跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾威翔
論文名稱:製備含銅氧化石墨烯應用於二氧化碳光催化還原
論文名稱(外文):Preparation of copper-loaded graphene oxide for photocatalytic reduction of CO2
指導教授:曾怡享
口試委員:陳慧英王丞浩
口試日期:2016-06-22
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:132
中文關鍵詞:氧化石墨烯二氧化碳光催化還原水熱法
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先製備不同氧化程度之氧化石墨烯(graphene oxide, GO),再以水熱法製得含銅氧化石墨烯(c-GO)觸媒,比較觸媒特性及其對二氧化碳光催化還原活性之差異。實驗結果發現隨著製備氧化石墨烯反應時間增加,氧化石墨烯的含氧官能基隨之增加,也影響後續負載於其表面含銅量。而在水熱過程中,還原劑乙二醇添加的比例,將控制氧化石墨烯之還原程度與表面含銅氧化物的價態、形貌與附載量;另外由電子自旋共振(EPR)光譜觀察到觸媒粉體懸浮液在紫外光激發下產生不同種類與數量的自由基,而氫氧自由基之產量與壽命將影響觸媒進行光催化反應之活性。
本研究製得之c-GO在含有水氣條件下進行二氧化碳光催化還原反應,可得一氧化碳(CO)產物,而當氧化石墨烯表面存在最適量之氧化亞銅粒子時,可有最佳CO產量,目前UV光照射24小時可得最佳CO產量為10*10^-6mol/g。
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 文獻回顧 4
2-1 光觸媒簡介 4
2-2 光觸媒反應機制 7
2-3 二氧化碳之減量與反應 11
2-3-1 二氧化碳簡介 11
2-3-2 二氧化碳處理方式 11
2-3-3 光催化還原二氧化碳 13
2-4 石墨烯簡介 23
2-4-1 石墨烯之特性 23
2-4-2 石墨烯之製備與合成方法 24
2-4-3 化學脫層法製備氧化石墨烯 25
2-5 石墨烯光觸媒複合材料之光催化還原二氧化碳 28
2-6 氧化亞銅光觸媒 33
2-6-1 氧化亞銅之性質 33
2-6-2 氧化亞銅之製備方法 34
2-6-3 氧化亞銅之光催化活性 35
第三章 實驗方法 39
3-1 藥品與儀器設備 39
3-1-1 實驗藥品 39
3-1-2 儀器型號與規格 40
3-2 實驗步驟 43
3-2-1 氧化石墨烯之製備 43
3-2-2 含銅氧化石墨烯之製備 45
3-2-3 樣品代號說明 47
3-3 觸媒特性分析原理與方法 48
3-3-1 場發射掃描式電子顯微鏡(SEM) 48
3-3-2 場發射穿透式電子顯微鏡(TEM) 48
3-3-3 能量散射光譜儀(EDS) 49
3-3-4 高解析X光繞射儀(XRD) 50
3-3-5 X光光電子能譜儀(XPS) 53
3-3-6 紫外光-可見光光譜儀(UV-VIS) 54
3-3-7 螢光光譜儀(Fluorescence) 55
3-3-8 熱重分析儀(TGA) 56
3-3-9 拉曼光譜儀(Raman spectrum) 57
3-3-10 電子順磁共振儀(EPR) 58
3-3-11 氣相層析儀(GC) 60
3-4 光催化還原二氧化碳反應 62
3-5 檢量線製作 64
第四章 結果與討論 65
4-1 觸媒之特性分析 65
4-1-1 SEM影像分析 65
4-1-2 TEM 影像分析 69
4-1-3 XRD圖譜分析 72
4-1-4 XPS圖譜分析 78
4-1-5 UV-VIS吸收光譜分析 87
4-1-6 螢光光譜分析 89
4-1-7 拉曼光譜分析 91
4-1-8 TGA圖譜分析 93
4-1-9 EPR分析 95
4-2 二氧化碳之光催化還原反應 99
第五章 結論 107
參考文獻 108
1.IPCC. IPCC Fourth Assement Report: Climate Change 2007. 2007.
2.UNFCCC, Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1997.
3.UNFCCC, United nations conference on climate change COP21. 2015.
4.Laboratory, N.E.S.R., THE NOAA ANNUAL GREENHOUSE GAS INDEX 2015.
5.Laboratory, N.E.S.R., Recent Monthly Average Mauna Loa carbon dioxide. 2015.
6.Bard, A.J. and M.A. Fox, Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Accounts of Chemical Research, 1995. 28(3): p. 141-145.
7.Aresta, M. and A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions, 2007(28): p. 2975-2992.
