跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張洺愷
研究生(外文):CHANG,MING-KAI
論文名稱:電鍍參數與糖精對超臨界二氧化碳混合深共熔溶劑電鍍鎳的性質研究
論文名稱(外文):Study on the Effect of Plating Parameters and Saccharin Content over the Properties of Nickel Coating Electroplated by Using Supercritical Carbon Dioxide Mixed with Deep Eutectic Solvents
指導教授:李春穎李春穎引用關係
指導教授(外文):LI,CHUN-YING
口試委員:彭坤增莊賀喬江毅成
口試委員(外文):PENG,KUN-ZENGJHUANG,HE-CIAOJIANG,YI-CHENG
口試日期:2019-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:87
中文關鍵詞:深共熔溶劑電鍍鎳超臨界電鍍電鍍參數糖精
外文關鍵詞:Deep Eutectic SolventsNickel ElectroplatingSupercritical CO2 ProcessPlating ParametersSaccharin
相關次數:
  • 被引用被引用:2
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:1
深共熔溶劑(Deep Eutectic Solvents, DES)作為新一代的離子液體,它具有具原物料便宜、合成簡單、無毒、可生物降解、不易燃、不易揮發、高黏度、容易儲存、良好溶解性等優點,DES有潛力可以取代傳統水溶液,作為新一代有機無機溶劑。超臨界二氧化碳具有低黏性、低表面張力、高擴散性的特性,使用於電鍍液時,鍍層有較好的覆蓋性及均勻性並可增加鍍層的硬度。而本研究使用氯化膽鹼與尿素以1:2莫爾比混合之深共熔溶劑作為電鍍鎳的電解液並結合超臨界二氧化碳,研究發現使用深共熔溶劑比傳統水溶液擁有較高的鍍層硬度,而超臨界二氧化碳又比一般電鍍鍍層硬度來的更高;由於超臨界二氧化碳的低表面張力的特性,使得超臨界電鍍比一般電鍍擁有較好的表面粗糙度;隨著溫度的上升,離子傳遞的效能越好使電流效率上升。而添加糖精在超臨界電鍍下可以改善電鍍效率、降低晶粒大小、表面粗糙度、降低內應力及提高耐腐蝕性。
Deep eutectic solvent (DES) is a new generation of ionic liquids. It has the advantages of cheap raw materials, simple synthesis, non-toxic, biodegradable, non-flammable, non-volatile, high viscosity, easy to store and good solubility. DES has the potential to replace traditional aqueous solutions as a new generation of organic and inorganic solvents. Supercritical CO2 has low viscosity, low surface tension and high diffusivity. The coating prepared in supercritical CO2 environment has good coverage and uniformity. The supercritical CO2 process can increase the hardness of the coating when used in electroplating solution. In this study, DES from the mixture of choline chloride and urea in 1:2 molar ratio and supercritical carbon dioxide was used as the electrolyte for electroplating nickel. Our study has found that the Ni coating prepared in the DES has a higher hardness than conventional aqueous solutions. Moreover, with the introduction of supercritical carbon dioxide further increased the coating’s hardness than its conventionally electroplated counterpart. Due to the low surface tension properties of supercritical carbon dioxide, the electroplated Ni coating has better surface roughness than conventional plating. The raise in the DES electrolyte temperature increased the current efficiency in plating because of the higher ion transfer efficiency. Adding saccharin in supercritical plating can improve current efficiency, lower grain size, surface roughness, internal stress and raise corrosion resistance.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 前言 1
1.1 離子液體之發展 1
1.2 深共熔溶劑之發展 2
1.3 研究動機與目的 2
1.4 論文架構 4
第二章 基礎理論與文獻回顧 5
2.1 電化學沉積 5
2.1.1 電化學沉積原理 5
2.1.2 電化學質傳 7
2.1.3 電化學結晶的成長過程 7
2.1.4 影響鍍層的結構主要因素 9
2.1.5 鍍層的結構與性質 10
2.1.6 電鍍時間與鍍層厚度控制 11
2.2 超臨界相 12
