跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/11 03:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:武譚柏
研究生(外文):Vo Tan Phat
論文名稱:兩層式厭氧槽產氫烷氣之研究
論文名稱(外文):Biohythane production via single-stage anaerobic fermentation in a two-compartment bioreactor
指導教授:林秋裕林秋裕引用關係賴奇厚賴奇厚引用關係
指導教授(外文):Chiu-Yue LinChyi-How Lay
口試委員:林秋裕賴奇厚陳晉照
口試委員(外文):Chiu-Yue LinChyi-How LayChin-Chao Chen
口試日期:2019-07-11
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:111
中文關鍵詞:厭氧發酵氫烷氣單槽兩層式厭氧槽
外文關鍵詞:Anaerobic fermentationbiohythanesingle-stagetwo-compartment bioreactor
DOI:https://doi.org/10.1016/j.biortech.2019.121869
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
廚餘(Food Waste)的處理是許多國家頭痛的環境議題。然而,FW深具轉化成生物能源的潛力。FW可透過厭氧消化的方式轉換成沼氣,經過證實,透過厭氧醱酵來處理FW是最有效的解決方案。氫和甲烷是潛在的替代能源載體,具有可永續生產和可移動的重要性。氫氣和甲烷的混合氣體稱為氫烷氣,是屬於高熱值的燃料。此外,生物氫烷氣是比壓縮天然氣更好的運輸燃料,其可燃性範圍大、降低點火溫度和時間,並降低一氧化二氮(NOx)排放,且可改善發動機性能,也無需特別純化。另一方面,兩階段厭氧消化程序的水力停留時間(Hydraulic retention time,HRT)較單一階段的厭氧消化技術短,讓兩階段程序比其單階段程序更受關注。此外,兩階段系統還有高能量回收、高化學需氧量(COD)去除、高氫氣和甲烷產量,及減少沼氣中的二氧化碳排放等特點。另外,亦有在單一醱酵槽中生產氫烷氣(氫氣和甲烷的混合物)。這技術比使用兩個分開的生物反應器的技術,在製造成本與氫烷氣氣體儲存方面更具優勢。
本研究在單一厭氧醱酵槽(two-compartment bioreactor,TCR)中分離兩個反應室(下部為產氫反應室;上層為產甲烷反應室),進行連續生產生物氫烷氣。本研究探討兩個培養條件之影響,分別為:(1)以FW(40 g COD / L)為料源,探討HRT 10,7,5,3和2 d的影響;(2)在HRT為2 d條件下,探討基質濃度10,20,40和80 g COD / L之影響。在HRT影響的實驗中發現,HRT 2 d時有最大的產氫率 714mL/L-d和產甲烷率254 mL/L-d;其中氫氣濃度為8.6%,甲烷濃度為48.0%。分子生物檢測結果顯示,在HRT 2 d連續培養下,產氫反應室的優勢菌種為Clostridium sensustricto 2,甲烷反應室的優勢菌種為Methanosaeta。另外,在基質濃度影響之研究結果發現,基質濃度與沼氣產量有顯著相關。在KW 10 g COD/L時,幾乎沒有觀察到氫氣產生;而在KW 40 g COD/L時有最高的產氫速率,其數值約為80 g COD/L與20 g COD/L者的4倍;但當KW濃度從40 g COD/L提高為80 g COD/L時,氫氣產率會隨之下降;此外,高KW濃度,甲烷產量產生受到明顯抑制。 本研究開發的新穎的單一厭氧醱酵產生物氫烷氣的雙槽室反應槽,可有效利用廚餘產生氫烷氣,並找出有最大氫烷氣產率的操作條件,同時可有效去除有機物。
關鍵字:厭氧醱酵、氫烷氣、單槽、兩層反應室

The uncontrolled discharge of large amounts of food waste (FW) causes severe environmental pollution in many countries. However, FW has a high energy potential of being converted into bioenergy. Within different possible treatment routes, anaerobic digestion of FW into biogas, is a proven and effective solution for FW treatment and valorization. Hydrogen and methane are the potential alternative energy carriers with autonomous extensive and viable importance. The mixture of hydrogen and methane is hythane and it gains attention due to its advantages as a valuable fuel. Furthermore, biohythane is a better transportation fuel than compressed natural gas in terms of high range of flammability, reducing ignition temperature as well as time, low nitrous oxide (NOx) emissions and improving engine performance without specific modification.
On the one hand, considering their complementary properties, co-production of a mixture of hydrogen and methane in the form of biohythane in two-stage anaerobic digestion process is gaining more interest than their individual production due to its advantages of hydraulic retention time (HRT), high energy recovery, high chemical oxygen demand (COD) removal, higher hydrogen and methane yields, and reducing carbon dioxide in biogas. On the other hand, such anaerobic biohythane productions using two separated bioreactors require more processes and cost for storing and mixing hydrogen and methane.
The present study dealt with the potential biohythane production in a two-compartment (lower, hydrogenesis; upper, methanogenesis) reactor (TCR) via a single-stage anaerobic fermentation at mesophilic temperature. Two main conditions were tested (1) the effect of various HRTs of 10, 7, 5, 3 and 2 d using FW as a substrate (40 g COD/L), (2) the effect of various substrate concentrations of 10, 20, 40 and 80 g COD/L at a constant HRT of 2 days.
In investigating the effects of HRTs on biohythane potential experiments, HRT 2 d resulted in peak hydrogen and methane production rates with values of 714 and 254 mL/L-d, respectively and had contents of hydrogen 8.6% and methane 48.0% in the produced gas. At this HRT, Clostridium sensu stricto 2 and Methanosaeta were dominant species in H2 and CH4 compartments, respectively. Moreover, substrate concentrations (SCs) were significantly correlated with biogas production. At SC 10 g COD/L, almost no hydrogen production was observed during steady-state while at an optimal SC of 40 g COD/L, higher hydrogen production was obtained than at 80 g COD/L, approximately fourfold compared to 20 g COD/L. There was insignificance in increasing hydrogen production when SC was changed from 40 to 80 g COD/L; furthermore, the methane production was negatively affected due to high SC.
The novelty of this work is creating a two-compartment reactor for single-stage anaerobic biohythane fermentation. However, there are a variety of improvements needs applying in TCR to enhance biohythane productivity as well as organic removal efficiency.

