1.Feranchak, A.P., Ion channels in digestive health and disease. Journal of Pediatric Gastroenterology and Nutrition, 2003. 37(3): p. 230-241.
2.Gadsby, D.C., Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol, 2009. 10(5): p. 344-52.
3.Faham, S., et al., The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science, 2008. 321(5890): p. 810-4.
4.Adelman, J.L., et al., Structural determinants of water permeation through the sodium-galactose transporter vSGLT. Biophys J, 2014. 106(6): p. 1280-9.
5.Coincon, M., et al., Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat Struct Mol Biol, 2016. 23(3): p. 248-55.
6.Padan, E., et al., NhaA antiporter functions using 10 helices, and an additional 2 contribute to assembly/stability. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(41): p. E5575-E5582.
7.Mager, T., et al., Differential effects of mutations on the transport properties of the Na+/H+ antiporter NhaA from Escherichia coli. J Biol Chem, 2013. 288(34): p. 24666-75.
8.Jardetzky, O., Simple Allosteric Model for Membrane Pumps. Nature, 1966. 211(5052): p. 969-970.
9.Mitchell, P., A General Theory of Membrane Transport From Studies of Bacteria. Nature, 1957. 180(4577): p. 134-136.
10.Drew, D. and O. Boudker, Shared Molecular Mechanisms of Membrane Transporters. Annu Rev Biochem, 2016. 85: p. 543-72.
11.Karpowich, N.K. and D.N. Wang, Structural biology. Symmetric transporters for asymmetric transport. Science, 2008. 321(5890): p. 781-2.
12.Yan, N., Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci, 2013. 38(3): p. 151-9.
13.Latorraca, N.R., et al., Mechanism of Substrate Translocation in an Alternating Access Transporter. Cell, 2017. 169(1): p. 96-107 e12.
14.Lee, Y., et al., Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter. Nat Commun, 2015. 6: p. 6112.
15.Forrest, L.R. and G. Rudnick, The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda), 2009. 24: p. 377-86.
16.Kazmier, K., D.P. Claxton, and H.S. McHaourab, Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. Curr Opin Struct Biol, 2017. 45: p. 100-108.
17.Shi, L., et al., The mechanism of a neurotransmitter:sodium symporter--inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell, 2008. 30(6): p. 667-77.
18.Cao, Y., et al., Crystal structure of a phosphorylation-coupled saccharide transporter. Nature, 2011. 473(7345): p. 50-4.
19.Luo, P., et al., Crystal structure of a phosphorylation-coupled vitamin C transporter. Nat Struct Mol Biol, 2015. 22(3): p. 238-41.
20.Vergara-Jaque, A., et al., Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms. Front Pharmacol, 2015. 6: p. 183.
21.Serdiuk, T., et al., Substrate-induced changes in the structural properties of LacY. Proc Natl Acad Sci U S A, 2014. 111(16): p. E1571-80.
22.Smirnova, I., V. Kasho, and H.R. Kaback, Real-time conformational changes in LacY. Proc Natl Acad Sci U S A, 2014. 111(23): p. 8440-5.
23.Shimamura, T., et al., Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science, 2010. 328(5977): p. 470-3.
24.Simmons, K.J., et al., Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO J, 2014. 33(16): p. 1831-44.
25.Lee, C., et al., A two-domain elevator mechanism for sodium/proton antiport. Nature, 2013. 501(7468): p. 573-577.
26.Ficici, E., et al., Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism. J Gen Physiol, 2017. 149(12): p. 1149-1164.
27.Georgieva, E.R., et al., Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol, 2013. 20(2): p. 215-21.
28.Reyes, N., C. Ginter, and O. Boudker, Transport mechanism of a bacterial homologue of glutamate transporters. Nature, 2009. 462(7275): p. 880-5.
29.Kim, J.W., et al., Structural insights into the elevator-like mechanism of the sodium/citrate symporter CitS. Scientific Reports, 2017. 7.
30.Mancusso, R., et al., Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature, 2012. 491(7425): p. 622-6.
31.Mulligan, C., et al., The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nat Struct Mol Biol, 2016. 23(3): p. 256-63.
32.Hediger, M.A., et al., The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch, 2004. 447(5): p. 465-8.
33.Perland, E. and R. Fredriksson, Classification Systems of Secondary Active Transporters. Trends Pharmacol Sci, 2017. 38(3): p. 305-315.
