跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:古祿榮
研究生(外文):Lu-Rong Gu
論文名稱:無電鍍法製備奈米α-Al2O3/Ni-P核-殼結構複合粉體
論文名稱(外文):Preparation of Nanosized α-Al2O3/Ni-P Core-Shell Composite Powders by Electroless Plating Method
指導教授:徐永富徐永富引用關係王錫福
指導教授(外文):Yung-Fu HsuSea-Fue Wang
口試委員:段維新向性一盧宏陽
口試委員(外文):Wei-Hsing TuanHsing-I HsiangHong-Yang Lu
口試日期:2007-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:80
中文關鍵詞:無電鍍奈米核-殼結構α-Al2O3Ni-P 觸媒奈米觸媒
外文關鍵詞:electroless platingnanosized core-shell structureNi-P catalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以奈米 α-Al2O3 粉體作為載體,並選用 Ni-P 合金做為披覆層,製備奈米核-殼結構複合粉體。採用無電鍍法 (Electroless Plating Method) 進行表面披覆。實驗結果顯示,選用 Na2C4H4O4•6H2O 作為錯化劑,需在較高溫度之環境下進行沈積,導致 Ni-P 合金顆粒析出速率較快而形成尺寸約 100 nm 且分散性不佳的沈積顆粒披覆在 α-Al2O3 顆粒表面;選用 Na3C6H5O7•2H2O 作為錯化劑並給予超音波震盪的環境能夠有效降低起始反應溫度,鍍浴未調整 pH 值的情況下 (pH=4.7),在溫度為 45oC 的環境即可進行析鍍,Ni 析出速率較慢且反應時間長達5個小時以上,並獲得披覆顆粒尺寸約 30 nm 且分散性較佳的 Ni-P 合金顆粒;鍍浴中添加成長抑制劑,能夠再進一步縮小析出顆粒尺寸至約 10 nm,仍可維持高分散性與良好的披覆情況;延續製程參數調整鍍浴的酸鹼度,顯示鍍浴反應速率隨著 pH 值的上升而上升,且反應結束時間縮短並提高 Ni 的生成量,鍍浴 pH 值為 7、8 及 9 時反應析出的顆粒具有兩種,表面粗糙且尺寸約為 50 nm 的團塊及酸性鍍浴的析出顆粒。本實驗製備出的奈米核-殼結構複合粉體,Ni-P 合金以顆粒狀披覆在 α-Al2O3 粉末表面且尺寸約 10 nm,形成不完全型核-殼結構。
Synthesis of nanosized α-Al2O3/Ni-P core-shell composite powders by electroless plating method was investigated in this study. The synthetic core-shell composite powders could be applied in catalysis field. The experimental results showed that the Na2C4H4O4•6H2O as a complexing agent in the electroless bath, the electroless plating occurred at high temperature (70oC), and the deposition particles formed aggregate and the size larger than 100 nm which was due to the higher reaction rate. The reaction temperature could be lower to about 45oC if Na3C6H5O7•2H2O was used as the complexing agent, the pH value of electroless bath was 4.7 and the bath was disturbed by ultrasonic wave vibration during electroless plating. The deposition particles with a size of 30 nm disperse homogeneously on α-Al2O3 particles. When inhibitive growth agent was added into electroless plating bath, the size of deposition particles was decreased to 10 nm and deposited homogeneously on the surface of α-Al2O3. The deposition of Ni-P particles on the α-Al2O3 powders affected by the pH value, temperature, components of the electroless bath. However, nanosized of α-Al2O3/Ni-P core-shell composite powders have been prepared successfully in this study.