Acknowledgements i
摘要 ii
Abstract iii
Nomenclatures vi
Contents viii
List of Tables xi
List of Figures xii
Chapter 1. Introduction 1
1.1. Research motivation 1
1.2. Research objectives 5
Chapter 2. Literature review 6
2.1. Anaerobic Digestion 6
2.1.1. Historical background of anaerobic digestion 6
2.1.2. Anaerobic digestion process 7
2.2. Microbiology of the anaerobic digestion reactions 13
2.2.1. Hydrolytic bacteria 13
2.2.2. Acetogenic bacteria/hydrogen-producing acetogens 14
2.2.3. Methanogenic microorganisms 15
2.2.4. Interactions between different microbial consortia in the AD reactors 15
2.3. Parameters affecting the process of anaerobic digestion 17
2.3.1. Classification of the AD systems 17
2.3.2. Mixing 23
2.3.3. Organic loading rate (OLR) 24
2.3.4. Hydraulic Retention Time (HRT) 28
2.3.5. Operating temperature 31
2.3.6. pH value 33
2.3.7. Volatile Fatty Acids (VFAs) 35
2.3.8. Inoculums 39
2.4. Biohythane production from food wastes 40
Chapter 3 Materials and Methods 45
3.1. Experiment set-up 45
3.1.1. Inoculum source 45
3.1.2. Feedstock 45
3.1.3. Reactor design and system operation 46
3.2. Experimental operation 47
3.2.1. Variations of HRTs 49
3.2.2. Variations of substrate concentrations 49
3.3. Statistical Analysis 51
3.3.1. COD, TS, VS and VFAs 51
3.3.2. Total Carbohydrate 52
3.3.3. Total Lipid 53
3.3.4. Total Protein 54
3.3.5. Microorganism community 57
Chapter 4. Results and Discussion 60
4.1. Effects of hydraulic retention time on biohythane production 60
4.1.1. Biohythane production at various HRTs 60
4.1.2. Liquid products at various HRTs 67
4.1.3. TS, VS, Lipid, protein, carbohydrate and COD removal 74
4.1.4. Variations of microbial community 77
4.2. Effects of substrate concentrations on biohythane production 86
4.2.1. Biohythane production at various substrate concentrations 86
4.2.2. Liquid products at various substrate concentrations 91
4.2.3. Removals of TS, VS, Lipid, protein, carbohydrate and COD 97
Chapter 5. Conclusions and Recommendations 94
5.1. Conclusions 94
5.2. Recommendations 98
5.2.1. Reactor configuration 98
5.2.2. Mixing 99
References 100


Agneessens, L.M., Ottosen, L.D.M., Andersen, M., Olesen, C.B., Feilberg, A., Kofoed, M.V.W. 2018. Parameters affecting acetate concentrations during in-situ biological hydrogen methanation. Bioresource technology, 258, 33-40.
Akram, A., Stuckey, D. 2008. BIOMASS ACCLIMATISATION AND ADAPTATION DURING START‐UP OF A SUBMERGED ANAEROBIC MEMBRANE BIOREACTOR (SAMBR). Environmental technology, 29(10), 1053-1065.
Algapani, D.E., Qiao, W., di Pumpo, F., Bianchi, D., Wandera, S.M., Adani, F., Dong, R. 2018. Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: Energy efficiency and conversion pathways. Bioresource technology, 248, 204-213.
Algapani, D.E., Qiao, W., Ricci, M., Bianchi, D., M. Wandera, S., Adani, F., Dong, R. 2019. Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renewable Energy, 130, 1108-1115.
Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., Wagentristl, H., Schreiner, M., Zollitsch, W. 2007. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology, 98(17), 3204-3212.
Angelidaki, I., Sanders, W. 2004. Assessment of the anaerobic biodegradability of macropollutants. Re/Views in Environmental Science & Bio/Technology, 3(2), 117-129.
Angenent, L.T., Sung, S. 2001. Development of anaerobic migrating blanket reactor (AMBR), a novel anaerobic treatment system. Water Research, 35(7), 1739-1747.
Antwi, P., Li, J., Boadi, P.O., Meng, J., Shi, E., Chi, X., Deng, K., Ayivi, F. 2017. Dosing effect of zero valent iron (ZVI) on biomethanation and microbial community distribution as revealed by 16S rRNA high-throughput sequencing. International Biodeterioration & Biodegradation, 123, 191-199.
Apha, A. 1998. Standard methods for the examination of water and wastewater. American Public Health Association. Inc., Washington, DC.
Baiano, A. 2014. Recovery of biomolecules from food wastes—a review. Molecules, 19(9), 14821-14842.
Barjenbruch, M., Hoffmann, H., Kopplow, O., Tränckner, J. 2000. Minimizing of foaming in digesters by pre-treatment of the surplus-sludge. Water Science and Technology, 42(9), 235-241.
Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., Vavilin, V. 2002. The IWA anaerobic digestion model no 1 (ADM1). Water Science and Technology, 45(10), 65-73.
Battista, F., Fino, D., Mancini, G., Ruggeri, B. 2016. Mixing in digesters used to treat high viscosity substrates: the case of olive oil production wastes. Journal of environmental chemical engineering, 4(1), 915-923.
Bolzonella, D., Battista, F., Cavinato, C., Gottardo, M., Micolucci, F., Lyberatos, G., Pavan, P. 2018. Recent developments in biohythane production from household food wastes: A review. Bioresource Technology, 257, 311-319.
Bouallagui, H., Ben Cheikh, R., Marouani, L., Hamdi, M. 2003. Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresource Technology, 86(1), 85-89.
Bouallagui, H., Rachdi, B., Gannoun, H., Hamdi, M. 2009. Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors. Biodegradation, 20(3), 401.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254.
Bramstedt, S. 2016. Temperature optimization of anaerobic digestion at the Käppala Waste Water Treatment Plant.
Breure, A., Mooijman, K., Van Andel, J. 1986. Protein degradation in anaerobic digestion: influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatin. Applied Microbiology and Biotechnology, 24(5), 426-431.
Buysman, E. 2009. Anaerobic digestion for developing countries with cold climates. Wageningen University, Wageningen.
Cappai, G., De Gioannis, G., Friargiu, M., Massi, E., Muntoni, A., Polettini, A., Pomi, R., Spiga, D. 2014. An experimental study on fermentative H2 production from food waste as affected by pH. Waste Management, 34(8), 1510-1519.