2.2.1 超臨界流體 12
2.2.2 超臨界二氧化碳 12
2.2.3 超臨界電鍍文獻回顧 13
2.3 深共熔溶劑 15
2.3.1 深共熔溶劑的定義 15
2.3.2 深共熔溶劑文獻回顧 17
第三章 實驗方法及設備 19
3.1 實驗流程 19
3.1.1 超臨界二氧化碳電鍍實驗設備 20
3.1.2 一般電鍍實驗設備 21
3.1.3 電鍍實驗藥品 23
3.1.4 電鍍液之調配 23
3.1.5 試片前處理 25
3.2 實驗參數設定 26
3.3 二氧化碳濃度檢測 28
3.3.1 實驗流程 28
3.4 鍍層微結構分析 29
3.4.1 穿透式電子顯微鏡 29
3.4.2 掃描式電子顯微鏡 30
3.4.3 X-光繞射儀 31
3.4.4 電子微探儀 33
3.5 機械性質分析 34
3.5.1 表面輪廓儀 34
3.5.2 維克氏硬度試驗機 35
3.5.3 鍍層內應力量測 36
3.6 鍍層電化學特性分析 38
第四章 結果與討論 41
4.1 深共熔溶劑二氧化碳濃度與水溶液的比較 41
4.2 鍍層表面形貌及微結構分析 42
4.2.1 鍍層成份分析 42
4.2.2 試片表面形貌 47
4.2.3 鍍層電流效率 48
4.2.4 鍍層微結構 50
4.2.5 鍍層內部結構 57
4.2.6 X-光繞射圖譜 59
4.2.7 XRD分析鍍層晶粒大小 62
4.3 鍍層機械性質分析 64
4.3.1 鍍層表面粗糙度 64
4.3.2 鍍層維克氏硬度量測 67
4.3.3 鍍層內應力量測 70
4.4 鍍層電化學分析 72
第五章 結論 77
5.1 不同溫度及糖精對鍍層微結構之影響 77
5.2 不同溫度及糖精對鍍層機械性質之影響 77
5.3 不同溫度及糖精對鍍層電化學影響 78
5.4 深共熔溶劑在超臨界電鍍下之優缺點 79
5.5 未來展望 80
參考文獻 81




[1]Tom, W., “Ionic liquids: a brief history,” CrossMark, Vol. 10, 2018, pp. 691-706.
[2]Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F., “Green processing using ionic liquids and CO2,” Nature, Vol. 399, 1999, pp. 28–29.
[3]Wang, Q.J., Chung, Y.W., “Encyclopedia of Tribology,” Springer US, 2013.
[4]Rodriguez C.A.D., Tremiliosi-Filho G., “Electrochemical Deposition,” Springer, Boston, MA, 2013.
[5]胡啟章,電化學原理與方法,五南圖書出版股份有限公司,2007年。
[6]劉庭宇,電流模式與介面活性劑對超臨界電鍍鎳鍍層之影響探討,碩士論文,國立臺北科技大學製造科技研究所,臺北,2011年。
[7]洪浚誥,電鍍內應力即時量測裝置的研發,碩士論文,國立台北科技大學機電整合研究所,臺北,2015年。
[8]陳黼澤,替代六價鉻製程研究,博士論文,國立台灣大學工學院機械工程學系,臺北,2009年。
[9]Kanani, N., “Electroplating: Basic Principles,” Elsevier Science, 2005.
[10]張允誠、胡如南、向榮,電鍍手冊(上),國防工業出版社,1997年。
[11]Pletcher, D., Walsh, F.C., “Industrial Electrochemistry,” Springer Netherlands, 1989.
[12]王大倫,實用電鍍學,徐氏文教基金會出版,2006年。
[13]蘇癸陽,實用電鍍理論與實際,復文書局,1990年。
[14]http://www.wikiwand.com/zh-hk/二氧化碳流體
[15]王鴻宇,於超臨界二氧化碳流體中以無電鍍方法製備鎳硼合金之研究,碩士論文,國立成功大學材料科學及工程學系,臺南,2009年。
[16]Rafaely, N., Limaa, A, Ribeirob, S., Cardozo-Filhoc, L., Vedoyd, D., Pericles, B.A, “Extraction from Leaves of Piper klotzschianum using Supercritical Carbon Dioxide and Co-Solvents,” The Journal of Supercritical Fluids, Vol. 147, 2019, pp. 205-212.
[17]Adschiri, T., Yoko, A.,“Supercritical fluids for nanotechnology,” The Journal of Supercritical Fluids, Vol. 134, 2018, pp. 167-175
[18]Keagy, J.A., Zhang, X., Johnston, K.P., Busch, E., Weber, F., Wolf, P.J., Rhoad, T., “Cleaning of Patterned Porous Low-k Dielectrics with Water, Carbon Dioxide and Ambidextrous Surfactants,” Journal of Supercritical Fluids, Vol. 39, 2006, pp. 277-285.
[19]Lin, F., Liu, D., Das, S.M., Nana, P., Yan, H., Lu, J., “Recent progress in heavy metal extraction by supercritical CO2 fluid,” Source of the Document Industrial and Engineering Chemistry Research, Vol. 53, 2014, pp. 1866-1877.
[20]談駿嵩,超臨界流體的應用,科學發展,2002。
[21]Yoshida, H., Sone, M., Mizushima, A., Abe, K., Tao, X.T., Ichihara, S., Miyata, S., “Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution,” Chemistry Letters, Vol. 11, 2002, pp. 1086.