8.Halmann, M., Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature, 1978. 275(5676): p. 115-116.
9.Inoue, T., et al., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 1979. 277(5698): p. 637-638.
10.蘇清源, 石墨烯氧化物之特性與應用前景. 物理雙月刊, 2011. 33(2): p. 163-167.
11.Zheng, Z., et al., Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions. The Journal of Physical Chemistry C, 2009. 113(32): p. 14448-14453.
12.Michel Boudart, G.D.-M., Kinetics of Heterogeneous Catalytic Reactions. 1984.
13.Akria Fujishima, K.H., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238: p. 37-38.
14.蘇俊鐘, 奈米光觸媒. 化工資訊月刊, 2003. 16(5,12).
15.Tu, W., Y. Zhou, and Z. Zou, Photocatalytic conversion of CO(2) into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater, 2014. 26(27): p. 4607-26.
16.Friend, C.M., Perspectives on Heterogeneous Photochemistry. The Chemical Record, 2014. 14(5): p. 944-951.
17.Usubharatana, P., et al., Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research, 2006. 45(8): p. 2558-2568.
18.Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
19.N. Serpone, E.P., Photocatalysis. Wiley, New York, 1989.
20.J.M. Smith, H.V.N., Michael Abbott, Introduction to Chemical Engineering Thermodynamics (The Mcgraw-Hill Chemical Engineering Series). 2004.
21.Nocera, D.G., The Artificial Leaf. Accounts of Chemical Research, 2012. 45(5): p. 767-776.
22.Tran, P.D., et al., Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 2012. 5(3): p. 5902-5918.
23.Mao, J., K. Li, and T. Peng, Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science & Technology, 2013. 3(10): p. 2481.
24.Slamet, et al., Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catalysis Communications, 2005. 6(5): p. 313-319.
25.Kuwabata, S., et al., Selective photoreduction of carbon dioxide to methanol on titanium dioxide photocatalysts in propylene carbonate solution. Journal of the Chemical Society, Chemical Communications, 1995(8): p. 829-830.
26.Tseng, I.H., W.-C. Chang, and J.C.S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 2002. 37(1): p. 37-48.
27.X. Li, H.L.L., D. L. Luo, J. T. Li, Y. Huang, H. Li, Y. P. Fang, Y. H. Xu and L. Zhu, Chem. Eng. J, 2012. 108: p. 151.
28.Cheng, H., et al., An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chemical Communications, 2012. 48(78): p. 9729-9731.
29.An, C., et al., Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol. Nanoscale, 2012. 4(18): p. 5646-5650.
30.Woolerton, T.W., et al., CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy & Environmental Science, 2011. 4(7): p. 2393-2399.
31.Kim, W., T. Seok, and W. Choi, Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energy & Environmental Science, 2012. 5(3): p. 6066-6070.
32.Tsai, C.-W., et al., Ni@NiO Core–Shell Structure-Modified Nitrogen-Doped InTaO4 for Solar-Driven Highly Efficient CO2 Reduction to Methanol. The Journal of Physical Chemistry C, 2011. 115(20): p. 10180-10186.
33.Goren, Z., et al., Selective photoreduction of carbon dioxide/bicarbonate to formate by aqueous suspensions and colloids of palladium-titania. The Journal of Physical Chemistry, 1990. 94(9): p. 3784-3790.
34.Richardson, P.L., et al., RETRACTED: Manganese- and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol. Applied Catalysis B: Environmental, 2012. 126: p. 200-207.
35.Ola, O., et al., Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation. Applied Catalysis B: Environmental, 2012. 126: p. 172-179.
36.Kaneco, S., et al., Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry, 1998. 115(3): p. 223-226.
37.Abou Asi, M., et al., Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catalysis Today, 2011. 175(1): p. 256-263.
38.Liu, Y., et al., Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catalysis Communications, 2009. 11(3): p. 210-213.
39.Zhao, Z.-H., J.-M. Fan, and Z.-Z. Wang, Photo-catalytic CO2 reduction using sol–gel derived titania-supported zinc-phthalocyanine. Journal of Cleaner Production, 2007. 15(18): p. 1894-1897.
40.Kočí, K., et al., Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2010. 96(3–4): p. 239-244.
41.Tan, L.-L., et al., Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Research Letters, 2013. 8(1): p. 1-9.
42.Li, Y., et al., Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental, 2010. 100(1–2): p. 386-392.
43.Pathak, P., et al., Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chemical Communications, 2004(10): p. 1234-1235.