Capson-Tojo, G., Rouez, M., Crest, M., Steyer, J.-P., Delgenès, J.-P., Escudié, R. 2016. Food waste valorization via anaerobic processes: a review. Reviews in Environmental Science and Bio/Technology, 15(3), 499-547.
Castillo-Hernández, A., Mar-Alvarez, I., Moreno-Andrade, I. 2015. Start-up and operation of continuous stirred-tank reactor for biohydrogen production from restaurant organic solid waste. International Journal of Hydrogen Energy, 40(48), 17239-17245.
Cavinato, C., Bolzonella, D., Fatone, F., Cecchi, F., Pavan, P. 2011. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresource technology, 102(18), 8605-8611.
Chen, J., Tang, C., Zheng, P., Zhang, L. 2008. Performance of lab-scale SPAC anaerobic bioreactor with high loading rate. Chinese Journal of Biotechnology, 24(8), 1413-1419.
Chen, T., Chynoweth, P., Biljetina, R. 1990. Anaerobic digestion of municipal solid waste in a nonmixed solids concentrating digestor. Applied Biochemistry and Biotechnology, 24(1), 533-544.
Chen, X., Yuan, H., Zou, D., Liu, Y., Zhu, B., Chufo, A., Jaffar, M., Li, X. 2015. Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw. Chemical Engineering Journal, 273, 254-260.
Cheng, J., Ding, L., Lin, R., Yue, L., Liu, J., Zhou, J., Cen, K. 2016. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance. Applied energy, 184, 1-8.
Choudhary, V.R., Mondal, K.C. 2006. CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst. Applied Energy, 83(9), 1024-1032.
Chu, C.-F., Li, Y.-Y., Xu, K.-Q., Ebie, Y., Inamori, Y., Kong, H.-N. 2008. A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. International Journal of Hydrogen Energy, 33(18), 4739-4746.
Chu, C.-F., Xu, K.-Q., Li, Y.-Y., Inamori, Y. 2012. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. international journal of hydrogen energy, 37(14), 10611-10618.
Cirne, D., Paloumet, X., Björnsson, L., Alves, M., Mattiasson, B. 2007. Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renewable energy, 32(6), 965-975.
Cruazon, B. 2014. History of anaerobic digestion, Emerging Technology for Sustainable Development Congress, web. pdx. edu, ETSDC.
Cysneiros, D., Thuillier, A., Villemont, R., Littlestone, A., Mahony, T., O'Flaherty, V. 2011. Temperature effects on the trophic stages of perennial rye grass anaerobic digestion. Water Science and Technology, 64(1), 70-76.
Daioglou, V., Doelman, J.C., Wicke, B., Faaij, A., van Vuuren, D.P. 2019. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Global Environmental Change, 54, 88-101.
De Baere, L., Mattheeuws, B. 2013. Anaerobic digestion of the organic fraction of municipal solid waste in Europe–Status, experience and prospects. ISTANBUL3WCONGRESS 2013, 38.
Demirel, B., Yenigun, O. 2004. Anaerobic acidogenesis of dairy wastewater: the effects of variations in hydraulic retention time with no pH control. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 79(7), 755-760.
Ding, J.-n., Wang, D.-z. 2005. Influence of external circulation on sludge characteristics during start-up of internal circulation reactor. Journal of Central South University of Technology, 12(4), 425-429.
Ding, L., Gutierrez, E.C., Cheng, J., Xia, A., O'Shea, R., Guneratnam, A.J., Murphy, J.D. 2018. Assessment of continuous fermentative hydrogen and methane co-production using macro-and micro-algae with increasing organic loading rate. Energy, 151, 760-770.
DY, C. 2005a. Studies of high rate anaerobic bio-conversion technology for energy production during treatment of high strength organic waste waters. .
DY, C. 2005b. Studies of high rate anaerobic bio-conversion technology for energy production during treatment of high strength organic wastewaters.
Elbeshbishy, E., Dhar, B.R., Nakhla, G., Lee, H.-S. 2017. A critical review on inhibition of dark biohydrogen fermentation. Renewable and Sustainable Energy Reviews, 79, 656-668.
Elbeshbishy, E., Hafez, H., Dhar, B.R., Nakhla, G. 2011. Single and combined effect of various pretreatment methods for biohydrogen production from food waste. International Journal of Hydrogen Energy, 36(17), 11379-11387.
Elbeshbishy, E., Nakhla, G. 2011. Comparative study of the effect of ultrasonication on the anaerobic biodegradability of food waste in single and two-stage systems. Bioresource Technology, 102(11), 6449-6457.
Elmitwalli, T.A., Sklyar, V., Zeeman, G., Lettinga, G. 2002. Low temperature pre-treatment of domestic sewage in an anaerobic hybrid or an anaerobic filter reactor. Bioresource Technology, 82(3), 233-239.
Estevez, M.M., Sapci, Z., Linjordet, R., Schnürer, A., Morken, J. 2014. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate. Journal of environmental management, 136, 9-15.
Fergusen, T., Mah, R. 2006. Methanogenic bacteria in anaerobic digestion of Biomass. J. Bacteriol, 179(3), 846-852.
Ferguson, R.M., Coulon, F., Villa, R. 2016. Organic loading rate: A promising microbial management tool in anaerobic digestion. Water research, 100, 348-356.
Fisgativa, H., Tremier, A., Le Roux, S., Bureau, C., Dabert, P. 2017. Understanding the anaerobic biodegradability of food waste: relationship between the typological, biochemical and microbial characteristics. Journal of environmental management, 188, 95-107.
Franke-Whittle, I.H., Walter, A., Ebner, C., Insam, H. 2014. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Management, 34(11), 2080-2089.
Gagliano, M., Braguglia, C., Gallipoli, A., Gianico, A., Rossetti, S. 2015. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environmental Science and Pollution Research, 22(10), 7339-7348.
Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N., Esposito, G. 2015a. A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Applied Energy, 144, 73-95.
Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., Esposito, G. 2015b. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73-95.
Giuliano, A., Zanetti, L., Micolucci, F., Cavinato, C. 2014. Thermophilic two-phase anaerobic digestion of source-sorted organic fraction of municipal solid waste for bio-hythane production: effect of recirculation sludge on process stability and microbiology over a long-term pilot-scale experience. Water Science and Technology, 69(11), 2200-2209.
