跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.126) 您好!臺灣時間:2025/09/10 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳一平
研究生(外文):Yi-Ping Wu
論文名稱:低溫度係數參考電壓設計
論文名稱(外文):Low Temperature-Coefficient Reference Voltage
指導教授:劉偉行劉偉行引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:57
中文關鍵詞:溫度係數疊接式電流鏡參考電壓
外文關鍵詞:temperature coefficientcascodecurrent mirrorreference voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係有關疊接式低溫度係數參考電壓電路設計。電路設計原理是利用BJT所具有的的正/負溫度係數特性參數互相補償,以實現一個具有零溫度係數的參考電壓電路。電路利用兩種架構去模擬驗證,並比較兩種電路之優缺點;相較於已知電路,本論文提出的電路具有架構簡單、較少晶片面積、不須使用運算放大器等優點。
本論文除了詳細敘述工作原理外,並使用HSPICE及LAKER電路模擬軟體以0.35微米製程進行佈局並下現實作;電路供應電壓是5V,溫度變化範圍則為-20°C-120°C。根據佈局後模擬結果,一階溫度補償後在25°C時,參考電壓輸出為3.014V,電壓變化量為2.568mV;參考電壓輸出為2.499V,電變化量為2.399mV;參考電壓輸出為1.249V,電壓變化量為1.192mV,相對消耗功率為0.293mW。而二階溫度補償後在25°C時參考電壓輸出為2.489V,溫度變化量為1.127mV;參考電壓輸出為1.273V,電壓變化量為0.589mV,相對消耗功率為0.954mW。
電路模擬結果與理論推導相符合,可證明電路的可行性。本論文提出之低溫度係數參考電壓電路可適用於汽車電子裝置,以及應用於各種數位和類比電路之中。
關鍵字:溫度係數、疊接式、電流鏡、參考電壓


This thesis is related to the design of cascade low temperature-coefficient reference voltage. The design principle is using both the positive and the negative temperature-coefficient parameters in BJT to compensate each other, and then a zero temperature-coefficient output reference voltage can be achieved. Two different circuit architectures have been simulated and discussed. As compared with the existed reference voltage circuits, the proposed circuits benefit from simpler circuit architecture, less chip area, and also there are no operational amplifiers included in the proposed circuits.
Detailed design principle has been disclosed in this thesis, and the HSPICE and LAKER simulation programs with 0.35-μm process parameters have been used to perform the layout and implement the circuits. According to the post-layout simulation results, where the supply voltage is 5V and the temperature ranges from -20°C-120°C, after first order temperature-compensation, as the output reference voltage is 3.014V, the maximum output voltage variation is 2.568mV, and when the output reference voltage is 2.495V, the maximum output voltage variation is 1.772mV, and finally if the output reference voltage is 1.249V, the maximum output voltage variation is 1.192mV. The corresponding power dissipation is 0.891mW. After second order temperature-compensation, the output reference voltage can be 2.489V with the maximum output voltage variation of only 1.127mV, and 1.127V with the maximum output voltage variation of 0.589mV. The corresponding power dissipation is 0.954mW.
All the simulation results are consistent with the theoretic analysis. The proposed low temperature-coefficient reference voltage circuits can be applied to vehicle electronic devices design and other digital and analog circuits.
Keywords: temperature coefficient, cascode, current mirror, reference voltage.


摘要............................................i
Abstract........................................ii
誌謝............................................iv
目錄............................................v
表目錄..........................................vii
圖目錄..........................................viii
符號說明........................................x
第一章 緒論.....................................1
1.1研究背景與動機................................1
1.2設計流程.....................................3
1.3研究重點.....................................5
1.4論文架構.....................................5
第二章 一階補償參考電壓電路.......................6
2.1參考電壓介紹與工作原理........................6
2.2電流源分析....................................9
2.3設計原理......................................10
第三章 二階補償參考電壓電路.......................14
3.1二階補償參考電壓介紹與工作原理.................14
3.2設計原理.....................................16
第四章 模擬與量測結果............................19
4.1設計流程.....................................19
4.2一階補償參考電壓電路佈局前模擬.................21
4.3一階補償參考電壓電路佈局後模擬結果.............27
4.4一階補償參考電壓電路佈局前/後模擬結果比較......33
4.5二階補償參考電壓電路佈局前模擬.................37
4.6二階補償參考電壓電路佈局後模擬結果.............41
4.7二階補償參考電壓電路佈局前/後模擬結果比較.......46
第五章 結論......................................50
參考文獻.........................................51
Extended Abstract...............................54
簡歷(CV).........................................57