摘 要 i
ABSTRACT ii
目 錄 iv
表 目 錄 vi
圖 目 錄 vii
第一章 序 論 1
1.1 奈米材料 1
1.2 觸媒材料 2
1.3 研究動機與目的 3
第二章、理論基礎與文獻探討 5
2.1 奈米觸媒 5
2.2 鎳金屬觸媒 7
2.3 複合奈米粉體 8
2.4 無電鍍鎳披覆技術 9
2.4.1 無電鍍鎳的發展 10
2.4.2 無電鍍鎳的原理 10
2.4.3 非導體之無電鍍製備過程 13
2.4.4 無電鍍浴的組成 14
2.4.5 錯化劑對鎳離子的影響 14
2.4.6 酸鹼度對析出顆粒性質的影響 15
2.5 文獻回顧 16
第三章、實驗方法 28
3.1 實驗藥品及配製 28
3.2 實驗流程 28
3.3 檢測分析儀器 30
3.3.1 顯微形貌之觀察 (SEM) 30
3.3.2 顯微形貌之觀察 (STEM) 30
3.3.3 結構及相鑑定 (XRD) 31
3.3.4 成分分析 (EDS) 31
3.3.5 氣氛燒結爐 31
第四章、結果與討論 36
4.1 前置實驗 36
4.2 製備奈米核-殼結構複合粉體 37
4.2.1 選用 Na2C4H4O4•6H2O 錯化劑 37
4.2.2 選用 Na3C6H5O7•2H2O 錯化劑 38
4.2.3 選用 Na3C6H5O7•2H2O 錯化劑及增加金屬前驅物 39
4.2.4 選用 Na3C6H5O7•2H2O 錯化劑及增加金屬前驅物並添加成長抑制劑 40
4.2.5 添加成長抑制劑並改變金屬前驅物及還原劑含量 42
4.3 酸鹼度對披覆情況之影響 43
4.4 溫度對披覆情況之影響 46
4.5 製程條件對鍍層結晶狀態之影響 48
第五章、結論 72
參考文獻 74
[1] 張立德 “奈米材料” (2000),北京:化學工業出版社
[2] 陳柏宇、朱小蓉 “特用化學藥品-觸媒” (1996) 化工技術第 4 卷第 12 期 140-149
[3] 翁鴻山 “反應中的紅娘” (2003) 科學發展第 370 期 6-11
[4] 林昇佃、林修正 “金屬觸媒之特性與應用” (1994) 化工技術第 2 卷第 3 期 54-60
[5] 陳郁文 “奈米小紅娘” (2003) 科學發展 370 期 34-39
[6] J. Jia, K. Haraki, J. N. Kondo, K. Domen, and K. Tamaru, “Selective hydrogenation of acetylene over Au/Al2O3 catalyst”, The Journal of Physical Chemistry. B 104 (2000) 11153-11156
[7] R. Schomacker and A. Schmidt, “Kinetics of 1,5-cyclooctadiene hydrogenation on Pd/α-Al2O3”, Industrial and Engineering Chemistry Research 46 (2007) 1677-1681
[8] A. Beretta, T. Bruno, G. Groppi, I. Tavazzi, and P. Forzatti, “Conditioning of Rh/α-Al2O3 catalysts for H2 production via CH4 partial oxidation at high space velocity”, Applied Catalysis B:Environmental 70 (2007) 515-524
[9] A. Berman, R. K. Karn, and M. Epstein, “Kinetics of steam reforming of methane on Ru/Al2O3 catalyst promoted with Mn oxides”, Applied Catalysis A:General 282 (2005) 73-83
[10] J. Couves, M. Atkins, M. Hague, B. H. Sakakini, and K.C. Waugh, “The activity and selectivity of oxygen atoms adsorbed on a Ag/α-Al2O3 catalyst in ethane”, Catalysis Letters 99 (2005) 45-53
[11] G. Zhenghong, L. Zhongchen, H. Feib, and X. Genhui, “Combined XPS and in situ DRIRS study of mechanism of Pd-Fe/α-Al2O3 catalyzed CO coupling reaction to diethyl oxalate”, Journal of Molecular Catalysis A:Chemical 235 (2005) 143-149
[12] S. P. Lee, and Y. W. Chen, “Selective hydrogenation of furfural on Ni-P, Ni-B, and Ni-P-B ultrafine materials”, Industrial and Engineering Chemistry Research 38 (1999) 2548-2556
[13] S. P. Lee, and Y. W. Chen, “Catalytic properties of Ni-B and Ni-P ultrafine materials“, Journal of Chemical Technology and Biotechnology 75 (2000) 1073-1079
[14] S. K. Pratihar, A. Dassharma, and H. S. Maiti, “Processing microstructure property correlation of porous Ni-YSZ cermets anode for SOFC application”, Materials Research Bulletin 40 (2005) 1936-1944
[15] J. Sun, X. P. Qiu, F. Wu, and W. T. Zhu, “H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application”, International Journal of Hydrogen Energy 30 (2005) 437-445
[16] S. K. Pratihar, A. D. Sharma, R. N. Basu, and H. S. Maiti, “Preparation of nickel coated YSZ powder for application as an anode for solid oxide fuel cells”, Journal of Power Sources 129 (2004) 138-142
[17] S. K. Pratihar, A. D. Sharma, and H. S. Maiti, “Electrical behavior of nickel coated YSZ cermet prepared by electroless coating technique”, Materials Chemistry and Physics 96 (2006) 388-395
[18] T. K. Tsai, C. C. Chung, C. G. Chao, and W. L. Liu, “Growth and field emission of carbon nanofibers on electroless Ni–P alloy catalyst”, Diamond and Related Materials, 12 (2003) 1453-1459
[19] T. D. Makris, L. Giorgi, R. Giorgi, N. Lisi, and E. Salernitano, “CNT growth on alumina supported nickel catalyst by thermal CVD”, Diamond and Related Materials 14 (2005) 815-819
[20] G. Wen, Z. X. Guo, and C. K. L. Davies, “Microstructural characterisation of electroless-nickel coatings on zirconia powder”, Scripta Materialia 43 (2000) 307-311
