跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周維苓
研究生(外文):Wei-Ling Chou
論文名稱:壓電調諧質量阻尼器之研究
論文名稱(外文):Study on Piezoelectric Tuned Mass Damper
指導教授:鍾立來鍾立來引用關係賴勇安賴勇安引用關係
口試委員:張家銘黃炯憲連冠華
口試日期:2018-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:108
中文關鍵詞:調諧質量阻尼器壓電材料能量擷取人行橋最佳化設計
相關次數:
  • 被引用被引用:1
  • 點閱點閱:480
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來能源的需求持續提高,且環保意識抬頭,如何將綠色能源再利用,成為各國目前的研究重點之一。由於土木結構與材料技術的發展,結構物建造越趨經濟,建築物及橋樑等外觀漸趨細長,結構週期也隨之延長,使得高樓建築物較易受風力振動,橋樑結構也較易受人行等活動激振,土木工程師為了降低振動量,遂以以加裝調諧質量阻尼器 (Tuned Mass Damper, TMD) 的方式,透過調諧質量阻尼器的振動頻率與結構自然頻率調諧,抑制結構的反應,並透過阻尼器來消散傳入之振動能。為了不要將振動能就此消散掉,本研究探討如何將這些能量收集起來再利用,故提出「壓電調諧質量阻尼器 (Piezoelectric Tuned Mass Damper, Piezo-TMD) 」,以壓電材料將機械振動能轉換為電能,再進行能量擷取。本文首先提出新型Piezo-TMD之模型,沒有加裝阻尼器,並將壓電材料與彈簧串聯,推導出Piezo-TMD系統加裝在單自由度結構之運動方程式,除了運動方程式,Piezo-TMD另有電路方程式,兩方程式互為耦合,且比傳統TMD多一電路振盪頻率,不論是運動方程式或是設計參數都比傳統的調諧質量阻尼器更多更複雜。本文之Piezo-TMD設計目標為能量擷取的平均功率最大化,遂以使電路功率的H2-norm最大化作為Piezo-TMD之最佳設計參數,並以台北101簡化為單自由度結構進行數值模擬,結果顯示Piezo-TMD具有與傳統TMD相近之結構減振效果,並可將風力所引致之振動能轉為可再利用之電能。本文藉由參數分析,掌握系統反應對參數之敏感度,顯示Piezo-TMD除其機械之自然頻率需與結構相調諧外,其電路之自然頻率也需與結構調諧,方可使結構之振動能量有效利用共振效應轉移至電路上。本研究釐清Piezo-TMD眾多設計參數之間的關係,簡化為四個無因次參數,並提出Piezo-TMD的設計公式,針對不同結構阻尼比和質量比的Piezo-TMD設計參數,利用曲線擬合與迴歸法提出單自由度結構加裝Piezo-TMD最佳化設計公式與查表法,並提出一套簡易的設計流程讓工程師可簡便、準確且快速地設計Piezo-TMD。最後利用一座人行橋作為案例,將其簡化為單自由度結構,透過最佳化設計公式與設計流程找出Piezo-TMD之最佳設計參數,進行歷時分析,確認其減振效果與能量擷取效果。
Tuned mass damper (TMD) is an effective system to reduce the vibration of structures under wind load. The conventional tuned mass damper consists of proof mass, dampers and springs. The vibration energy is dissipated by dampers attached to the proof mass. We hope to restore the vibration energy instead of wasting it in vibration process. This study proposes a new type of tuned mass damper, piezoelectric tuned mass damper (Piezo-TMD), which uses a piezoelectric material device in replacement of the damper in the conventional TMD. Piezoelectric materials can convert the structural vibration energy to electricity. The Piezo-TMD consists of not only the proof mass, piezoelectric materials and resistance but also spring and inductor so that the mechanical and electrical frequencies of the Piezo-TMD can be adjusted to be tuned to the structure. The equation of motion of the Piezo-TMD mounted on SDOF structure is derived. By parametric study, the sensitivity of the system response toward the system parameters is able to comprehend. Taipei 101 is simplified to be a single degree of freedom structure. Implemented with the Piezo-TMD, it is analyzed when subjected to the design wind forces. The simulation results show that the Piezo-TMD can achieve the same performance as the conventional TMD in structural vibration reduction and transfer the absorbed energy to power for reuse. Different from the conventional TMD, the Piezo-TMD has more design parameters. We use four dimensionless parameters to simplify the design parameters of Piezo-TMD. The optimal dimensionless parameters of the Piezo-TMD for maximum energy harvesting are determined by using Matlab Direct Search toolbox. By applying curve fitting and regression method, the optimal design formulae for Piezo-TMD implemented in Taipei 101 are defined, and the optimal design procedures for Piezo-TMD are proposed. Finally, there is a case study of footbridge. The optimal design parameters are defined by using optimal design formulae derived from Taipei 101. After that, the footbridge implemented with the Piezo-TMD is analyzed when subjected to pedestrian loading and the performance is compared with the conventional TMD. The time history simulation results show that the Piezo-TMD can achieve vibration comfort of the footbridge and harvest more than a half of the structural vibration energy. The feasibility of optimal design formulae and optimal design procedures of Piezo-TMD is verified.