[1]Neil H.E Weste, David Harris,柯鴻禧、黃琪聰(譯),“COMS積體電路設計概論”台灣培生教育出版股份有限公司,2007。
[2]謝永瑞,“VLSI概論(修訂四版)”全華科技圖書股份有限公司,2008。
[3]高德遠、康繼昌,“VLSI-系統和電路的設計原理”儒林圖書有限公司,1992。
[4]D. F. Hilbiber,“A New Developments in IC Voltage Regulators,”IEEE InternationalSolid-State Circuits Conference,vol.VII,pp.32-33,Feb.1964.
[5]R.J. Widlar,“New Developments in IC Voltage Regulators,”IEEE International Solid-State Circuits Conference,vol.XIII,pp.158-159,Fed.1970.
[6]P.E. Allen and D.R. Holberg,“CMOS Analog Circuit Design,”Qxford University Press,Second Edition,2002.
[7]陳郡豪,“工作於次臨界區本體堆動之低電壓低電流微型運算放大器”,國立聯合大學電子工程研究所碩士論文,2006。
[8]B. Razavi, "Design of Analogue CMOS Integrated Circuits,” McCraw-Hill Companies Inc. Bostom. MA, 2001.
[9]Dong-Ok Han, Jeong-Hoon Kim, and Nam-Heung Kim, “ Design of bandgap reference and current reference generator with low supply voltage,” 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, pp. 1733 – 1736, 2008.
[10]Na Sun and R. Sobot, “A low-power low-voltage bandgap reference in CMOS,” 2010 23rd Canadian Conference on Electrical and Computer Engineering, pp.1 – 5, 2010.
[11]Jing-Hu Li, Xing-bao Zhang, and Ming-yan Yu, “A 1.2-V Piecewise Curvature-Corrected Bandgap Reference in 0.5 m CMOS Process” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.9, No. 6, pp. 1118-1122, 2011.
[12]. E. K. F. Lee, “Low voltage CMOS bandgap references with temperature compensated reference current output,” Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 1643 – 1646, 2010.
[13]D. C. W. Ng, D. K. K. Kwong, and Ngai Wong , “A Sub-1 V, 26 W, Low-Output-Impedance CMOS Bandgap Reference With a Low Dropout or Source Follower Mode,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, No. 7, pp. 1305 – 1309, 2011.
[14]Min Tan, Fan Liu, and Fei Xiang, “A novel sub-1-V bandgap reference in 0.18µm CMOS technology ,” 2011 IEEE International Conference on Anti-Counterfeiting, Security and Identification, pp. 180 – 183, 2011.
[15]E. K. F. Lee, “A low voltage CMOS bandgap reference without using an opamp ” 2009 IEEE International Symposium on Circuits and Systems, pp. 2533 – 2536, 2009.
[16]R. T. Perry, S. H. Lewis, A. P. Brokaw, and T. R. Viswanathan, “A 1.4 V Supply CMOS Fractional Bandgap Reference,” IEEE Journal of Solid-State Circuits, vol. 42 , No. 10, pp. 2180 – 2186, 2007
[17]Xin Ming, Ying-qian Ma, Ze-kun Zhou, and Bo Zhang, “A High-Precision Compensated CMOS Bandgap Voltage Reference Without Resistors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, No. 10, pp. 767 – 771, 2010.
[18]C. M. Andreou, S. Koudounas, and J. Georgiou, “A Novel Wide-Temperature-Range, 3.9 ppm/ oC CMOS Bandgap Reference Circuit,” IEEE Journal of Solid-State Circuits, vol. 47, No. 2, pp. 574 – 581, 2012.
[19]Becker-Gomez, T. Lakshmi Viswanathan, and T. R. Viswanathan, “A Low-Supply-Voltage CMOS Sub-Bandgap Reference ,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, No.7, pp. 609 – 613, 2008.
[20]W. Yan, W. Li, and R. Liu, “Nanopower CMOS sub-bandgap reference with 11 ppm/°C temperature coefficient ,” Electronics Letters, pp. 627 – 629, vol. 45, No. 12, 2009.
[21]M.-D. Ker and J.-S. Chen, “New curvature-compensation technique for CMOS bandgap reference with sub-1-V operation,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 53, no. 8, pp. 667–671, 2006.
[22]P. B. Basyurt and D. Y. Aksin, “Design of a curvature-corrected bandgap reference with 7.5ppm/C temperature coefficient in 0.35µm CMOS process,” 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3142 – 3145, 2012.
[23]Wei-Bin Yang, Horng-Yuan Shih , Yu-Yao Lin, Ming-Hao Hong, Chi-Hsiung Wang, and Yu-Lung Lo, “A 1.8-V 4.36-ppm/°C-TC bandgap reference with temperature variation calibration,” 2013 International SoC Design Conference, pp. 103 – 106, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top