跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧智宜
研究生(外文):Chih-YiDeng
論文名稱:應用Laplace Adomian分解法於線性與非線性樑之振動問題研究
論文名稱(外文):Apply Laplace Adomian Decomposition Method to the Vibration Analysis of linear and nonlinear Beams
指導教授:陳朝光陳朝光引用關係
指導教授(外文):Chao-Kuang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:156
中文關鍵詞:Laplace Adomian分解法自然頻率振動模態共振挫曲
外文關鍵詞:Laplace Adomian decomposition method (LADM)Natural frequencyMode shapeResonanceBuckling
相關次數:
  • 被引用被引用:1
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文應用Laplace Adomian 分解法解決均勻與非均勻樑之自由振動與強迫振動的問題。首先應用Laplace Adomian分解法將樑之統御方程式轉換成迭代方程,並在頻率方程式上做簡單代數計算,得到Euler-Bernoulli樑的自然頻率與振動模態,透過改變參數包括移動彈簧模數、旋轉彈簧模數、樑之錐度比與軸向張力強度,探討各參數對於動態系統之自然頻率的影響。接著利用Laplace Adomian 分解法探討樑在受外力作用下,樑的變形情形、共振現象與後挫曲行為。
研究結果得知,自然頻率隨著移動彈簧模數、旋轉彈簧模數、軸向張力強度的增加而提升,而錐度比的增加,第一自然頻率會越小,而第二與第三自然頻率會有提升,又以第三自然頻率提升較為顯著。當結構的自然頻率和強迫振盪的頻率相吻合時,會產生共振。共振產生時,即使外力很小,若以相同頻率持續施加於此系統,仍會使結構體被破壞。產生挫曲後,集中力強度提升偏轉角會繼續增加,且集中力角度越大,偏轉角越多。
本文中所得之計算結果與文獻及解析結果相當吻合,故Laplace Adomian 分解法是一種比其他分析方法更簡單、直接又快速的方法。
In this study, the Laplace Adomian decomposition method (LADM) is used to analyze the free vibration and force vibration problems of uniform and non-uniform beams. First, to obtain the natural frequency and mode shape of the Euler-Bernoulli beam, we transformed the governing equation to the algebraic equation by LADM and used simple algebraic operations on the frequency equations afterwards. Moreover, investigating the effect of the natural frequency of the dynamic system by physical parameters including translational spring constant, rotational spring constant, taper ratio of beams and the magnitude of axial tensile. Furthermore, the LADM is applied to analyze the dynamic behavior including deformation, resonance and post-buckling of beams under the external forces.
The results of this study show that the natural frequency upper by the upper translational spring constant, the upper rotational spring constant and the upper magnitude of axial tensile. However, the upper taper ratio would make the first frequency lower and the second frequency and the third frequency upper. When resonance occurs, the very little force can still bring about the collapse of the structure. After buckling occurs, it also indicates the deflection angular upper by the upper magnitude of concentrated force and the upper angle of concentrated force.
The results of this study is consistent with analytical and numerical results given in the literature.Therefore, the LADM is simpler, faster and more straightforward than other methods.
摘要 I
Extended Abstract II
誌謝 X
目錄 XI
表目錄 XV
圖目錄 XVII
符號說明 XXI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 樑之振動問題研究回顧 2
1-2-2 Adomian分解法 3
1-3 本文架構 5
第二章 Laplace Adomian 分解法 (LADM) 6
2-1 Adomian 分解法 7
2-2 Adomian 多項式 11
2-2-1 非線性(nonlinear)多項式 11
2-2-2 三角(trigonometric)函數多項式 13
2-3 修正Adomian分解法 17
2-3-1 修正ADM(一) 17
2-3-2 修正ADM(二) 22
2-4 Laplace Adomian分解法 27
2-4-1 運算法則 27
2-4-2 LADM分解法在特徵值問題之應用 35
2-4-3 殘值定理(Residue Theorem) 47
2-4-4 Padé近似法 50
2-4-5 結論 52
第三章 樑之自由振動分析 64
3-1 模型建構 64
3-2 均勻Euler-Bernoulli樑 66
3-2-1 統御方程式與邊界條件 66
3-2-2 LADM分解法求解左固定右彈性拘束樑之自然頻率 68
3-2-3 LADM分解法求解左簡支右彈性拘束樑之自然頻率 74
3-2-4 結論 79
3-3 非均勻Euler-Bernoulli樑 80
3-3-1 統御方程式與邊界條件 80
3-3-2 LADM分解法求解楔形懸臂樑之自然頻率 83
3-3-3 LADM分解法求解錐形懸臂樑之自然頻率 89
3-3-4 結論 90
3-4 承受軸向力之非均勻Euler-Bernoulli樑 91
3-4-1 統御方程式與邊界條件 91
3-4-2 LADM分解法求解楔形懸臂樑之自然頻率 95
3-4-3 LADM分解法求解錐形懸臂樑之自然頻率 102
3-4-4 結論 102
3-5 總結 103
第四章 樑之強迫振動分析 130
4-1 橫向外力為分佈負荷之小撓度變形 130
4-1-1 統御方程式與邊界條件 130
4-1-2 LADM解題程序 132
4-1-3 數值結果與討論 136
4-2 橫向外力為集中負荷之大撓度變形 137
4-2-1 統御方程式與邊界條件 137
4-2-2 LADM解題程序 138
4-2-3 數值結果與討論 141
4-3 總結 142
第五章 結論與建議 149
5-1 結論 149
5-2 未來研究方向與建議 151
參考文獻 152
[1] Boyce, W.E., R.C. DiPrima, and C.W. Haines, Elementary differential equations and boundary value problems. Vol. 9. 1969.