González-Fernández, C., García-Encina, P.A. 2009. Impact of substrate to inoculum ratio in anaerobic digestion of swine slurry. Biomass and Bioenergy, 33(8), 1065-1069.
Graboski, M.S., McCormick, R.L. 1998. Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science, 24(2), 125-164.
Grayson, M. 2017. Energy transitions. Nature, 551(7682).
Gu, Y., Chen, X., Liu, Z., Zhou, X., Zhang, Y. 2014. Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresource technology, 158, 149-155.
Guo, X.M., Trably, E., Latrille, E., Carrere, H., Steyer, J.-P. 2010. Hydrogen production from agricultural waste by dark fermentation: a review. international journal of hydrogen energy, 35(19), 10660-10673.
Hamdi, M., Garcia, J.-L. 1991. Comparison between anaerobic filter and anaerobic contact process for fermented olive mill wastewaters. Bioresource Technology, 38(1), 23-29.
Hamelin, L., Naroznova, I., Wenzel, H. 2014. Environmental consequences of different carbon alternatives for increased manure-based biogas. Applied Energy, 114, 774-782.
Han, W., Liu, D.N., Shi, Y.W., Tang, J.H., Li, Y.F., Ren, N.Q. 2015. Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Bioresource Technology, 180, 54-58.
Hans, M., Kumar, S. 2018. Biohythane production in two-stage anaerobic digestion system. International Journal of Hydrogen Energy.
Hao, T.-w., Luo, J.-h., Wei, L., Mackey, H.R., Chi, K., Chen, G.-H. 2016. Example study for granular bioreactor stratification: Three-dimensional evaluation of a sulfate-reducing granular bioreactor. Scientific reports, 6, 31718.
Hartmann, H., Ahring, B.K. 2005. A novel process configuration for anaerobic digestion of source‐sorted household waste using hyper‐thermophilic post‐treatment. Biotechnology and bioengineering, 90(7), 830-837.
Heo, N.H., Park, S.C., Kang, H. 2004. Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge. Journal of Environmental Science and Health, Part A, 39(7), 1739-1756.
Hernández-Mendoza, C.E., Moreno-Andrade, I., Buitrón, G. 2014. Comparison of hydrogen-producing bacterial communities adapted in continuous and discontinuous reactors. International Journal of Hydrogen Energy, 39(26), 14234-14239.
Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P. 2009. The future of anaerobic digestion and biogas utilization. Bioresource technology, 100(22), 5478-5484.
Hu, Y., Kobayashi, T., Zhen, G., Shi, C., Xu, K.-Q. 2018. Effects of lipid concentration on thermophilic anaerobic co-digestion of food waste and grease waste in a siphon-driven self-agitated anaerobic reactor. Biotechnology Reports, 19, e00269.
Huang, Z., Ong, S.L., Ng, H.Y. 2011. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling. Water research, 45(2), 705-713.
Hwang, M.H., Jang, N.J., Hyun, S.H., Kim, I.S. 2004. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. Journal of Biotechnology, 111(3), 297-309.
Inanc, B., Matsui, S., Ide, S. 1999. Propionic acid accumulation in anaerobic digestion of carbohydrates: an investigation on the role of hydrogen gas. Water science and technology, 40(1), 93-100.
Intanoo, P., Chaimongkol, P., Chavadej, S. 2016. Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production. International Journal of Hydrogen Energy, 41(14), 6107-6114.
Jang, S., Kim, D.-H., Yun, Y.-M., Lee, M.-K., Moon, C., Kang, W.-S., Kwak, S.-S., Kim, M.-S. 2015. Hydrogen fermentation of food waste by alkali-shock pretreatment: Microbial community analysis and limitation of continuous operation. Bioresource Technology, 186, 215-222.
Jariyaboon, R., Sompong, O., Kongjan, P. 2015. Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion. Bioresource technology, 198, 198-206.
Jayalakshmi, S., Joseph, K., Sukumaran, V. 2009. Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. International journal of hydrogen energy, 34(21), 8854-8858.
Jiang, J., Zhang, Y., Li, K., Wang, Q., Gong, C., Li, M. 2013. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresource technology, 143, 525-530.
Jo, Y., Kim, J., Hwang, K., Lee, C. 2018. A comparative study of single- and two-phase anaerobic digestion of food waste under uncontrolled pH conditions. Waste Management, 78, 509-520.
Jung, K.-W., Kim, D.-H., Kim, S.-H., Shin, H.-S. 2011. Bioreactor design for continuous dark fermentative hydrogen production. Bioresource Technology, 102(18), 8612-8620.
Kaparaju, P., Buendia, I., Ellegaard, L., Angelidakia, I. 2008. Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale studies. Bioresource technology, 99(11), 4919-4928.
Karim, K., Hoffmann, R., Klasson, K.T., Al-Dahhan, M. 2005a. Anaerobic digestion of animal waste: Effect of mode of mixing. Water research, 39(15), 3597-3606.
Karim, K., Hoffmann, R., Thomas Klasson, K., Al-Dahhan, M.H. 2005b. Anaerobic digestion of animal waste: Effect of mode of mixing. Water Research, 39(15), 3597-3606.
Kariyama, I.D., Zhai, X., Wu, B. 2018. Influence of mixing on anaerobic digestion efficiency in stirred tank digesters: A review. Water Research, 143, 503-517.
Karthikeyan, O.P., Trably, E., Mehariya, S., Bernet, N., Wong, J.W., Carrere, H. 2018. Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresource technology, 249, 1025-1039.
Kataoka, N., Ayame, S., Miya, A., Ueno, Y., Oshita, N., Tsukahara, K., Sawayama, S., Yokota, N. 2005. Studies on hydrogen-methane fermentation process for treating garbage and waste paper. 4th International Symposium on Anaerobic Digestion of Solid Waste, Copenhagen, Denmark. pp. 306-11.
Khan, M., Ngo, H.H., Guo, W., Liu, Y., Nghiem, L.D., Hai, F.I., Deng, L., Wang, J., Wu, Y. 2016. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresource technology, 219, 738-748.
Koehler, L.H. 1952. Differentiation of Carbohydrates by Anthrone Reaction Rate and Color Intensity. Analytical Chemistry, 24(10), 1576-1579.
Kothari, R., Pandey, A., Kumar, S., Tyagi, V., Tyagi, S. 2014. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renewable and Sustainable Energy Reviews, 39, 174-195.
Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Nagy, K., Minárovits, J., Rákhely, G., Kovács, K.L. 2015. Augmented biogas production from protein-rich substrates and associated metagenomic changes. Bioresource technology, 178, 254-261.
Kowalczyk, A., Harnisch, E., Schwede, S., Gerber, M., Span, R. 2013. Different mixing modes for biogas plants using energy crops. Applied energy, 112, 465-472.
Krishnan, S., Singh, L., Sakinah, M., Thakur, S., Wahid, Z.A., Sohaili, J. 2016. Effect of organic loading rate on hydrogen (H2) and methane (CH4) production in two-stage fermentation under thermophilic conditions using palm oil mill effluent (POME). Energy for Sustainable Development, 34, 130-138.
Kumar, G., Shobana, S., Nagarajan, D., Lee, D.-J., Lee, K.-S., Lin, C.-Y., Chen, C.-Y., Chang, J.-S. 2018. Biomass based hydrogen production by dark fermentation—recent trends and opportunities for greener processes. Current Opinion in Biotechnology, 50, 136-145.
Kwak, B.S., Lee, J.S., Lee, J.S., Choi, B.-H., Ji, M.J., Kang, M. 2011. Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature. Applied energy, 88(12), 4366-4375.
Labatut, R.A., Angenent, L.T., Scott, N.R. 2014. Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water research, 53, 249-258.
Labatut, R.A., Gooch, C.A. 2014. Monitoring of anaerobic digestion process to optimize performance and prevent system failure.
Lay, C.-H., Huang, C.-Y., Chen, C.-C., Lin, C.-Y. 2016. Biohydrogen production in an anaerobic baffled stacking reactor: Recirculation strategy and substrate concentration effects. Biochemical engineering journal, 109, 59-64.
Lay, J.-J., Fan, K.-S., Ku, C.-H. 2003. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. International Journal of Hydrogen Energy, 28(12), 1361-1367.
Lee, D.-Y., Ebie, Y., Xu, K.-Q., Li, Y.-Y., Inamori, Y. 2010. Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresource technology, 101(1), S42-S47.
Lee, D.-Y., Xu, K.-Q., Kobayashi, T., Li, Y.-Y., Inamori, Y. 2014. Effect of organic loading rate on continuous hydrogen production from food waste in submerged anaerobic membrane bioreactor. International Journal of Hydrogen Energy, 39(30), 16863-16871.
Lee, M., Song, J., Hwang, S. 2009. Enhanced bio-energy recovery in a two-stage hydrogen/methane fermentation process. Water Science and Technology, 59(11), 2137-2143.
Li, C., Fang, H.H. 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37(1), 1-39.
Li, L., He, Q., Ma, Y., Wang, X., Peng, X. 2015. Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: relationship between community structure and process stability. Bioresource technology, 189, 113-120.
Li, Y., Jin, Y., Borrion, A., Li, H., Li, J. 2017. Effects of organic composition on the anaerobic biodegradability of food waste. Bioresource Technology, 243, 836-845.
Lin, C.-Y., Sato, K., Noike, T., Matsumoto, J. 1986. Methanogenic digestion using mixed substrate of acetic, propionic and butyric acids. Water Research, 20(3), 385-394.
Lin, J., Zuo, J., Gan, L., Li, P., Liu, F., Wang, K., Chen, L., Gan, H. 2011. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. Journal of Environmental Sciences, 23(8), 1403-1408.
Lin, R., Cheng, J., Ding, L., Murphy, J.D. 2018. Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges. Chemical Engineering Journal, 350, 681-691.
Lissens, G., Vandevivere, P., De Baere, L., Biey, E., Verstraete, W. 2001. Solid waste digestors: process performance and practice for municipal solid waste digestion. Water science and technology, 44(8), 91-102.
Liu, C.-M., Zheng, J.-L., Wu, S.-Y., Chu, C.-Y. 2016. Fermentative hydrogen production potential from washing wastewater of beverage production process. International Journal of Hydrogen Energy, 41(7), 4466-4473.
Liu, C., Wang, W., Anwar, N., Ma, Z., Liu, G., Zhang, R. 2017a. Effect of organic loading rate on anaerobic digestion of food waste under mesophilic and thermophilic conditions. Energy & Fuels, 31(3), 2976-2984.
Liu, G., Zhang, R., El-Mashad, H.M., Dong, R. 2009. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource technology, 100(21), 5103-5108.
Liu, T., Sun, L., Müller, B., Schnürer, A. 2017b. Importance of inoculum source and initial community structure for biogas production from agricultural substrates. Bioresource technology, 245, 768-777.
Liu, X., Khalid, H., Amin, F.R., Ma, X., Li, X., Chen, C., Liu, G. 2018. Effects of hydraulic retention time on anaerobic digestion performance of food waste to produce methane as a biofuel. Environmental Technology & Innovation, 11, 348-357.
Liu, Y., Zhang, Y., Quan, X., Li, Y., Zhao, Z., Meng, X., Chen, S. 2012. Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance anaerobic wastewater treatment. Chemical engineering journal, 192, 179-185.
Liu, Z., Zhang, C., Lu, Y., Wu, X., Wang, L., Wang, L., Han, B., Xing, X.-H. 2013. States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresource technology, 135, 292-303.
Lohani, S.P., Wang, S., Bergland, W.H., Khanal, S.N., Bakke, R. 2018. Modeling temperature effects in anaerobic digestion of domestic wastewater. Water-Energy Nexus, 1(1), 56-60.
Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A., Kamiński, M. 2018. Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews, 91, 665-694.
Lunprom, S., Phanduang, O., Salakkam, A., Liao, Q., Imai, T., Reungsang, A. 2019. Bio-hythane production from residual biomass of Chlorella sp. biomass through a two-stage anaerobic digestion. International Journal of Hydrogen Energy, 44(6), 3339-3346.
Luo, G., Xie, L., Zhou, Q., Angelidaki, I. 2011. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresource technology, 102(18), 8700-8706.
Lusk, P. 1997. Anaerobic digestion and opportunities for international technology transfer. in: Making a business from biomass in energy, environment, chemicals, fibers and materials: V. 2. Proceedings.
Lusk, P. 1999. Latest Progress in Anaerobic Digestion. Biocycle, 40.
Mamimin, C., Singkhala, A., Kongjan, P., Suraraksa, B., Prasertsan, P., Imai, T., Sompong, O. 2015. Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. International Journal of Hydrogen Energy, 40(19), 6319-6328.
