跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 17:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳鵬宇
研究生(外文):Chen, Peng-Yu
論文名稱:電漿氧化單晶鋁之氧化鋁薄膜
論文名稱(外文):Aluminum oxide layer prepared by plasma oxidation on single-crystalline aluminum film
指導教授:林聖迪
指導教授(外文):Lin, Sheng-Di
口試委員:呂福興吳正信簡昭欣
口試委員(外文):Lu, Fu-HsingWu, Jenq-ShinnChien, Chao-Hsin
口試日期:2016-12-30
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:47
中文關鍵詞:電漿氧化單晶鋁
外文關鍵詞:plasma oxidationsingle-crystalline Al
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出使用一氧化二氮氣體(N2O)電漿氧化的方式,在單晶鋁的表面形成高品質的薄膜。文中分析了不同製程參數: N2O氣體流量、基板溫度、腔體壓力以及RF power對氧化速率之影響,並藉由歐傑電子能譜儀(Auger electron spectroscopy, AES),原子力顯微鏡(Atomic force microscope, AFM)及穿透式電子顯微鏡(Transmission electron microscopy, TEM)分析確認薄膜品質,最後整理出氧化層厚度與氧化時間之間的關係,和熱氧化的模型進行對照。論文中也將氧化鋁薄膜應用於砷化鎵(GaAs)金屬氧化物半導體場效電晶體(MOSFET)中之閘極氧化層,測量元件電性及藉由X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS)分析氧化層和導電層介面品質。我們的研究順利在單晶鋁上成長出具備高平坦度及介面品質之氧化鋁的薄膜,並嘗試將其應用於實際的電子元件中,希望未來的後續研究能使這項技術更加完善。
In this thesis¸ the plasma oxidation on single-crystalline Aluminum is presented. The dependence of oxidation rates on the N2O flux, the substrate temperature, the RF power, and the chamber pressure is studied with Auger Electron Spectroscopy (AES) , Transmission Electron Microscope (TEM) and Atomic Force Microscope (AFM). The dependence of oxide thickness and oxidation time is plotted, and also compared to the mathematic model in thermal oxidation.
In this thesis, the Al2O3 is applied to gate oxide in GaAs MOSFET. The I-V characteristic of MOSFET is studied, and the interface quality is checked by X-ray Photoelectron Spectroscopy (XPS).
Our work provides another way to prepare a smooth nano-scale Al2O3 film on aluminum, and we are hoping that this fabrication process of plasma oxidation will be improved in future.
目錄
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 前言 p.1
1.1 研究背景及動機 p.1
1.2 論文架構 p.2
第二章 基礎理論與文獻回顧 p.3
2.1 熱氧化之文獻回顧 p.3
2.2 電漿氧化 p.4
2.2.1 電漿定義 p.4
2.2.2 電漿氧化技術 p.5
2.3 量測系統及原理 p.5
2.3.1 歐傑電子能譜儀 p.6
2.3.2 X射線光電子能譜儀 p.8
第三章 氧化鋁薄膜製程及量測 p.9
3.1 單晶鋁基板特性分析 p.9
3.2 電漿氧化製程 p.13
3.3 氧化鋁薄膜特性分析 p.14
3.3.1 AES縱深分析 p.14
3.3.2 TEM影像分析 p.16
3.3.3 AFM表面粗糙度分析 p.19
3.4 氧化時間對氧化層厚度之關係 p.20
3.5 結果整理與比較 p.21
第四章 氧化鋁薄膜應用為閘極氧化層 p.22
4.1文獻回顧 p.22
4.2 元件製程 p.22
4.2.1 樣品結構及光罩設計 p.22
4.2.2 閘極氧化層製作 p.25
4.2.3 平台隔離 p.25
4.2.4 歐姆接觸 p.27
4.2.5 閘極製程 p.28
4.2.1 元件完成圖 p.29
4.3 結果與討論 p.30
4.3.1 改變電漿氧化時間對元件電性之影響p.30
4.3.2 XPS表面元素分析 p.34
4.3.3其餘製程條件整理及討論 p.38
第五章 結論與展望 p.42
參考資料 p.44
簡歷 p.47
[1] A. Raveh, Z. K. Tsameret, and E. Grossman, “Surface characterization of thin layers of aluminium oxide,” Surf. Coat. Technol., vol. 88, pp. 103–111, 1997.
[2] A. Quade and H. Wulff, “Investigation of oxidation process on plasma treated thin Al-films by GIXR and GIXRD,” Thin Solid Films, vol. 355, pp. 494–499, 1999.