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 x
第一章  緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 2
1.2.1 調諧質量阻尼器 2
1.2.2 能量擷取 3
1.3 本文內容 5
第二章  壓電調諧質量阻尼器 9
2.1 壓電材料之本構方程式 9
2.2 壓電調諧質量阻尼器 11
2.3 單自由度結構加裝壓電調諧質量阻尼器 12
2.3.1 頻率反應函數 14
2.3.2 能量擷取 15
2.4 台北101加裝壓電調諧質量阻尼器之數值模擬 16
2.4.1 特徵分析 17
2.4.2 頻率反應函數 17
2.4.3 風力歷時數值模擬 18
2.4.4 參數敏感度分析 19
第三章  壓電調諧質量阻尼器之最佳化設計 38
3.1 無因次參數之運動方程式 38
3.2 直接搜尋法 41
3.3 最佳化設計公式 41
3.3.1 壓電因子 之最佳設計公式 42
3.3.2 勁度因子 之最佳設計公式 42
3.3.3 電感因子 之最佳設計公式 43
3.3.4 電阻因子 之最佳設計公式 43
3.3.5 最佳化設計公式之誤差分析 44
3.3.6 設計程序 46
3.3.7 台北101結構套用設計程序 47
第四章 單自由度結構加裝Piezo-TMD案例分析 79
4.1 人行橋之舒適度 79
4.2 人行橋之調諧質量阻尼器系統 80
4.3 特徵分析 81
4.4 頻率反應函數 82
4.5 人行外力歷時數值模擬 82
第五章  結論與展望 96
5.1 結論 96
5.2 未來展望 97
參考文獻 99
附錄A 壓電材料本構方程式之推導 104
附錄B 直接搜索工具(Direct Search) 105
附錄C 設計程序中之式子推導 107
[1]Frahm H., “Device for damping vibrations of bodies”, Patent No.989-958, U.S., (1911).
[2]Den Hartog J.P., Mechanical Vibrations, 4th Edition, McGraw-Hill, New York (1956).
[3]Warburton G.B. and Ayorinde E.O., “Optimum absorber parameters for simple systems”, Earthquake Engineering and Structural Dynamics, 8:197-217(1980).
[4]Ayorinde E.O. and Warburton G.B., “Minimizing structural vibrations with absorbers”, Earthquake Engineering and Structural Dynamics, 8:219-236(1980).
[5]Warburton G.B., “Optimum absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10:381-401(1982).
[6]Sadek F., Mohraz B., Taylor A.W. and Chung R.M., “A method of estimating the parameters of mass dampers for seismic applications”, Earthquake Engineering and Structural Dynamics, 26:617-635(1997).
[7]Ioi T and Ikeda K, “On the dynamic vibration damped absorber of the vibration system.” Bulletin of the Japanese Society of Mechanical Engineering, 21(151): 64-71. (1978)
[8]Ghosh A. and Basu B., “A closed-form optimal tuning criterion for TMD in damped structures”, Structural Control and Health Monitoring, 14:681-692(2007).
[9]Bakre S.V. and Jangid R.S., “Optimum parameters of tuned mass damper for damped main system”, Structural Control and Health Monitoring, 14:448-470(2007).
[10]Lin C.C., Hu C.M., Wang J.F. and Hu R.Y., “Vibration control effectiveness of passive tuned mass dampers”, Journal of the Chinese Institute of Engineers, 17:367-376 (1994).
[11]鍾立來、吳賴雲、賴勇安、連冠華、黃旭輝,「以結構位移均方最小化作調諧質塊阻尼器之最佳設計」,結構工程,第二十六卷,第四期,第31-57頁(2011)。
[12]Choi Y.T., Wereley N.M., “Self-powered magnetorheological dampers”. Journal of Vibration and Acoustics, 131(4):044501 (2009)
[13]Tang X. and Zuo L., “Simultaneous energy harvesting and vibration control of structures with tuned mass dampers”, Intelligent Material and Systems and Structures, 23(18):2117-2127 (2012)
[14]Cassidy I.L., Scruggs J.T., Behrens S., Gavin H.P., “Design and experimental characterization of an electromagnetic transducer for large-scale vibratory energy harvesting applications”, Journal of Intelligent Material Systems and Structures, 22(17):2009-2024 (2011)
[15]Liu Y., Lin C.C., Parker J., Zuo L., “Exact H2 optimal tuning and experimental verification of energy-harvesting series electromagnetic tuned-mass dampers”, Journal of Vibration and Acoustics, 138(6): 061003 (2016)
[16]Inderjit Chopra., “Review of state of art of smart structures and integrated systems”, AIAA Journal, 40(11):2145-2187 (2002)
[17]Song G., Sethi V., and Li H.N., “Vibration control of civil structures using piezoceramic smart materials: a review”, Engineering Structures, 28:1513-1524 (2006).