Manirakiza, P., Covaci, A., Schepens, P. 2001. Comparative Study on Total Lipid Determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and Modified Bligh & Dyer Extraction Methods. Journal of Food Composition and Analysis, 14(1), 93-100.
Mata-Alvarez, J., Cecchi, F., Llabrés, P., Pavan, P. 1992. Anaerobic digestion of the Barcelona central food market organic wastes. Plant design and feasibility study. Bioresource Technology, 42(1), 33-42.
Melikoglu, M., Lin, C., Webb, C. 2013. Analysing global food waste problem: pinpointing the facts and estimating the energy content. in: Open Engineering, Vol. 3, pp. 157.
Merlino, G., Rizzi, A., Schievano, A., Tenca, A., Scaglia, B., Oberti, R., Adani, F., Daffonchio, D. 2013. Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste. Water research, 47(6), 1983-1995.
Micolucci, F., Gottardo, M., Bolzonella, D., Pavan, P. 2014. Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. international journal of hydrogen energy, 39(31), 17563-17572.
Micolucci, F., Gottardo, M., Cavinato, C., Pavan, P., Bolzonella, D. 2016. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste management, 48, 227-235.
Micolucci, F., Gottardo, M., Pavan, P., Cavinato, C., Bolzonella, D. 2018. Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste. Journal of cleaner production, 171, 1376-1385.
Mishra, P., Balachandar, G., Das, D. 2017. Improvement in biohythane production using organic solid waste and distillery effluent. Waste Management, 66, 70-78.
Nagao, N., Tajima, N., Kawai, M., Niwa, C., Kurosawa, N., Matsuyama, T., Yusoff, F.M., Toda, T. 2012. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresource Technology, 118, 210-218.
Nasir, I.M., Ghazi, T.I.M., Omar, R. 2012. Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Engineering in Life Sciences, 12(3), 258-269.
Nathoa, C., Sirisukpoca, U., Pisutpaisal, N. 2014. Production of Hydrogen and Methane from Banana Peel by Two Phase Anaerobic Fermentation. Energy Procedia, 50, 702-710.
Nayono, S.E. 2010. Anaerobic digestion of organic solid waste for energy production. KIT scientific Publishing.
Neshat, S.A., Mohammadi, M., Najafpour, G.D., Lahijani, P. 2017. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews, 79, 308-322.
Nges, I.A., Liu, J. 2010. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renewable Energy, 35(10), 2200-2206.
Nielsen, M., Holst-Fischer, C., Malmgren-Hansen, B., Bjerg-Nielsen, M., Kragelund, C., Møller, H.B., Ottosen, L.D.M. 2017. Small temperature differences can improve the performance of mesophilic sludge-based digesters. Biotechnology letters, 39(11), 1689-1698.
Noblecourt, A., Christophe, G., Larroche, C., Fontanille, P. 2018. Hydrogen production by dark fermentation from pre-fermented depackaging food wastes. Bioresource Technology, 247, 864-870.
Noike, T., Endo, G., Chang, J.E., Yaguchi, J.I., Matsumoto, J.I. 1985. Characteristics of carbohydrate degradation and the rate‐limiting step in anaerobic digestion. Biotechnology and bioengineering, 27(10), 1482-1489.
Nordberg, Å., Jarvis, Å., Stenberg, B., Mathisen, B., Svensson, B.H. 2007. Anaerobic digestion of alfalfa silage with recirculation of process liquid. Bioresource Technology, 98(1), 104-111.
Ong, H., Greenfield, P., Pullammanappallil, P. 2002. Effect of mixing on biomethanation of cattle-manure slurry. Environmental technology, 23(10), 1081-1090.
Ottaviano, L.M., Ramos, L.R., Botta, L.S., Amâncio Varesche, M.B., Silva, E.L. 2017. Continuous thermophilic hydrogen production from cheese whey powder solution in an anaerobic fluidized bed reactor: Effect of hydraulic retention time and initial substrate concentration. International Journal of Hydrogen Energy, 42(8), 4848-4860.
Öztürk, M. 1993. Degradation of acetate, propionate, and butyrate under shock temperature. Journal of Environmental Engineering, 119(2), 321-331.
Palmisano, A.C.B., Morton A. 1996. Microbiology of solid waste.
Parawira. 2004. Anaerobic treatment of agricultural residues and wastewater. PhD Thesis, Lund University, Sweden.
Park, J.-H., Kumar, G., Yun, Y.-M., Kwon, J.-C., Kim, S.-H. 2018. Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste. Bioresource technology, 248, 134-140.
Parkin, G.F.O., W.F. 1986. Fundamentals of Anaerobic Digestion of Wastewater Sludge. Journal of Environmental Engineering. http://cedb.asce.org/cgi/WWWdisplay.cgi?49921.
Parra-Orobio, B.A., Donoso-Bravo, A., Ruiz-Sánchez, J.C., Valencia-Molina, K.J., Torres-Lozada, P. 2018. Effect of inoculum on the anaerobic digestion of food waste accounting for the concentration of trace elements. Waste management, 71, 342-349.
Pasupuleti, S.B., Venkata Mohan, S. 2015. Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash. Bioresource Technology, 189, 177-185.
Paudel, S., Kang, Y., Yoo, Y.-S., Seo, G.T. 2017. Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water. Waste Management, 61, 484-493.
Petroleum, B. 2015. BP Statistical Review of world energy 2015. Statistical review of world energy, 2016, 65.
Pisutpaisal, N., Nathao, C., Sirisukpoka, U. 2014. Biological Hydrogen and Methane Production in from Food Waste in Two-stage CSTR. Energy Procedia, 50, 719-722.
Reddy, M.V., Chandrasekhar, K., Mohan, S.V. 2011. Influence of carbohydrates and proteins concentration on fermentative hydrogen production using canteen based waste under acidophilic microenvironment. Journal of biotechnology, 155(4), 387-395.
Rhyner, U., Edinger, P., Schildhauer, T.J., Biollaz, S.M. 2014. Applied kinetics for modeling of reactive hot gas filters. Applied energy, 113, 766-780.
Romero-Güiza, M., Vila, J., Mata-Alvarez, J., Chimenos, J., Astals, S. 2016. The role of additives on anaerobic digestion: a review. Renewable and Sustainable Energy Reviews, 58, 1486-1499.