[3] F.-H. Lu, H.-D. Tsai, and Y.-C. Chieh, “Plasma oxidation of Al thin films on Si substrates,” Thin Solid Films, vol. 516, no. 8, pp. 1871–1876, 2008.
[4] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale.,” Nature, vol. 461, no. October, pp. 629–632, 2009.
[5] B.-T. Chou, Y.-H. Chou, Y.-M. Wu, Y.-C. Chung, W.-J. Hsueh, S.-W. Lin, T.-C. Lu, T.-R. Lin, and S.-D. Lin, “Single-crystalline aluminum film for ultraviolet plasmonic nanolasers,” Sci. Rep., vol. 6, no. January, p. 19887, 2016.
[6] H. Becke, R. Hall, and J. White, “Gallium arsenide MOS transistors,” Solid. State. Electron., vol. 8, no. 10, pp. 813–823, Oct. 1965.
[7] P.-D. Ye, G.-D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H. J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, “GaAs metal-oxide-semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition,” Appl. Phys. Lett., vol. 83, no. 1, pp. 180–182, 2003.
[8] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys. Lett., vol. 86, no. 15, p. 152904, 2005.
[9] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys., vol. 36, no. 12, pp. 3770–3778, 1965.
[10] L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, “Composition and chemical state of the ions of aluminium-oxide films formed by thermal oxidation of aluminium,” Surf. Sci., vol. 506, no. 3, pp. 313–332, 2002.
[11] L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, “Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum,” J. Appl. Phys., vol. 92, no. 3, pp. 1649–1656, 2002.
[12] I. Langmuir, “Oscillations in Ionized Gases,” Proc. Natl. Acad. Sci. U. S. A., vol. 14, no. 8, pp. 627–637, Aug. 1928.
[13] A. Quade, H. Wulff, H. Steffen, T. M. Tun, and R. Hippler, “Investigation of the aluminum oxidation in an oxygen plasma excited by microwaves,” Thin Solid Films, vol. 377–378, pp. 626–630, 2000.
[14] J. F. O’Hanlon, “Factors affecting the growth rate of plasma anodized Al2O3,” J. Electrochem. Soc., vol. 118, no. 2, p. 270, 1971.
[15] A. N. Rider, R. N. Lamb, and M. H. Koch, “Low-power r.f. plasma oxidation of aluminium,” Surf. Interface Anal., vol. 31, no. 4, pp. 302–312, 2001.
[16] A. Jimenez-Gonzalez and D. Schmeisser, “Preparation and spectroscopic characterization of γ-Al2O3 thin films,” Surf. Sci., vol. 250, no. 1, pp. 59–70, 1991.
[17] S. Lee and H. Jeon, “Characteristics of an Al2O3 thin film deposited by a plasma enhanced atomic layer deposition method using N2O plasma,” Electron. Mater. Lett., vol. 3, no. 1, pp. 17–21, 2007.
[18] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, 2001.
[19] 李聖尉, “鈷超薄膜在銀鍺√3×√3表面合金上之磁性研究,” 國立臺灣師範大學碩士論文, 2011.
[20] H. E. Bennett, M. Silver, and E. J. Ashley, “Infrared Reflectance of Aluminum Evaporated in Ultra-High Vacuum,” J. Opt. Soc. Am., vol. 53, no. 9, pp. 1089–1095, 1963.
[21] W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, “Unified defect model and beyond,” J. Vac. Sci. Technol., vol. 17, no. 5, pp. 1019–1027, 1980.
[22] M.-L. Huang, Y.-C. Chang, C.-H. Chang, Y.-J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3,” Appl. Phys. Lett., vol. 87, no. 25, pp. 1–3, 2005.
[23] Y.-C. Lin, M.-L. Huang, C.-Y. Chen, M.-K. Chen, H.-T. Lin, P.-Y. Tsai, C.-H. Lin, H.-C. Chang, T.-L. Lee, C.-C. Lo, S.-M. Jang, C. H. Diaz, H.-Y. Hwang, Y.-C. Sun, and E. Y. Chang, “Low interface trap density Al2O3/In0.53Ga0.47As MOS capacitor fabricated on MOCVD-grown InGaAs epitaxial layer on Si substrate,” Appl. Phys. Express, vol. 7, no. 4, p. 041202, 2014.
[24] J. A. Taylor, “An XPS study of the oxidation of AlAs thin films grown by MBE,” J. Vac. Sci. Technol., vol. 20, no. 1982, pp. 751–755, 1982.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top