rehmannia inhibits adipocyte differentiation and adipogenesis. Biochemical and biophysical research communications 371, 185-190.

Johansen, J.S., Harris, A.K., Rychly, D.J., and Ergul, A. (2005). Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovascular diabetology 4, 5.

Kadowaki, T., Hara, K., Yamauchi, T., Terauchi, Y., Tobe, K., and Nagai, R. (2003).
Molecular mechanism of insulin resistance and obesity. Experimental Biology and Medicine 228, 1111-1117.

Kai, Z., Michela, P., Antonio, P., and Annamaria, P. (2015). Biological active ingredients of traditional Chinese herb Astragalus membranaceus on treatment of diabetes: a systematic review. Mini reviews in medicinal chemistry 15, 315-329.


Karu, N., Reifen, R., and Kerem, Z. (2007). Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. Journal of agricultural and food chemistry 55, 2824-2828.

Keaney, J.F., Larson, M.G., Vasan, R.S., Wilson, P.W., Lipinska, I., Corey, D., Massaro, J.M., Sutherland, P., Vita, J.A., and Benjamin, E.J. (2003). Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arteriosclerosis, thrombosis, and vascular biology 23, 434-439.

Kim, SH., and Park, KS. (2003). Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacological research 48, 511-513.

Korivi, M., Hou, CW., Huang, CY., Lee, SD., Hsu, MF., Yu, SH., Chen, CY., Liu, YY., and Kuo, CH. (2012). Ginsenoside-Rg1 protects the liver against exhaustive exercise-induced oxidative stress in rats. Evidence-Based Complementary and Alternative Medicine 2012.

Lee, SR., Kim, MR., Yon, JM., Baek, IJ., Lee, BJ., Ahn, B., Kim, YB., Kwack, SJ., Lee, RD., and Kim, SS. (2008). Effects of ginsenosides on organogenesis and expression of glutathione peroxidase genes in cultured rat embryos. Journal of Reproduction and Development 54, 164-170.

Li, L., Hou, X., Xu, R., Liu, C., and Tu, M. (2017). Research review on the pharmacological effects of astragaloside IV. Fundamental & clinical pharmacology 31, 17-36.

Menzaghi, C., Trischitta, V., and Doria, A. (2007). Genetic influences of adiponectin on insulin resistance, type 2 diabetes, and cardiovascular disease. Diabetes 56, 1198-1209.

Morimoto, C., Satoh, Y., Hara, M., Inoue, S., Tsujita, T., and Okuda, H. (2005). Anti-obese action of raspberry ketone. Life sciences 77, 194-204.

Mu, Q., Fang, X., Li, X., Zhao, D., Mo, F., Jiang, G., Yu, N., Zhang, Y., Guo, Y., and Fu, M. (2015). Ginsenoside Rb1 promotes browning through regulation of PPARγ in 3T3-L1 adipocytes. Biochemical and biophysical research communications 466, 530-535.

Nalbantsoy, A., Nesil, T., Yılmaz-Dilsiz, Ö., Aksu, G., Khan, S., and Bedir, E. (2012). Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species. Journal of ethnopharmacology 139, 574-581.

Paglia, D.E., and Valentine, W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of laboratory and clinical medicine 70, 158-169.

Pan, C., Huo, Y., An, X., Singh, G., Chen, M., Yang, Z., Pu, J., and Li, J. (2012). Panax notoginseng and its components decreased hypertension via stimulation of endothelial-dependent vessel dilatation. Vascular pharmacology 56, 150-158.

Park, S., Ahn, I.S., Kwon, D.Y., Ko, B.S., and Jun, W.K. (2008). Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance β-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Bioscience, biotechnology, and biochemistry 72, 2815-2823.

Pasman, W.J., Heimerikx, J., Rubingh, C.M., van den Berg, R., O''Shea, M., Gambelli, L., Hendriks, H.F., Einerhand, A.W., Scott, C., and Keizer, H.G. (2008). The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women. Lipids in Health and Disease 7, 10.

Pipat, C., and Kanyarat, R. (1995). Effects of standardized ginseng extract and exercise training on aerobic and anaerobic exercise capacities in humans. Journal of Ginseng Research 19, 93-100.

Rudich, A., Tirosh, A., Potashnik, R., Hemi, R., Kanety, H., and Bashan, N. (1998). Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes 47, 1562-1569.

Simic, M.G. (1988). Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 202, 377-386.



Sours, H.E., Frattali, V.P., Brand, C.D., Feldman, R.A., Forbes, A.L., Swanson, R.C., and Paris, A.L. (1981). Sudden death associated with very low calorie weight reduction regimens. The American journal of clinical nutrition 34, 453-461.

Spiegelman, B.M., and Flier, J.S. (2001). Obesity and the regulation of energy balance. cell 104, 531-543.

