跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 11:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂建林
研究生(外文):Chien-Lin Lu
論文名稱:具雙量化法之多階多位元三角積分調變器設計與實作
論文名稱(外文):Design and Implementation of High-Order Multi-Bit Delta-Sigma Modulator using Dual-Quantization Technique
指導教授:宋國明宋國明引用關係
口試委員:黃榮堂黃育賢陳伯奇
口試日期:2010-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:112
中文關鍵詞:三角積分調變器切換電流式切換電容式雙量化法多位元量化器
外文關鍵詞:delta-sigma modulatorswitched-current techniqueswitched-capacitor techniquedual-quantization techniquemulti-bit quantizer
相關次數:
  • 被引用被引用:5
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討有兩個部分,第一部分探討的內容包含切換電容式與切換電流式之非理想效應的成因與補償;兩種切換技術並在相同條件下,進行最大訊號雜訊與失真比、晶片面積等比較。至於實際的硬體電路,在切換電容式方面,利用不受寄生電容(parasitic-insensitive)影響之切換電容式積分器來改善寄生電容所產生的非線性問題;在切換電流式方面,提出一個利用回授電路降低輸入阻抗以及共模前饋電路改善輸出共模位準的電流取樣電路。第二部分係針對切換電容式三角積分調變器,做更深入的探討,並設計一個使用雙量化法之多階多位元切換電容式三角積分調變器,雙量化法旨在取得多位元的較小量化誤差與單一位元的絕對線性回授優點,其中次類比數位轉換器(sub-ADC)則以快閃式類比數位轉換器架構來實現多位元量化作用。
本論文共設計出三個系統電路,均採用TSMC 0.18μm 1P6M互補式金氧半導體製程完成,分別為二加一階一位元切換電容式與二加一階一位元切換電流式與二加二階三位元切換電容式三角積分調變器;模擬結果顯示,在取樣頻率為5.12 MHz、超取樣率為128與頻寬為20 kHz的條件下,三個電路可得到最大訊號雜訊與失真比分別為87.3 dB、84.8 dB與96.5 dB。

This thesis focus on two topics, one is to study the cause of non-ideal effect and the compensations of switched-capacitor (SC) and switched-current (SI) technique.;In this topic, the comparison between the maximum SNDR and chip area is made under the same conditions. Moreover, a switched-capacitor parasitic-insensitive integrator is used to improve the non-idealitie which produced by parasitic capacitor in voltage mode. Conversely, we use sample-and-hold circuit which consists of both a feedback circuit is used to reduce the impedance at the input and a common-mode feedforward (CMFF) circuit to improve the common-mode offset at the output in the current mode. The other one is focused on the design of SC delta-sigma (Δ-Σ) modulator. That is, a high-order multi-bit delta-sigma modulator with dual-quantization technique is proposed in this topic. The dual-quantization technique is not only to reduce the quantization noise of multi-bit quantizer, but also to have intrinsically linear feedback of a single-bit DAC. Notify that the sub-ADC is made of a flash ADC.
In this thesis, three systems are proposed and fabricated with TSMC 0.18

摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 論文章節與架構 3
第二章 三角積分調變器原理與架構 4
2.1 訊號處理系統 4
2.2 類比數位轉換器簡介 5
2.3 超取樣類比數位轉換器 8
2.3.1 三角積分類比數位轉換器:雜訊頻移技術 8
2.4 高階架構之三角積分調變器 16
2.4.1 內插架構 16
2.4.2 多級串接架構 16
2.5 雙量化法技術 18
2.5.1 Leslie-Singh架構 18
2.5.2 單一迴路雙量化架構 20
2.5.3 疊接雙量化架構 21
2.6 效能之定義 22
第三章 取樣與保持電路 24
3.1 取樣/保持電路 24
3.2 切換電容技術 25
3.3 切換電流技術 26
3.4 非理想效應 27
3.4.1 不匹配 27
3.4.2 傳輸誤差 30
3.4.3 脈衝穿透誤差 31
3.4.4 雜訊 36
3.5 非理想效應之補償 38
3.6 切換電容式與切換電流式之優缺 43
第四章 二加一階一位元三角積分調變器實現 46
4.1 系統設計流程 46
4.2 系統行為模擬 47
4.3 系統電路設計與模擬 52
4.3.1 積分器 52
4.3.1.1 切換電容式積分器 52
4.3.1.2 切換電流式積分器 58
4.3.2 比較器 64
4.3.2.1 電壓式比較器 64
4.3.2.2 電流式比較器 67
4.3.3 數位類比轉換器 69
4.3.3.1 電壓式數位類比轉換器 69
4.3.3.2 電流式數位類比轉換器 71
4.3.4 非重疊時脈產生器 72
4.3.4.1 應用於切換電容式之非重疊時脈產生器 72
4.3.4.2 應用於切換電流式之非重疊時脈產生器 74