[21] Y. Cui, H. Zhang, H. Xu, and W. Li, “Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/α-Al2O3 catalyst:The effect of temperature on the reforming mechanism”, Applied Catalysis A:General 318 (2007) 79-88
[22] Y. Cui, H. Xu, Q. Ge, and W. Li, “Kinetic study on the CH4/CO2 reforming reaction:Ni-H in Ni/α-Al2O3 catalysts greatly improves the initial activity”, Journal of Molecular Catalysis A:Chemical 243 (2006) 226-232
[23] Y. Cui, H. Xu, Q. Ge, Y. Wang, S. Hou, and W. Li, “Structure sensitive dissociation of CH4 on Ni/α-Al2O3:Ni nano-scale particles linearly compensate the Ea and ln A for the CH4 pulse kinetics”, Journal of Molecular Catalysis A:Chemical 249 (2006) 53-59
[24] N. Keghouche, S. Chettibi, F. Latreche, M. M. Bettahar, J. Belloni, and J. L. Marignier, “Radiation-induced synthesis of α-Al2O3 supported nickel clusters:Characterization and catalytic properties”, Radiation Physics and Chemistry 74 (2005) 185-200
[25] F. Pompeo, N. N. Nichio, O. A. Ferretti, and D. Resasco, “Study of Ni catalysts on different supports to obtain synthesis gas”, International Journal of Hydrogen Energy 30 (2005) 1399-1405
[26] M. I. Cabrera, and R. J. Grau, “Liquid-phase hydrogenation of methyl oleate on a Ni/α-Al2O3 catalyst:A study based on kinetic models describing extreme and intermediate adsorption regimes”, Journal of Molecular Catalysis A:Chemical 260 (2006) 269-279
[27] Z. L. Ma, S. K. Jiang, L. Zhang, C. Q. Liu, “Synthesis of hydrogen peroxide from carbon monoxide, water and oxygen catalyzed by amorphous NiP(B)/Al2O3”, Applied Catalysis A:General 311 (2006) 34–42
[28] 陳東煌 “複合奈米粒子的製備與應用” (2003) 化工技術第 11 卷第 3 期 180-193
[29] V. V. Hardikar, and E. Matijevic, “Coating of nanosize silver particles with silica”, Journal of Colloid and Interface Science 221 (2000) 133–136
[30] G. J. Li, X. X. Huang, and J. K. Guo, “Fabrication of Ni-coated Al2O3 powders by the heterogeneous precipitation method”, Materials Research Bulletin 36 (2001) 1307-1315
[31] G. J. Li, X. X. Huang, and J. K. Guo, “Fabrication and mechanical properties of Al2O3–Ni composite from two different powder mixtures”, Materials Science and Engineering. A, Structural Materials:Properties, Microstructure and Processing 352 (2003) 23-28
[32] G. J. Li, R. M. Ren, X. X. Huang, and J. K. Guo, “Microstructure and mechanical properties of Al2O3/Ni composites”, Ceramics International 30 (2004) 977-982
[33] Y. Zhang, N. W. Franklin, R. J. Chen, and H. Dai, “Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction”, Chemical Physics Letters 331 (2000) 35-41
[34] R. Tomoshige, A. Kato, and K. Nagashima, “Sinterability of TiO2-coated fine Ni powder”, Ceramics International 32 (2006) 221–222
[35] W. H. Tuan, S. M. Liu, C. J. Ho, C. S. Lin, T. J. Yang, D. M. Zhang, Z. Y. Fu, and J. K. Guo, “Preparation of Al2O3-ZrO2-Ni nanocomposite by pulse electric current and pressureless sintering”, Journal of the European Ceramic Society 25 (2005) 3125–3133
[36] J. Li, F. Li, and K. Hu, “Preparation of Ni/Al2O3 nanocomposite powder by high-energy ball milling and subsequent heat treatment”, Journal of Materials Processing Technology 147 (2004) 236–240
[37] D. Gero, “Fuzzy nanoassemblie:Toward layered polymeric multicomposites”, Science 277 (1997) 1232-1237
[38] F. Caruso, R. A. Caruso, and H. Mohwald, “Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating”, Science 282 (1998) 1111-1114
[39] N. Coowanitwong, C. Y. Wu, M. Cai, M. Ruthkosky, J. Rogers, L. Feng, S. Watano and T. Yoshida, “Surface modification of Al2O3 fiber with binary nanoparticles using a dry-mechanical coating technique”, Journal of Nanoparticle Research 5 (2003) 247–258
[40] Y. Kobayashi, V. Salgueirino-Maceira, and L. M. Liz-Marzan, “Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating”, Chemistry of Materials 13 (2001) 1630-1633