[22]Yoshida, H., Sone, M., Mizushima, A., Yan, H., Wakabayashi, H., Abe, K., Tao, X.T., Ichihara, S., Miyata, S., “Application of Emulsion of Dense Carbon Dioxide in Electroplating Solution with Nonionic Surfactants for Nickel Electroplating,” Surface and Coatings Technology, Vol. 173, 2003, pp. 285-292.
[23]Yan, H., Sone, M., Mizushima, A., Nagai, T., Abe, K., Ichihara, S., Miyata, S., “Electroplating in CO2-in-Water and Water-in-CO2 Emulsions Using a Nickel Electroplating Solution with Anionic Fluorinated Surfactant,” Surface & Coatings Technology, Vol. 187, 2004, pp. 86-92.
[24]Kim, M.S., Kim, J.Y., Kim, C.K., Kim, N.K., “Study on the Effect of Temperature and Pressure on Nickel-electroplating Characteristics in Supercritical CO2,” Chemosphere, Vol. 58, 2005, pp. 459-465.
[25]Chang, T.F.M., Sone, M., Shibata, A., Ishiyama, C., Higo, Y., “Bright Nickel Film Deposited by Supercritical Carbon Dioxide Emulsion Using Additive-free Watts Bath,” Electrochimica Acta, Vol. 55, 2010, pp. 6469-6475.
[26]Nguyen, C.V., Lee, C.Y., Chen, F.J., Lin, C.S., Lin, T.Y., “Study on the Internal Stress of Nickel Coating Electrodeposited in an Electrolyte Mixed with Supercritical Carbon Dioxide,” Surface & Coating Technology, Vol. 206, 2012, pp. 3201-3207.
[27]Abbott, A.P., Capper, G., Davies, D.L, Rasheed, R.K., Tambyrajah, V., “Novel solvent properties of choline chloride/urea mixtures,” Chem Commun, Vol. 9, 2003, pp. 70-71.
[28]Luciana, I.N.T., Vanessa, B., Wanderson, D.S., Christopher, M.A.B., “Deep eutectic solvents for the production and application of new materials,” Applied Material Today, Vol. 10, 2018, pp. 30-50.
[29]Abbott, A.P., Barron, J.C., Ryder, K.S., Wilson, D., “Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations,” Chem.–Eur. J., Vol. 13, 2007, pp. 6495–6501.
[30]Abbott, A.P., El Ttaib, K., Ryder, K.S., Smith, E.L. “Electrodeposition of nickel using eutectic based ionic liquids,” Transactions of the Institute of Metal Finishing, Vol. 86, 2008, pp. 234-240.
[31]Gu, C.D., You, Y.H., Yu, Y.L., Qu, S.X., Tu, J.P., “Microstructure, nanoindentation, and electrochemical properties of the nanocrystalline nickel film electrodeposited from choline chloride–ethylene glycol,” Surface & Coatings Technology, Vol. 205, 2011, pp. 4928-4933.
[32]Srivastava, M., Yoganandan, G., William Grips, V.K., “Electrodeposition of Ni and Co coatings from ionic liquid,” Surf Eng, Vol. 28, 2012, pp. 424-429.
[33]Fashu, S., Gu, C.D., Wang, X.L., Tu, J.P., “Influence of electrodeposition conditions on the microstructure and corrosion resistance of Zn–Ni alloy coatings from a deep eutectic solvent,” Surface & Coatings Technology, Vol. 242, 2014, pp. 34-41.
[34]Abbott, A.P., Ballantyne, A., Harris, R.C., Juma, J.A., Ryder, K.S., Forrest, G., “A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions,” Electrochimica Acta, Vol. 176, 2015, pp. 718-726.
[35]Protsenko, V.S., Kityk, A.A., Shaiderov, D.A., Danilov, F.I., “Effect of water content on physicochemical properties and electrochemical behavior of ionic liquids containing choline chloride, ethylene glycol and hydrated nickel chloride,” Journal of Molecular Liquids, Vol. 212, 2015, pp. 716-722.
[36]Du, C., Zhao, B., Chen, X.-B., Birbilis, N. & Yang, H., “Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid,” Scientific Reports, 29225, 2016.
[37]Abbott, A.P., Ballantyne, A., Harris, R.C., Juma, J.A. and Ryder, S., “Bright metal coating from sustainable electrolytes: the effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent,” Physical Chemistry Chemical Physics, Vol. 19, 2017, pp. 3219-3231.
[38]Urcezino, A., dos Santos, L., Casciano, P., Correia, A., de Lima-Neto, P., “Electrodeposition study of Ni coatings on copper from choline chloride-based deep eutectic solvents,” Journal of the Brazilian Chemical Society, Vol. 28, 2017, pp. 1193-1203.
[39]Wang, S., Zou, X., Lu, Y., Rao, S., Xie, X., Pang, Z., Lu, X., Xu, Q., Zhou, Z., “Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution,” International Journal of Hydrogen Energy, Vol. 43, 2018, pp. 15673-15686.