4.4 系統電路模擬 76
4.4.1 切換電容式三角積分調變器電路模擬 76
4.4.2 切換電流式三角積分調變器電路模擬 78
第五章 具雙量化法之二加二階三位元三角積分調變器實現 80
5.1 系統行為模擬 80
5.2 系統電路設計與模擬 83
5.2.1 快閃式三位元類比數位轉換器 83
5.2.1.1 切換電容式比較器 86
5.2.1.2 編碼電路 87
5.2.2 切換電容式三位元數位類比轉換器 90
5.3 系統電路模擬 94
5.3.1 切換電容式二加二階三位元三角積分調變器電路模擬 95
第六章 晶片佈局考量與佈局 100
6.1 簡介 100
6.2 類比電路佈局考量 101
6.2.1 運算放大器的輸入差動對 101
6.2.2 電容比例匹配 103
6.2.3 分割不同的電源電壓 104
6.3 系統電路佈局 104
第七章 結論及未來研究方向 107
7.1 結論 107
7.2 未來研究方向 108
參考文獻 109


[1]S. R. Norsworthy, R. Schreier and G. C. Temes, Delta-Sigma Data Converters, New York:IEEE, Inc, 1997, pp. 1-467.
[2]D. L. Fried, “Analog Sample-Data Filters,” IEEE J. Solid-State Circuits, vol. SC-7, pp. 302-304, 1972.
[3]J. B. Hughes, N. C. Bird and Lan C. Macbeth, “Switched Current – A New Technique for Analog Sample-Data Signal Processing,” IEEE Internatinal Symposium on Circuits and Systems, 1989, pp. 1154-1187.
[4]H. C Yang, T. S. Fiez and D. J. Allstot, “Current-Feedthrough Effects and Cancellation Techniques in Switched-Current Circuits”, Proc. of Int. Symp. Circuits And Systems (ISCAS), New Orleans, May 1990, pp. 3186-3188.
[5]T. S. Fiez, D. J. Allstot, G. Liang and P. Lao, “Signal-Dependent Clock-Feedthrough Cancellation in Switched-Current Systems”, Proc. of China 1991 Int. Conf. Circuits And Systems, Shenzhen, China, June 1991, pp. 785-788.
[6]M. Song, Y. Lee and W. Kim, “A Clock Feedthrough Reduction Circuit for Switched-Current Systems”, IEEE J. Solid-State Circ., vol. 28, No. 2, pp. 133-137, Feb. 1993.
[7]M. Helfenstein and G. S. Moschytz, “Improved Two-Step Clock-Feedthrough Compensation Technique for Switched-Current Circuits”, IEEE Trans. On CAS-II, vol. 45, No. 6, pp. 739-743, June 1998.
[8]D. Macq and P. Jespes, “Charge Injection in Current-Copier Cells”, Electron. Lett., vol. 29, No. 9, pp. 780-781, Apr. 1993.
[9]R. J. Baker, CMOS: Mixed-Signal Circuit Design, Second Edition, America: IEEE, Inc., 2009, pp. 27-72.
[10]D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997, pp. 1-572.
[11]M. Gustavsson, J. J. Wikner and N. N. Tan, CMOS Data Converters For Communications, Klower Academic Publishers, Boston, 2000, pp. 1-86.
[12]T. L. Brooks, D. H. Robertson, D. F. Kelly, A. D. Muro and S. W. Harston, ”A Cascaded Sigma-Delta Pipeline A/D Converter with 1.25 MHz Signal Bandwidth and 89 dB SNR”, IEEE J. Solid-State Circuits, vol. 32, No. 12, pp. 1896-1906, Dec. 1997.
[13]Y. Geerts, M. Steyaert and W. Sansen, Design of Multi-Bit Delta-Sigma A/D Converters, Boston:Klower Academic Publishers, 2002, pp. 8-25.
[14]K. C. H. Chao, S. Nadeem, W. L. Lee and C. G. Sodini. “A Higher-Order Topology for Interpolative Modulators for Oversampling A/D Converters,” IEEE Trans. On Circuits and Systems, vol. 37, pp. 309-318, March 1990.
[15]P. Ferguson, Jr., et al. “An 18b 20 kHz Dual Sigma Delta A/D Converter,” Int. Solid-State Circuits Conf., February 1991, pp. 68-292.
[16]Y. Matsuya, et al. “A 16-bit Oversampling A-to-D Conversion Technology Using Triple-Integration Noise Shaping,”IEEE J. of Solid-State Circuits, vol. 22, pp. 921-929, December 1987.