[41] X. Ma, N. Lun, and S. Wen, “Formation of gold nanoparticles supported on carbon nanotubes by using an electroless plating method”, Diamond and Related Materials 14 (2005) 68– 73
[42] G. M. Shi, J. K. Han, Z. D. Zhang, H. Y. Song, and B. T. Lee, “Pretreatment effect on the synthesis of Ag-coated Al2O3 powders by electroless deposition process”, Surface and Coatings Technology 195 (2005) 333– 337
[43] H. X. Guo, Z. P. Qin, J. Wei, and C. X. Qin, “Synthesis of novel magnetic spheres by electroless nickel coating of polymer spheres”, Surface and Coatings Technology 200 (2005) 2531 – 2536
[44] A. Brenner, and G. E. Riddell, J. Res. Natl. Bur. Stand. 39 (1946) 385
[45] 李寧、袁國偉、黎德育,李銘華主編 “化學鍍鎳基合金理論與技術”,哈爾濱:哈爾濱工業大學出版社
[46] H. Matsubara, T. Yonekawa, Y. Ishino, N. Saito, H. Nishiyama, Y. Inoue, “The observation of the nucleation and growth of electrolessly plated nickel deposited from different bath pH by TEM and QCM method”, Electrochimica Acta 52 (2006) 402–407
[47] C. Zhang, G. P. Ling, and J. H. He, “Co-Al2O3 nanocomposites powder prepared by electroless plating”, Materials Letters 58 (2003) 200-204
[48] F. Caruso, “Nanoengineering of particle surfaces”, Advanced Materials 13 (2001) 11-22
[49] G. Jiaqiang, L. Lei, W. Yating, S. Bin, and H. Wenbin, “Electroless Ni-P-SiC composite coatings with superfine particles”, Surface and Coatings Technology 200 (2006) 5836-5842
[50] J. F. Silvain, J. L. Bobet, and J. M. Heintz, “Electroless deposition of copper onto alumina sub-micronic powders and sintering”, Composites Part A:Applied Science and Manufacturing 33 (2002) 1387-1390
[51] I. H. Oh, J. Y. Lee, J. K. Han, H. J. Lee, and B. T. Lee, “Microstructural characterization of Al2O3-Ni composites prepared by electroless deposition”, Surface and Coatings Technology 192 (2005) 39-42
[52] Z. Aixiang, X. Weihao, and X. Jian, “Electroless Ni-P coating of cenospheres using silver nitrate activator”, Surface and Coatings Technology 197 (2005) 142-147
[53] H. X. Guo, Z. P. Qin, J. Wei, and C. X. Qin, “Synthesis of novel magnetic spheres by electroless nickel coating of polymer spheres”, Surface and Coatings Technology 200 (2005) 2531-2536
[54] Q. Zhang, M. Wu, and W. Zhao, “Electroless nickel plating on hollow glass microspheres”, Surface and Coatings Technology 192 (2005) 213-219
[55] O. Aharon, S. Bar-Ziv, D. Gorni, T. Cohen-Hyams, and W. D. Kaplan, “Residual stresses and magnetic properties of alumina–nickel nanocomposites”, Scripta Materialia 50 (2004) 1209–1213
[56] G. Z. Zou, M. S. Cao, L. Zhang, J. G. Li, H. Xu, and Y. J. Chen, “A nanoscale core-shell of β-SiCP–Ni prepared by electroless plating at lower temperature”, Surface and Coatings Technology 201 (2006) 108-112
[57] G. P. Ling, J. Li, and S. J. Wang, “Preparation and characteristics of new type nanocomposite powder”, Journal of Zhejiang University 2 (2001) 376-378
[58] H. Q. Li, and J. B. Liu, “Low temperature electroless nickel plating by use of ultrasonic wave”, Plating and Polish 17 (1998) 14-17
[59] D. H. Chen, and Y. Y. Chen, “Synthesis of barium ferrite ultrafine particles by coprecipitation in the presence of polyacrylic acid”, Journal of Colloid and Interface Science 235 (2001) 9–14
[60] D. H. Chen, and Y. Y. Chen, “Synthesis of strontium ferrite nanoparticles by coprecipitation in the presence of polyacrylic acid”, Materials Research Bulletin 37 (2002) 801-810
[61] D. H. Chen, and X. R. He, “Synthesis of nickel ferrite nanoparticles by sol-gel method”, Materials Research Bulletin 36 (2001) 1369–1377
[62] K. L. Lin, and P. J. Lai, “The crystallization of an electroless Ni-P deposit”, Journal of Electrochemical Society 136 (1989) 3803-3809
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top