[40]Li, R., Dong, Q., Xia, J., Luo, C., Sheng, L., Cheng, F., Liang, J., “Electrodeposition of composition controllable Zn-Ni coating from water modified deep eutectic solvent,” Surface & Coatings Technology, Vol. 366, 2019, pp. 138-145.
[41]Weil, R., “The Origins of Stress in Electrodeposits, Review of the Literature Dealing with Stress in Electrodeposited Metal,” Plating, Vol. 58, 1971, pp. 137-146.
[42]Chung, S.T., Huang, H.C., Pan, S.J., Tsai, W.T., Lee, P.Y., “Material Characterization and Corrosion Performance of Nickel Electroplated in Supercritical CO2 Fluid,” Corrosion Science, Vol. 50, 2008, pp. 2614-2619.
[43]Stoney, G.G., “The Tension of Metallic Films Deposited by Electrolysis,” Proceedings of the Royal Society of London Series A, Vol. 82, 1909, pp. 172-175.
[44]Pureza, J.M., Lacerda, M.M., Oliveira, A.L.D., Fragalli, J.F., Zanon, R.A.S., “Enhancing Accuracy to Stoney Equation,” Applied Surface Science, Vol. 255, 2009, pp. 6426-6428.
[45]Sarmad, S., Xie, Y., Mikkola, J.-P. and Ji, X., “Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity,” New Journal of Chemistry, Vol.41, 2017, pp. 290-301.
[46]García, G., Atilhan, M., Aparicio, S., “A theoretical study on mitigation of CO2 through advanced deep eutectic solvents,” International Journal of Greenhouse Gas Control, Vol. 39, 2015, pp. 62-73.
[47]Ali, E., Hadj-Kali, M.K., Mulyono, S., Alnashef, I., “Analysis of operating conditions for CO2 capturing process using deep eutectic solvents,” International Journal of Greenhouse Gas Control, Vol. 47, 2016, pp. 342-350.
[48]林麗娟,X光繞射原理及其應用,X光材料分析技術與應用專題,1994年。
[49]許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,新竹,2004年。
[50]Chang, T.F.M., Shimizu, T., Ishiyama, C., Sone, M., “Effects of pressure on electroplating of copper using supercritical carbon dioxide emulsified electrolyte,” Thin solid films, Vol. 529, 2013, pp. 25-28.
[51]Badea, G.E., Caraban, A., Sebesan, M., Dzitac, S., Cret, P., Setel, A., “Polarisation measurement used for corrosion rates determination,” Journal of Sustainable Energy, Vol. 1, 2010, pp. 16.
[52]Youssef, K.M.S., Koch, C.C., Fedkiw, P., “Improved corrosion behavior of nanocrystalline zinc produced by pluse-current electrodeposition,” Corrosion Science, Vol. 46, 2004, pp. 51-64.
[53]Li, Y., Jiang, H., Wang, D., Ge, H., “Effects of saccharin and cobalt concentration in electrolytic solution on microhardness of nanocrystalline Ni–Co alloys,” Surface&Coatings Technology, Vol. 202, 2008, pp. 4952-4956.
[54]Chang, T.F.M., Sone, M., Shibata, A., Ishiyama, C., Higo, Y., “Bright nickel film deposited by supercritical carbon dioxide emulsion using additive-free Watts bath,” Electrochimica Acta, Vol. 55, 2010, pp. 6469-6475.
[55]鍾松廷,於含有超臨界二氧化碳流體之電解液中以電鍍法製備鎳基鍍層及材料特性之研究,博士論文,國立成功大學材料科學及工程學系,臺南,2011年。
[56]Zarpellon, J., Jurca, H.F., Klein, J.J., Schreiner, W.H., Mattoso, N., Mosca, D.H., “Electrodeposition of Fe thin films on Si(1 1 1) surfacesin the presence of sodium saccharin,” Electrochimica Acta, Vol. 53, 2007, pp. 2002-2008.
[57]Rashidi, A.M., Amadeh, A., “The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings,” Surface & Coatings Technology, Vol. 204, 2009, pp. 353-358.
[58]Jiang, B., Weng, G.J., “A composite model for the grain-size dependence of yield stress of nanograined materials,” Metallurgical and Materials Transactions A,” Vol. 34, 2003, pp. 765-772.
[59]Barai, P., Weng, G.J., “Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding,” International Journal of Plasticity, Vol. 25, 2009, pp. 2410-2434.
[60]Qi, Z.B., Sun, P., Zhu, F.P., Wang, Z.C., Peng, D.L., Wu, C.H., “The inverse Hall–Petch effect in nanocrystalline ZrN coatings,” Surface and Coatings Technology, Vol. 205, 2011, pp. 3692-3697.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