[17]B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, New York, 2001, pp.1-684.
[18]B. E. Jonsson, Ericsson Radio Systems AB, Switched-Current Signal Processing and A/D Conversion Circuits : Design and Implemintation, Klower Academic Publishers, Boston, 2000, pp.10-150.
[19]H. Z.Hoseini and I. Kale, “On the Effects of Finite and Nonlinear DC-Gain of the Amplifiers in Switched-Capacitor Delta-Sigma Modulators,” IEEE International Symposium on Circuits and Systems, 2005, pp. 2547-2550.
[20]J. B. Hughes and K. W. Moulding, “S2I: A Two-step Approach to Switched-Currents”, Proc. of Int. Symp. Circuits and Systems (ISCAS), Chicago, Illinois, May 1993, pp. 1235-1238.
[21]C. Toumazou and S. Xiao, “n-step charge injection cancellation scheme for very accurate switched current circuits”, Electron. Lett., vol. 30, No. 9, pp. 680-681, apr. 1994.
[22]S. Rabii and B. A. Wooley, The Design of Low-Voltage, Low-Power sigma-Delta Modulators, Kluwer Academic Publishers, 1999, pp. 56-125.
[23]S. Rabii and B. A. Wooley, “A 1.8-V digital-audio sigma-delta modulator in 0.8μm CMOS,” IEEE J. Solid-State Circuits, vol. 32, no. 6, pp. 783-796, June 1997.
[24]H. Yoshizawa and G. C. Temes, “High-linearity switched-capacitor circuits in digital CMOS technology,” in proc. IEEE International Symposium on Circuits and Systems, May. 1995, pp. 1029-1032.
[25]N. Tan,”A 1.2-V 0.8-mW SI Sigma-Delta A/D Converter in Standard Digital CMOS Process,” Proc. 21st European Solid-State Circuits Conference (ESSCIRC’95), Sept. 1995, pp.150-153.
[26]P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Holt, Rinehart and Winston, Inc., 1987, pp 1-206.
[27]姚東安,切換電容式與切換電流式二階三角積分調變器之比較,碩士論文, 國立台北科技大學電機工程系碩士班, 台北市, 2006。
[28]林文勝,切換電流式三角積分調變器設計,碩士論文, 國立台北科技大學電機工程系碩士班, 台北市, 2004。
[29]侯岳宏,切換電流式三角積分調變器設計與實作,碩士論文, 國立台北科技大學電機工程系碩士班, 台北市, 2008。
[30]A. Yukawa, "A CMOS 8-bit high speed A/D converter IC," IEEE J. of Solid-State Circuits, vol. 20, pp. 775-779, June 1985.
[31]R. J.Baker, H.W. Li and D.E. Boyce, CMOS circuit design, layout, and simulation, IEEE, Inc., 1997, pp. 636-652.
[32]S. Y. Lee, Y. L.Tsai, W. Z. Su and P. H. Yang, “A 2.5V SWITCHED-CURRENT SIGMA-DELTA MODULATOR WITH A NOVEL CLASS AB MEMORY CELL”, Circuits and Systems, 2003. ISCAS ''03. Proceedings of the 2003 International Symposium on vol 1, pp. 613-616.
[33]S. H. Kim, H. Y. Lee, S. W. Choi and D. Y. Kim, “Wideband multi-bit third-order sigma-delta ADC for wireless transceivers,” IEEE Proceedings of the 5th International Conference on ASIC, vol.1, 2003, pp. 689-692.
[34]P. Ju, K. Suyama, P. F. J. Ferguson and W. Lee, “A 22-kHz multibit switched-capacitor sigma-delta DA converter with 92 dB dynamic range,” IEEE J. of Solid-State Circuits, vol.30, pp. 1316-1325, 1995.
[35]I. Fujimori and T. Sugimoto, “A 1.5 V, 4.1 mW dual-channel audio delta-sigma D/A converter ,” IEEE J. of Solid-State Circuits, pp. 1863-1870, vol.20, 1998.
[36]S. J. Huang and Y. Y. Lin, “A 1.2 V 2 MHz BW 0.084 mm2 ΔΣ ADC with -97.7 dBc THD and 80 dB using Low-latency DEM,” IEEE Internatinal Solid-State Circuits Conference, 2009, pp. 172-173.
[37]Y. Aiba, K. Tomioka, Y. Nakashima, K. Hamashita and B. S. Song, “A Fifth-Order Gm–C Continuous-Time Modulator With Process-Insensitive Input Linear Range,” IEEE J. of Solid-State Circuits, vol.44, pp. 2381-2391, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top