Roy, S., Das, D. 2016. Biohythane production from organic wastes: present state of art. Environmental Science and Pollution Research, 23(10), 9391-9410.
Salama, E.-S., Saha, S., Kurade, M.B., Dev, S., Chang, S.W., Jeon, B.-H. 2019. Recent trends in anaerobic co-digestion: Fat, oil, and grease (FOG) for enhanced biomethanation. Progress in Energy and Combustion Science, 70, 22-42.
Sarkar, O., Mohan, S.V. 2017. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane. Bioresource technology, 242, 68-76.
Sarker, S., Lamb, J.J., Hjelme, D.R., Lien, K.M. 2018. Overview of recent progress towards in-situ biogas upgradation techniques. Fuel, 226, 686-697.
Sarker, S., Lamb, J.J., Hjelme, D.R., Lien, K.M. 2019. A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants. Applied Sciences, 9(9), 1915.
Sarker, S., Møller, H.B. 2014. Regulating feeding and increasing methane yield from co-digestion of C5 molasses and cattle manure. Energy conversion and management, 84, 7-12.
Schmidt, J.E., Ahring, B.K. 1996. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and bioengineering, 49(3), 229-246.
Schmidt, T., Ziganshin, A.M., Nikolausz, M., Scholwin, F., Nelles, M., Kleinsteuber, S., Pröter, J. 2014. Effects of the reduction of the hydraulic retention time to 1.5 days at constant organic loading in CSTR, ASBR, and fixed-bed reactors – Performance and methanogenic community composition. Biomass and Bioenergy, 69, 241-248.
Seghezzo, L., Zeeman, G., van Lier, J.B., Hamelers, H., Lettinga, G. 1998. A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource technology, 65(3), 175-190.
Sekiguchi, Y., Kamagata, Y. & Harada, H. 2001. Current opinion in Biotechnology. Current Opinion in Biotechnology, 12, p.277–282.
Sen, B., Aravind, J., Kanmani, P., Lay, C.-H. 2016. State of the art and future concept of food waste fermentation to bioenergy. Renewable and Sustainable Energy Reviews, 53, 547-557.
Shin, S.G., Han, G., Lim, J., Lee, C., Hwang, S. 2010. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Research, 44(17), 4838-4849.
Sibiya, N.T., Muzenda, E., Tesfagiorgis, H.B. 2014. Effect of temperature and pH on the anaerobic digestion of grass silage. Int'l Conf. on Chemical Engineering & Advanced Computational Technologies ….
Sinha, P., Pandey, A. 2011. An evaluative report and challenges for fermentative biohydrogen production. International Journal of Hydrogen Energy, 36(13), 7460-7478.
Sivagurunathan, P., Kumar, G., Bakonyi, P., Kim, S.-H., Kobayashi, T., Xu, K.Q., Lakner, G., Tóth, G., Nemestóthy, N., Bélafi-Bakó, K. 2016. A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. International Journal of Hydrogen Energy, 41(6), 3820-3836.
Slezak, R., Grzelak, J., Krzystek, L., Ledakowicz, S. 2017. The effect of initial organic load of the kitchen waste on the production of VFA and H2 in dark fermentation. Waste Management, 68, 610-617.
Sommer, S.G., Husted, S. 1995. A simple model of pH in slurry. The Journal of Agricultural Science, 124(3), 447-453.
Song, Y.-C., Kwon, S.-J., Woo, J.-H. 2004. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge. Water research, 38(7), 1653-1662.
Sosnowski, P., Wieczorek, A., Ledakowicz, S. 2003. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research, 7(3), 609-616.
Sunarso, S., Johari, S., Widiasa, I.N., Budiyono, B. 2010. The effect of feed to inoculums ratio on biogas production rate from cattle manure using rumen fluid as inoculums. International Journal of Science and Engineering, 1(2), 41-45.
Syutsubo, K., Onodera, T., Choeisai, P., Khodphuvieng, J., Prammanee, P., Yoochatchaval, W., Kaewpradit, W., Kubota, K. 2013. Development of appropriate technology for treatment of molasses-based wastewater. Journal of Environmental Science and Health, Part A, 48(9), 1114-1121.
Torkian, A., Eqbali, A., Hashemian, S.J. 2003. The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent. Resources, Conservation and Recycling, 40(1), 1-11.
Tran, K.T., Maeda, T., Wood, T.K. 2014. Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Applied microbiology and biotechnology, 98(10), 4757-4770.
Treatment, B.W. 2008. Principles, Modelling and Design, IWA Publishing, London.
Ueno, Y., Tatara, M., Fukui, H., Makiuchi, T., Goto, M., Sode, K. 2007. Production of hydrogen and methane from organic solid wastes by phase-separation of anaerobic process. Bioresource technology, 98(9), 1861-1865.
van Lier, J.B., Mahmoud, N., Zeeman, G. 2008. Anaerobic wastewater treatment. biological wastewater treatment, principles, modelling and design, 415-456.
Vanwonterghem, I., Jensen, P.D., Rabaey, K., Tyson, G.W. 2015. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters. Scientific reports, 5, 8496.
Verrier, D., Roy, F., Albagnac, G. 1987. Two-phase methanization of solid vegetable wastes. Biological wastes, 22(3), 163-177.
Visvanathan, C., Abeynayaka, A. 2012. Developments and future potentials of anaerobic membrane bioreactors (AnMBRs). Membr. Water Treat, 3(1), 1-23.
Voelklein, M.A., O'Shea, R., Jacob, A., Murphy, J.D. 2017. Role of trace elements in single and two-stage digestion of food waste at high organic loading rates. Energy, 121, 185-192.
Wan, S., Sun, L., Douieb, Y., Sun, J., Luo, W. 2013. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: Performance and microbial community structure characterization. Bioresource Technology, 146, 619-627.
Wang, B., Wu, D., Ekama, G.A., Huang, H., Lu, H., Chen, G.-H. 2017. Optimizing mixing mode and intensity to prevent sludge flotation in sulfidogenic anaerobic sludge bed reactors. Water research, 122, 481-491.
Wang, K., Yin, J., Shen, D., Li, N. 2014. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresource technology, 161, 395-401.
Wang, S., Hawkins, G.L., Kiepper, B.H., Das, K.C. 2018. Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production. Renewable energy, 126, 552-562.