[18]Zhao X., Gao H., Zhang G., yhan B., Yan F., Kwan C. and Rose J.L., “Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring”, Smart Materials and Structures, 16(4):1208-1217 (2007)
[19]Abé M., Park G., and Inman, D.J. “Impedance-based monitoring of stress in thin structural members” , Proceedings of 11th International Conference on Adaptive Structures and Technologies, 285-292 (2000)
[20]Park G., Cudney H.H., and Inman D.J.. “Impedance-based health monitoring of civil structural components”, ASCE Journal of Infrastructure Systems, 6(4): 153-160 (2000).
[21]Annamdas V.G.M, Yang Y., and Soh C.K. “Influence of loading on the lectromechanical admittance of piezoceramic transducers”, Smart Materials and Structures, 16(5): 1888-1897 (2007)
[22]Ong C.W., Yang Y.W., Naidu A.S.K., Lu Y., and Soh CK. “Application of the electro-mechanical impedance method for the identification of in-situ stress in structures”, Smart Structures, Devices, and Systems, Proceedings of SPIE, 4935:503-514 (2002)
[23]Anton S.R. and Sodano H.A., “A review of power harvesting using piezoelectric materials (2003-2006)”, Smart Materials and Structures, 16(3):R1-R21 (2007)
[24]Mateu L. and Moll F., “Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts”, Journal of Intelligent Material Systems and Structures, 16(10):835-845 (2005)
[25]Platt S. R., Farritor S. and Haider H., “On low-frequency electric power generation with PZT ceramics”, IEEE/ASME Transactions on Mechatronics 10(2):240–252 (2005)
[26]Platt S. R., Farritor S. and Haider H., “The use of piezoelectric ceramics for electric power generation within orthopedic implants” IEEE/ASME Transactions on Mechatronics 10(4):455–461(2005)
[27]Ajitsaria J., Choe S.Y., Shen D. and Kim D.J., “Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation”, Smart Materials and Structures, 16(2):447-454 (2007)
[28]Ouled Chtiba M., Choura S., Nayfeh A.H., El-Borgi S., “Vibration confinement and energy harvesting in flexible structures using collocated absorbers and piezoelectric devices”, Journal of Sound and Vibration, 329(3) 261-276 (2010)
[29]Zhao G., Alujevic N., Depraetere B., Sas P., “Dynamic analysis and H2 optimisation of a piezo-based tuned vibration absorber”, Journal of Intelligent Material Systems and Structures, 26:1995-2010 (2015)
[30]Lee D., Ha D., Choo F.J., Suh M., “Testing of a new electricity-generating TMD by shaking table”, International Conference on Advanced Material Science and Environmental Engineering (AMSEE), 101-104 (2016)
[31]Lee C.Y., Lin J.H., “Incorporating piezoelectric energy harvester in tunable vibration absorber for application in multi-modal vibration reduction of a platform structure”, Journal of Sound and Vibration, 389:73-88(2017)
[32]內政部營建署,「建築物耐風設計規範及解說」(2006) 。
[33]王秋文、謝紹松、張國儀,「如何幫大樓抗風防震?淺談台北101大樓阻尼器」台灣大學土木工程學系電子報,第21期 (2009)。
[34]“Taipei 101” on Wikipedia Web site (2018),
( https://en.wikipedia.org/wiki/Taipei_101 ).
[35]「觀景台-風阻尼球」,擷取自台北101官方網站 (2018),
網址 : ( http://www.taipei-101.com.tw/observatory-damper.aspx#SCROLL2 )
[36]Torczon V., “On the convergence of pattern search algorithms”, SIAM Journal on Optimization, 7(1):1-25(1997)
[37]“Genetic Algorithm and Direct Search Toolbox User’s Guide”, The MathWorks, Inc.(2004)
[38]廖偉汝,「人行橋振動舒適度評估與調諧值量阻尼器減振之實例驗證」,臺灣大學土木工程學系研究所學位論文(2016)
[39]Bachmann H., Ammann W., “Vibrations in structures: induced by man and machines”, Structural Engineering Documents, Volume 3, International Association for Bridge and Structural Engineering, (1987).
[40]Sétra/AFGC, “Footbridges – Assessment of vibrational behavior of footbridges under pedestrian loading”, Setra, (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