44.Wang, W.-N., J. Park, and P. Biswas, Rapid synthesis of nanostructured Cu-TiO2-SiO2 composites for CO2 photoreduction by evaporation driven self-assembly. Catalysis Science & Technology, 2011. 1(4): p. 593-600.
45.Vijayan, B., et al., Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes. The Journal of Physical Chemistry C, 2010. 114(30): p. 12994-13002.
46.Wang, W.-N., et al., Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals. Journal of the American Chemical Society, 2012. 134(27): p. 11276-11281.
47.Nguyen, T.-V. and J.C.S. Wu, Photoreduction of CO2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier. Applied Catalysis A: General, 2008. 335(1): p. 112-120.
48.Yan, S., et al., Efficient conversion of CO2 and H2O into hydrocarbon fuel over ZnAl2O4-modified mesoporous ZnGaNO under visible light irradiation. Chemical Communications, 2012. 48(7): p. 1048-1050.
49.Park, H.-a., et al., Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. Journal of Materials Chemistry, 2012. 22(12): p. 5304-5307.
50.Chen, X., et al., Ultrathin, Single-Crystal WO3 Nanosheets by Two-Dimensional Oriented Attachment toward Enhanced Photocatalystic Reduction of CO2 into Hydrocarbon Fuels under Visible Light. ACS Applied Materials & Interfaces, 2012. 4(7): p. 3372-3377.
51.Liou, P.-Y., et al., Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy & Environmental Science, 2011. 4(4): p. 1487-1494.
52.Wang, Z.-Y., et al., CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Applied Catalysis A: General, 2010. 380(1–2): p. 172-177.
53.Li, X., et al., Photocatalytic Reduction of Carbon Dioxide to Methane over SiO2-Pillared HNb3O8. The Journal of Physical Chemistry C, 2012. 116(30): p. 16047-16053.
54.Li, P., et al., The Effects of Crystal Structure and Electronic Structure on Photocatalytic H2 Evolution and CO2 Reduction over Two Phases of Perovskite-Structured NaNbO3. The Journal of Physical Chemistry C, 2012. 116(14): p. 7621-7628.
55.Zhang, N., et al., Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chemical Communications, 2011. 47(7): p. 2041-2043.
56.Wang, C., et al., Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts. The Journal of Physical Chemistry Letters, 2010. 1(1): p. 48-53.
57.Wang, Y., et al., Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Applied Catalysis B: Environmental, 2013. 130–131: p. 277-284.
58.Wang, C., et al., Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry, 2011. 21(35): p. 13452-13457.
59.Liu, Q., et al., Synthesis of highly crystalline In2Ge2O7(En) hybrid sub-nanowires with ultraviolet photoluminescence emissions and their selective photocatalytic reduction of CO2 into renewable fuel. RSC Advances, 2012. 2(8): p. 3247-3250.
60.Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
61.Lee, C., et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388.
62.Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308-1308.
63.Geim, A.K., Graphene: Status and Prospects. Science, 2009. 324(5934): p. 1530-1534.
64.黃淑娟, 劉益昌, 葉裕洲, 新碳材時代--從奈米碳管到石墨烯. 工業材料, 2011. 291: p. 93-103.
65.Brodie, B.C., Sur le poids atomique du graphite. Ann Chim Phys, 1860. 59: p. 466-472.
66.Staudenmaier, L., Verfahren zur darstellung der graphitsäure. Philos. Trans. R. Soc. London., 1898. 31: p. 1481-1487.
67.Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
68.Li, H. and C. Bubeck, Photoreduction processes of graphene oxide and related applications. Macromolecular Research, 2013. 21(3): p. 290-297.
69.Tang, Y., X. Hu, and C. Liu, Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Physical Chemistry Chemical Physics, 2014. 16(46): p. 25321-25329.
70.Lightcap, I.V., T.H. Kosel, and P.V. Kamat, Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Letters, 2010. 10(2): p. 577-583.
71.Low, J., J. Yu, and W. Ho, Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel. The Journal of Physical Chemistry Letters, 2015. 6(21): p. 4244-4251.
72.Hsu, H.-C., et al., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale, 2013. 5(1): p. 262-268.
73.Zhang, L., et al., ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2. Ceramics International, 2015. 41(5, Part A): p. 6256-6262.
74.Yu, J., et al., A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. Journal of Materials Chemistry A, 2014. 2(10): p. 3407-3416.
75.Wang, P.-Q., et al., Graphene–WO3 nanobelt composite: Elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels. Catalysis Communications, 2013. 38: p. 82-85.