[2] Weaver Jr, W., S.P. Timoshenko, and D.H. Young, Vibration problems in engineering. 1990.
[3] Dimarogonas, A.D., Vibration for engineers. 1996.
[4] Thomson, W., Theory of vibration with applications. 1996.
[5] Meirovitch, L. and R. Parker, Fundamentals of vibrations. Applied Mechanics Reviews, 2001. 54: pp. B100.
[6] Li, W.L., Free vibrations of beams with generally boundary conditions. Journal of Sound and Vibration, 2000. 237(4): pp. 709-725.
[7] Kim, H.K. and M.S. Kim, Vibration of beams with generally restrained boundary conditions using fourier series. Journal of Sound and Vibration, 2001. 245(5): pp. 771-784.
[8] Bisshopp, K. and D. Drucker, Large deflection of cantilever beams. Quarterly of Applied Mathematics, 1945. 3(3): pp. 272-275.
[9] Yeih, W., J.T. Chen, and C.M. Chang, Applications of dual MRM for determining the natural frequencies and natural modes of an Euler–Bernoulli beam using the singular value decomposition method. Engineering Analysis with Boundary Elements, 1999. 23(4): pp. 339-360.
[10] Tari, H., On the parametric large deflection study of Euler–Bernoulli cantilever beams subjected to combined tip point loading. International Journal of Non-Linear Mechanics, 2013. 49: pp. 90-99.
[11] Tari, H., G.L. Kinzel, and D.A. Mendelsohn, Cartesian and piecewise parametric large deflection solutions of tip point loaded Euler–Bernoulli cantilever beams. International Journal of Mechanical Sciences, 2015. 100: pp. 216-225.
[12] Banerjee, A., B. Bhattacharya, and A.K. Mallik, Large deflection of cantilever beams with geometric non-linearity: Analytical and numerical approaches. International Journal of Non-Linear Mechanics, 2008. 43(5): pp. 366-376.
[13] Stanoyevitch, A., Introduction to numerical ordinary and partial differential equations using MATLAB. Vol. 72. 2011.
[14] Mabie, H. and C. Rogers, Transverse vibrations of double‐tapered cantilever beams. The Journal of the Acoustical Society of America, 1972. 51(5B): pp. 1771-1774.
[15] Naguleswaran, S., A Direct Solution for the Transverse Vibration of Euler-Bernoulli Wedge and Cone Beams. Journal of Sound and Vibration, 1994. 172(3): pp. 289-304.
[16] Naguleswaran, S., comments on “Vibration of non-uniform rods and beams. Journal of sound and vibration, 1996. 195(2): pp. 331-337.
[17] Naguleswaran, S., Vibration of an Euler-Bernoulli beam of constant depth and with linearly varying breadth. Journal of Sound and Vibration, 1992. 153(3): pp. 509-522.
[18] Naguleswaran, S., Vibration of a vertical cantilever with and without axial freedom at clamped end. Journal of Sound and Vibration, 1991. 146(2): pp. 191-198.
[19] Goel, R.P., Transverse vibrations of tapered beams. Journal of Sound and Vibration, 1976. 47(1): pp. 1-7.
[20] Grossi, R. and R. Bhat, A note on vibrating tapered beams. Journal of sound and vibration, 1991. 147(1): pp. 174-178.
[21] Grossi, R., A. Aranda, and R. Bhat, Vibration of tapered beams with one end spring hinged and the other end with tip mass. Journal of sound and vibration, 1993. 160(1): pp. 175-178.