Stadtman, E., and Levine, R. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino acids 25, 207-218.

Sun, S., Qi, LW., Du, GJ., Mehendale, S.R., Wang, CZ., and Yuan, CS. (2011). Red notoginseng: higher ginsenoside content and stronger anticancer potential than Asian and American ginseng. Food chemistry 125, 1299-1305.

Szuster-Ciesielska, A., Hryciuk-Umer, E., Stepulak, A., Kupisz, K., and Kandefer-Szerszeń, M. (2004). Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood. Acta Oncologica 43, 252-258.

Tabandeh, M.R., Jafari, H., Hosseini, S.A., and Hashemitabar, M. (2015). Ginsenoside Rb1 stimulates adiponectin signaling in C2C12 muscle cells through up-regulation of AdipoR1 and AdipoR2 proteins. Pharmaceutical biology 53, 125-132.

Thompson, J.L., Manore, M.M., and Thomas, J.R. (1996). Effects of diet and diet-plus-exercise programs on resting metabolic rate: a meta-analysis. International journal of sport nutrition 6, 41-61.

Uysal, K.T., Wiesbrock, S.M., Marino, M.W., and Hotamisligil, G.S. (1997). Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610.

Wang, CW., Su, SC., Huang, SF., Huang, YC., Chan, FN., Kuo, YH., Hung, MW., Lin, HC., Chang, WL., and Chang, TC. (2015). An essential role of cAMP response element binding protein in ginsenoside Rg1-mediated inhibition of Na+/glucose cotransporter 1 gene expression. Molecular pharmacology 88, 1072-1083.


Wang, D., Song, Y., Li, S.L., Bian, Y.Y., Guan, J., and Li, P. (2006). Simultaneous analysis of seven astragalosides in Radix Astragali and related preparations by liquid chromatography coupled with electrospray ionization time‐of‐flight mass spectrometry. Journal of separation science 29, 2012-2022.

Wisse, B.E. (2004). The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. Journal of the American society of nephrology 15, 2792-2800.

Wu, H., Gao, Y., Shi, HL., Qin, LY., Huang, F., Lan, YY., Zhang, BB., Hu, ZB., and Wu, XJ. (2016). Astragaloside IV improves lipid metabolism in obese mice by alleviation of leptin resistance and regulation of thermogenic network. Scientific reports 6, 30190.

Wu, Y., Yu, Y., Szabo, A., Han, M., and Huang, XF. (2014). Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet. PloS one 9, e92618.

Xiong, Y., Shen, L., Liu, K.J., Tso, P., Xiong, Y., Wang, G., Woods, S.C., and Liu, M. (2010). Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes 59, 2505-2512.

Xu, A., Wang, H., Hoo, R.L., Sweeney, G., Vanhoutte, P.M., Wang, Y., Wu, D., Chu, W., Qin, G., and Lam, K.S. (2009). Selective elevation of adiponectin production by the natural compounds derived from a medicinal herb alleviates insulin resistance and glucose intolerance in obese mice. Endocrinology 150, 625-633.

Yamamoto, M., Shimura, S., Itoh, Y., Ohsaka, T., Egawa, M., and Inoue, S. (2000). Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. International Journal of Obesity 24, 758.

Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., and Tsunoda, M. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762.



Yang, C.Y., Wang, J., Zhao, Y., Shen, L., Jiang, X., Xie, ZG., Liang, N., Zhang, L., and Chen, ZH. (2010). Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components. Journal of ethnopharmacology 130, 231-236.

Yang, XD., Yang, YY., Ouyang, DS., and Yang, GP. (2015). A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100, 208-220.

Yeh, TS., Chuang, HL., Huang, WC., Chen, YM., Huang, CC., and Hsu, MC. (2014). Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules (Basel, Switzerland) 19, 2793-2807.

Yin, X., Zhang, Y., Wu, H., Zhu, X., Zheng, X., Jiang, S., Zhuo, H., Shen, J., Li, L., and Qiu, J. (2004). Protective effects of Astragalus saponin I on early stage of diabetic nephropathy in rats. Journal of pharmacological sciences 95, 256-266.

Yokozawa, T., Satoh, A., and Cho, E.J. (2004). Ginsenoside‐Rd attenuates oxidative damage related to aging in senescence‐accelerated mice. Journal of pharmacy and pharmacology 56, 107-113.

Yong-Xin, X., and Jian-Jun, Z. (2013). Evaluation of anti-fatigue activity of total saponins of Radix notoginseng. The Indian journal of medical research 137, 151.

Zhi, J., Melia, A.T., Eggers, H., Joly, R., and Patel, I.H. (1995). Review of limited systemic absorption of orlistat, a lipase inhibitor, in healthy human volunteers. The Journal of Clinical Pharmacology 35, 1103-1108.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