[1]Neil H.E Weste, David Harris,柯鴻禧、黃琪聰(譯),“COMS積體電路設計概論”台灣培生教育出版股份有限公司,2007。
[2]謝永瑞,“VLSI概論(修訂四版)”全華科技圖書股份有限公司,2008。
[3]高德遠、康繼昌,“VLSI-系統和電路的設計原理”儒林圖書有限公司,1992。
[4]D. F. Hilbiber,“A New Developments in IC Voltage Regulators,”IEEE InternationalSolid-State Circuits Conference,vol.VII,pp.32-33,Feb.1964.
[5]R.J. Widlar,“New Developments in IC Voltage Regulators,”IEEE International Solid-State Circuits Conference,vol.XIII,pp.158-159,Fed.1970.
[6]P.E. Allen and D.R. Holberg,“CMOS Analog Circuit Design,”Qxford University Press,Second Edition,2002.
[7]陳郡豪,“工作於次臨界區本體堆動之低電壓低電流微型運算放大器”,國立聯合大學電子工程研究所碩士論文,2006。[8]B. Razavi, "Design of Analogue CMOS Integrated Circuits,” McCraw-Hill Companies Inc. Bostom. MA, 2001.
[9]Dong-Ok Han, Jeong-Hoon Kim, and Nam-Heung Kim, “ Design of bandgap reference and current reference generator with low supply voltage,” 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, pp. 1733 – 1736, 2008.
[10]Na Sun and R. Sobot, “A low-power low-voltage bandgap reference in CMOS,” 2010 23rd Canadian Conference on Electrical and Computer Engineering, pp.1 – 5, 2010.
[11]Jing-Hu Li, Xing-bao Zhang, and Ming-yan Yu, “A 1.2-V Piecewise Curvature-Corrected Bandgap Reference in 0.5 m CMOS Process” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.9, No. 6, pp. 1118-1122, 2011.
[12]. E. K. F. Lee, “Low voltage CMOS bandgap references with temperature compensated reference current output,” Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 1643 – 1646, 2010.
[13]D. C. W. Ng, D. K. K. Kwong, and Ngai Wong , “A Sub-1 V, 26 W, Low-Output-Impedance CMOS Bandgap Reference With a Low Dropout or Source Follower Mode,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, No. 7, pp. 1305 – 1309, 2011.
[14]Min Tan, Fan Liu, and Fei Xiang, “A novel sub-1-V bandgap reference in 0.18µm CMOS technology ,” 2011 IEEE International Conference on Anti-Counterfeiting, Security and Identification, pp. 180 – 183, 2011.
[15]E. K. F. Lee, “A low voltage CMOS bandgap reference without using an opamp ” 2009 IEEE International Symposium on Circuits and Systems, pp. 2533 – 2536, 2009.
[16]R. T. Perry, S. H. Lewis, A. P. Brokaw, and T. R. Viswanathan, “A 1.4 V Supply CMOS Fractional Bandgap Reference,” IEEE Journal of Solid-State Circuits, vol. 42 , No. 10, pp. 2180 – 2186, 2007
[17]Xin Ming, Ying-qian Ma, Ze-kun Zhou, and Bo Zhang, “A High-Precision Compensated CMOS Bandgap Voltage Reference Without Resistors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, No. 10, pp. 767 – 771, 2010.
[18]C. M. Andreou, S. Koudounas, and J. Georgiou, “A Novel Wide-Temperature-Range, 3.9 ppm/ oC CMOS Bandgap Reference Circuit,” IEEE Journal of Solid-State Circuits, vol. 47, No. 2, pp. 574 – 581, 2012.
[19]Becker-Gomez, T. Lakshmi Viswanathan, and T. R. Viswanathan, “A Low-Supply-Voltage CMOS Sub-Bandgap Reference ,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, No.7, pp. 609 – 613, 2008.
[20]W. Yan, W. Li, and R. Liu, “Nanopower CMOS sub-bandgap reference with 11 ppm/°C temperature coefficient ,” Electronics Letters, pp. 627 – 629, vol. 45, No. 12, 2009.
[21]M.-D. Ker and J.-S. Chen, “New curvature-compensation technique for CMOS bandgap reference with sub-1-V operation,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 53, no. 8, pp. 667–671, 2006.
[22]P. B. Basyurt and D. Y. Aksin, “Design of a curvature-corrected bandgap reference with 7.5ppm/C temperature coefficient in 0.35µm CMOS process,” 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3142 – 3145, 2012.
[23]Wei-Bin Yang, Horng-Yuan Shih , Yu-Yao Lin, Ming-Hao Hong, Chi-Hsiung Wang, and Yu-Lung Lo, “A 1.8-V 4.36-ppm/°C-TC bandgap reference with temperature variation calibration,” 2013 International SoC Design Conference, pp. 103 – 106, 2013.