76.Tu, W., et al., An In Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2-Graphene 2D Sandwich-Like Hybrid Nanosheets: Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2 into Methane and Ethane. Advanced Functional Materials, 2013. 23(14): p. 1743-1749.
77.Pal, J., et al., Crystal-Plane-Dependent Etching of Cuprous Oxide Nanoparticles of Varied Shapes and Their Application in Visible Light Photocatalysis. The Journal of Physical Chemistry C, 2013. 117(46): p. 24640-24653.
78.Wang, A., et al., Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances. Powder Technology, 2014. 261: p. 42-48.
79.Xiaoqiang An, K.L., Junwang Tang, Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem, 2014. 7: p. 1086-1093.
80.Shown, I., et al., Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Letters, 2014. 14(11): p. 6097-6103.
81.J. R. Anderson, K.C.P., Introduction to characterization and testing of catalysts. 1985: ACADEMIC PRESS, New York.
82.D. E. Newbury, D.C.J., P. Echlin, C. Fioriand Goldstein, Advanced Scanning Electron Microscopy and X-ray Microanalysis. 1986.
83.Joseph Goldstein, D.N., David Joy, Charles Lyman, Patrick Echlin, Eric Lifshin, Linda Sawyer, and Joseph Michael, Scanning Electron Microscopy and X-ray Microanalysis. . 2003: Kluwer Academic/Plenum Publishers. .
84.Vickerman, J.C., Surface Analysis - The Principle Techniques. . 1997: John Wiley&Sons, New York. .
85.Carter, D.B.W.a.C.B., ed., Transmission electron microscopy. Plenum Press. .
86.Joseph Goldstein, D.N., David Joy, Charles Lyman, Patrick Echlin, Eric Lifshin, Linda Sawyer, Joseph Michael, Scanning Electron Microscopy and X-ray Microanalysis. 2003: Kluwer Academic/Plenum Publishers.
87.W.D.Callister, D.G.R., Materials science and engineering : an introduction. 2007: Wiley.
88.L.V. Azaroff, M.J.B., The power Method in X-Ray Crystallography. . 1970: McGraw-Hill. .
89.B.D. Cullity, S.R.S., Elements of X-Ray Diffraction. 2001: Prentice Hall. .
90.雷敏宏, 吳紀聖, 觸媒化學概論與應用. 五南圖書, 2014.
91.劉興鑑, 孫., 陳玉舜, 趙敏勳, 謝明學, 儀器分析. 全威圖書, 2013.
92.Arthur Schweiger, G.J., Principles of Pulse Electron Paramagnetic Resonance. 1 ed. 2001: OXFORD UNIVERSITY PRESS.
93.Jaeger, C.D. and A.J. Bard, Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. The Journal of Physical Chemistry, 1979. 83(24): p. 3146-3152.
94.Pascual, E.C., B.A. Goodman, and C. Yeretzian, Characterization of Free Radicals in Soluble Coffee by Electron Paramagnetic Resonance Spectroscopy. Journal of Agricultural and Food Chemistry, 2002. 50(21): p. 6114-6122.
95.Sankarapandi, S., Zweier, J.L., Evidence against the Generation of Free Hydroxyl Radicals from the Interaction of Copper,Zinc-Superoxide Dismutase and Hydrogen Peroxide. . Journal of Biological Chemistry, 1999. 274(49): p. 34576-34583.
96.SCIENCES, C.A., INTRODUCTION TO CAPILLARY GC INJECTION TECHNIQUES. 2014.
97.Sookhakian, M., Y.M. Amin, and W.J. Basirun, Hierarchically ordered macro-mesoporous ZnS microsphere with reduced graphene oxide supporter for a highly efficient photodegradation of methylene blue. Applied Surface Science, 2013. 283: p. 668-677.
98.Shenzhong, L., et al., CuO nanodendrites synthesized by a novel hydrothermal route. Nanotechnology, 2004. 15(11): p. 1428.
99.Stankovich, S., et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565.
100.Zhao, Y., et al., A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm, 2012. 14(20): p. 6710-6719.
101.Villamena, F.A., et al., Superoxide radical anion adduct of 5, 5-dimethyl-1-pyrroline N-oxide (DMPO). 2. The thermodynamics of decay and EPR spectral properties. The Journal of Physical Chemistry A, 2005. 109(27): p. 6089-6098.
102.Gengler, R.Y.N., et al., Revealing the ultrafast process behind the photoreduction of graphene oxide. Nat Commun, 2013. 4.
103.Krishnamoorthy, K., R. Mohan, and S.-J. Kim, Graphene oxide as a photocatalytic material. Applied Physics Letters, 2011. 98(24): p. 244101.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top