[22] Chen, C.o.K. and S.H. Ho, Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform. International Journal of Mechanical Sciences, 1999. 41(11): pp. 1339-1356.
[23] Ho, S.H. and C.o.K. Chen, Analysis of general elastically end restrained non-uniform beams using differential transform. Applied Mathematical Modelling, 1998. 22(4): pp. 219-234.
[24] Hsu, J.-C., H.-Y. Lai, and C.K. Chen, Free vibration of non-uniform Euler–Bernoulli beams with general elastically end constraints using Adomian modified decomposition method. Journal of Sound and Vibration, 2008. 318(4): pp. 965-981.
[25] Adair, D. and M. Jaeger, Simulation of tapered rotating beams with centrifugal stiffening using the Adomian decomposition method. Applied Mathematical Modelling, 2016. 40(4): pp. 3230-3241.
[26] Lee, S.Y. and Y.H. Kuo, Exact solutions for the analysis of general elastically restrained nonuniform beams. Asme J. Appl. Mech, 1992. 59: pp. 205-212.
[27] Wang, G. and N.M. Wereley, Free vibration analysis of rotating blades with uniform tapers. AIAA J, 2004. 42(12): pp. 2429-2437.
[28] Adomian, G., Solving frontier problems modelled by nonlinear partial differential equations. 1991. 22: pp. 91-94.
[29] Adomian, G., Delayed Nonlinear Dynamical Systems. 1995. 22: pp. 77-79.
[30] Cherruault, Y., G. Saccomandi, and B. Some, New results for convergence of Adomian's method applied to integral equations. Mathematical and Computer Modelling, 1992. 16: pp. 85-93.
[31] Cherruault, Y. and G. Adomian, Decomposition methods: A new proof of convergence. Mathematical and Computer Modelling, 1993. 18: pp. 103-106.
[32] Abbaoui, K. and Y. Cherruault, Convergence of Adomian’s method applied to differential equations. Kybernetes, 1994. 28: pp. 103-109.
[33] Deeba, E.Y. and S.A. Khuri, A Decomposition Method for Solving the Nonlinear Klein–Gordon Equation. Journal of Computational Physics, 1996. 124(2): pp. 442-448.
[34] Hosseini, M.M. and H. Nasabzadeh, On the convergence of Adomian decomposition method. Applied Mathematics and Computation, 2006. 182: pp. 536-543.
[35] Abdelrazec, A. and D. Pelinovsky, Convergence of the Adomian decomposition method for initial-value problems. Numerical Methods for Partial Differential Equasion, 2007. 23: pp. 904-922.
[36] Cordshooli, G.A. and a.R. Vahidi, Phase synchronization of Van der Pol-Duffing oscillators using decomposition method. Adv. Studies Theor. Phys., 2009. 3: pp. 429-437.
[37] Mao, Q., Free vibration analysis of elastically connected multiple-beams by using the Adomian modified decomposition method. Journal of Sound and Vibration, 2012. 331(11): pp. 2532-2542.
[38] Wazwaz, A.-M., A new algorithm for calculating adomian polynomials for nonlinear operators, in Applied Mathematics and Computation. 2000. p. 33-51.
[39] Wazwaz, A.-M. and S.M. El-Sayed, A new modificatio of the Adomian decomposition method for linear and nonlinear operators. Applied Mathematics and Computation, 2001. 122: pp. 393-405.
[40] Ghosh, S., a. Roy, and D. Roy, An adaptation of adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators. Computer Methods in Applied Mechanics and Engineering, 2007. 196: pp. 1133-1153.
[41] Ramana, P.V. and B.K. Raghu Prasad, Modified Adomian Decomposition Method for Van der Pol equations. International Journal of Non-Linear Mechanics, 2014. 65: pp. 121-132.
[42] Khuri, S.A., A Laplace decomposition algorithm applied to a class of nonlinear differential eequations. Applied Mathematics and Computation, 2001. 4: pp. 141-155.
[43] Khan, M. and M. Hussain, Application of Laplace decomposition method on semi-infinite domain. Numerical Algorithms, 2011. 56(2): pp. 211-218.
[44] Ongun, M.Y., The Laplace Adomian Decomposition Method for solving a model for HIV infection of CD4+T cells. Mathematical and Computer Modelling, 2011. 53(5): pp. 597-603.
[45] Tsai, P.-Y. and C.-K. Chen, Free vibration of the nonlinear pendulum using hybrid Laplace Adomian decomposition method. International Journal for Numerical Methods in Biomedical Engineering, 2011. 27: pp. 262-272.
[46] Haq, F., et al., Numerical solution of fractional order smoking model via laplace Adomian decomposition method. Alexandria Engineering Journal, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