34.Hediger, M.A., et al., The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med, 2013. 34(2-3): p. 95-107.
35.Rosenberg, M.J., et al., Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nature Genetics, 2002. 32(1): p. 175-179.
36.Lin, L., et al., SLC transporters as therapeutic targets: emerging opportunities. Nature Reviews Drug Discovery, 2015. 14(8): p. 543-560.
37.Hagenbuch, B. and P. Dawson, The sodium bile salt cotransport family SLC10. Pflugers Arch, 2004. 447(5): p. 566-70.
38.West, K.L., et al., 1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-di oxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane methanesulfonate (SC-435), an ileal apical sodium-codependent bile acid transporter inhibitor alters hepatic cholesterol metabolism and lowers plasma low-density lipoprotein-cholesterol concentrations in guinea pigs. J Pharmacol Exp Ther, 2002. 303(1): p. 293-9.
39.Braun, A., et al., Inhibition of intestinal absorption of cholesterol by ezetimibe or bile acids by SC-435 alters lipoprotein metabolism and extends the lifespan of SR-BI/apoE double knockout mice. Atherosclerosis, 2008. 198(1): p. 77-84.
40.Hu, N.J., et al., Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature, 2011. 478(7369): p. 408-11.
41.Zhou, X., et al., Structural basis of the alternating-access mechanism in a bile acid transporter. Nature, 2014. 505(7484): p. 569-73.
42.蕭瑜萱, 定位PEGylation試驗提供鈉離子調控ASBTNM構型改變的證據. 國立中興大學碩士學位論文, 2015.43.林頌堯, 藉由PEGylation方法探測膽酸轉運蛋白ASBT的構型變化. 國立中興大學碩士學位論文, 2016.44.李冠勳, 利用位點靶向PEGylation試驗研究膽酸運輸蛋白ASBT的作用機制. 國立中興大學碩士學位論文, 2017.45.Drew, D., et al., Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods, 2006. 3(4): p. 303-13.
46.Drew, D.E., et al., Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. FEBS Lett, 2001. 507(2): p. 220-4.
47.Drew, D., et al., Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci U S A, 2002. 99(5): p. 2690-5.
48.Drew, D., et al., A scalable, GFP-based pipeline for membrane protein overexpression screening and purification. Protein Sci, 2005. 14(8): p. 2011-7.
49.Bird, L.E., et al., Green Fluorescent Protein-based Expression Screening of Membrane Proteins in Escherichia coli. Journal of Visualized Experiments : JoVE, 2015(95): p. 52357.
50.Mishra, S., et al., Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter. Elife, 2014. 3: p. e02740.
51.Sahu, I.D., et al., DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles. Biochemistry, 2013. 52(38): p. 6627-32.
52.Joseph, B., A. Sikora, and D.S. Cafiso, Ligand Induced Conformational Changes of a Membrane Transporter in E. coli Cells Observed with DEER/PELDOR. J Am Chem Soc, 2016. 138(6): p. 1844-7.
53.Sahu, I.D. and G.A. Lorigan, Biophysical EPR Studies Applied to Membrane Proteins. J Phys Chem Biophys, 2015. 5(6).
54.Paz, A., et al., Conformational transitions of the sodium-dependent sugar transporter, vSGLT. Proc Natl Acad Sci U S A, 2018. 115(12): p. E2742-E2751.
55.Bordignon, E., Site-directed spin labeling of membrane proteins. Top Curr Chem, 2012. 321: p. 121-57.
56.Seddon, A.M., P. Curnow, and P.J. Booth, Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta, 2004. 1666(1-2): p. 105-17.
57.Lee, S.C., et al., A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc, 2016. 11(7): p. 1149-62.
58.Genoves, A., V. Pallas, and J.A. Navarro, Contribution of topology determinants of a viral movement protein to its membrane association, intracellular traffic, and viral cell-to-cell movement. J Virol, 2011. 85(15): p. 7797-809.
59.Sauri, A., et al., Viral membrane protein topology is dictated by multiple determinants in its sequence. J Mol Biol, 2009. 387(1): p. 113-28.
60.Boyd, D., C. Manoil, and J. Beckwith, Determinants of membrane protein topology. Proc Natl Acad Sci U S A, 1987. 84(23): p. 8525-9.
61.Bogdanov, M., et al., Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM(TM)): application to lipid-specific membrane protein topogenesis. Methods, 2005. 36(2): p. 148-71.