Wei, H., Fu, Y., Magnusson, L., Baker, J.O., Maness, P.-C., Xu, Q., Yang, S., Bowersox, A., Bogorad, I., Wang, W. 2014. Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq. Frontiers in microbiology, 5, 142.
Wickham, R., Xie, S., Galway, B., Bustamante, H., Nghiem, L.D. 2018. Anaerobic digestion of soft drink beverage waste and sewage sludge. Bioresource technology, 262, 141-147.
Wijekoon, K.C., Visvanathan, C., Abeynayaka, A. 2011. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102(9), 5353-5360.
Wong, B.-T., Show, K.-Y., Su, A., Wong, R.-j., Lee, D.-J. 2007. Effect of volatile fatty acid composition on upflow anaerobic sludge blanket (UASB) performance. Energy & Fuels, 22(1), 108-112.
Wu, C., Huang, Q., Yu, M., Ren, Y., Wang, Q., Sakai, K. 2018. Effects of digestate recirculation on a two-stage anaerobic digestion system, particularly focusing on metabolite correlation analysis. Bioresource technology, 251, 40-48.
Wu, H., Gao, J., Yang, D., Zhou, Q., Liu, W. 2010. Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism. Chemical Engineering Journal, 160(1), 1-7.
Wu, L.-J., Kobayashi, T., Li, Y.-Y., Xu, K.-Q. 2015. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste. Energy Conversion and Management, 106, 1174-1182.
Wu, S.Y., Hung, C.H., Lin, C.N., Chen, H.W., Lee, A.S., Chang, J.S. 2006. Fermentative hydrogen production and bacterial community structure in high‐rate anaerobic bioreactors containing silicone‐immobilized and self‐flocculated sludge. Biotechnology and bioengineering, 93(5), 934-946.
Wu, X., Chen, G. 2017. Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China. Applied energy, 195, 125-136.
Yang, F., Chen, R., Yue, Z., Liao, W., Marsh, T.L. 2016. Phylogenetic analysis of anaerobic co-digestion of animal manure and corn stover reveals linkages between bacterial communities and digestion performance. AiM, 6, 879-97.
Yang, G., Zhang, P., Zhang, G., Wang, Y., Yang, A. 2015. Degradation properties of protein and carbohydrate during sludge anaerobic digestion. Bioresource technology, 192, 126-130.
Yang, H., Shao, P., Lu, T., Shen, J., Wang, D., Xu, Z., Yuan, X. 2006. Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. International Journal of Hydrogen Energy, 31(10), 1306-1313.
Yasin, N.H.M., Mumtaz, T., Hassan, M.A., Abd Rahman, N.A. 2013. Food waste and food processing waste for biohydrogen production: A review. Journal of Environmental Management, 130, 375-385.
Yeshanew, M.M., Frunzo, L., Pirozzi, F., Lens, P.N.L., Esposito, G. 2016. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresource Technology, 220, 312-322.
Yoon, S.-H., Kim, H.-S., Yeom, I.-T. 2004. The optimum operational condition of membrane bioreactor (MBR): cost estimation of aeration and sludge treatment. Water research, 38(1), 37-46.
Youn, J.-H., Shin, H.-S. 2005. Comparative performance between temperaturephased and conventional mesophilic two-phased processes in terms of anaerobically produced bioenergy from food waste. Waste Management & Research, 23(1), 32-38.
Yu, D., Liu, J., Sui, Q., Wei, Y. 2016. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater. Bioresource technology, 203, 62-70.
Zahedi, S., Solera, R., Micolucci, F., Cavinato, C., Bolzonella, D. 2016. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste. Waste management, 49, 40-46.
Zajic, J.E., Kosaric, N., Brosseau, J.D. 1978. Microbial production of hydrogen. Advances in Biochemical Engineering, Volume 9, 1978//, Berlin, Heidelberg. Springer Berlin Heidelberg. pp. 57-109.
Zhang, C., Su, H., Baeyens, J., Tan, T. 2014. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383-392.
Zhang, C., Su, H., Wang, Z., Tan, T., Qin, P. 2015. Biogas by semi-continuous anaerobic digestion of food waste. Applied biochemistry and biotechnology, 175(8), 3901-3914.
Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T. 2013. The anaerobic co-digestion of food waste and cattle manure. Bioresource technology, 129, 170-176.
Zhang, E., Li, J., Zhang, K., Wang, F., Yang, H., Zhi, S., Liu, G. 2018. Anaerobic digestion performance of sweet potato vine and animal manure under wet, semi-dry, and dry conditions. AMB Express, 8(1), 45.
Zhang, J., Loh, K.-C., Lee, J., Wang, C.-H., Dai, Y., Tong, Y.W. 2017a. Three-stage anaerobic co-digestion of food waste and horse manure. Scientific reports, 7(1), 1269.
Zhang, J., Lv, C., Tong, J., Liu, J., Liu, J., Yu, D., Wang, Y., Chen, M., Wei, Y. 2016. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresource Technology, 200, 253-261.
Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P. 2007a. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929-935.
Zhang, W., Lang, Q., Pan, Z., Jiang, Y., Liebetrau, J., Nelles, M., Dong, H., Dong, R. 2017b. Performance evaluation of a novel anaerobic digestion operation process for treating high-solids content chicken manure: Effect of reduction of the hydraulic retention time at a constant organic loading rate. Waste Management, 64, 340-347.
Zhang, Z.-P., Tay, J.-H., Show, K.-Y., Yan, R., Liang, D.T., Lee, D.-J., Jiang, W.-J. 2007b. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. International Journal of Hydrogen Energy, 32(2), 185-191.
Zhou, Y., Li, C., Nges, I.A., Liu, J. 2017. The effects of pre-aeration and inoculation on solid-state anaerobic digestion of rice straw. Bioresource technology, 224, 78-86.
Zhu, J., Li, Y., Wu, X., Miller, C., Chen, P., Ruan, R. 2009. Swine manure fermentation for hydrogen production. Bioresource Technology, 100(22), 5472-5477.
Ziels, R.M., Karlsson, A., Beck, D.A.C., Ejlertsson, J., Yekta, S.S., Bjorn, A., Stensel, H.D., Svensson, B.H. 2016. Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge. Water Research, 103, 372-382.
Zuo, Z., Wu, S., Zhang, W., Dong, R. 2014. Performance of two-stage vegetable waste anaerobic digestion depending on varying recirculation rates. Bioresource Technology, 162, 266-272.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top