[1]中國鋼鐵股份有限公司,「中鋼公司社會責任」,http://www.csc.com.tw/csc/hr/csr/env/env5.htm#。
[2]鄭大偉,「無機聚合技術的發展應用及回顧」,礦冶,第54卷,第1 期,第141-157頁,2010。
[3]廖家佑,「透水混凝土配比試驗之研究」,碩士論文,逢甲大學土木工程系,2011。[4]韓乃斌,「透水混凝土配比試驗及應用之研究」,碩士論文,逢甲大學土木工程系,2011。[5]林佑儒,「結合體積法語比表面積法之透水混凝土配比設計」,碩士論文,逢甲大學土木工程系,2012。[6]賴昱誠,「不銹鋼氧化碴短期安定化探討」,碩士論文,國立高雄應用科技大學土木工程科技研究所,2014。[7]中國鋼鐵股份有限公司,「爐石利用推廣手冊」,2007。
[8]饒莞馨,「比較改質轉爐石與天然道碴之電阻與碳足跡」,碩士論文,國立成功大學土木工程系,2015。[9]許博語,「利用高溫催化技術探討含鋼碴砂漿之膨脹行為」,碩士論文,國立高雄應用科技大學土木工程科技研究所,2013。[10]中華鋪面工程學會,「轉爐石應用於瀝青混凝土鋪面研討會專輯」,2007。
[11]朱重鍵、王俊卜、李長明和孫桂英,「轉爐鋼碴代替部分熟料研究」,冶金碴處理與利用國際研討會,1999。
[12]王金鐘,「轉爐石作為基底層材料及其工程特性之研究」,博士論文,國立成功大學土木工程學系碩博士班,2005。
[13]林湧昱、鐘文煥、林怡忻、黃偉慶,「以電弧爐還原碴製成複合無機聚合物之研究」,鋪面工程,第12卷,第4期,第65-74頁,2014。[14]Swanepoel, J.C., Strydom, C.A., “Utilisation of fly ash in a geopolymeric material” Applied Geochemistry, Vol. 17, pp.1143-1148, 1991.
[15]池田攻,「資源素材」,第114卷,第7期,第497-500頁,1998。
[16]張文華,「以燃煤飛灰製成無機聚合樹脂應用於混凝土補強之可行性研究」,碩士論文,台北科技大學資源工程研究所,2006。[17]何恭毅,「無機聚合物膠結古蹟夯土材料之物性研究」,碩士論文,國立臺北科技大學土木與防災研究所,2011。[18]Davidovits, J., “Geopolymer: Inorganic polymeric new materials”, Journal of Thermal Analysis, Vol. 37, pp.1122-1134, 1991.
[19]江紀儒,「無機聚合物膠合夯土材料應用於古蹟及歷史建築修復之可行性探討」,碩士論文,國立台北科技大學土木與防災研究所,2012。[20]陳建辰,「無機聚合物添加紅黏土材料之性能研究」,碩士論文,國立台北科技大學土木與防災研究所,2012。[21]Xu, H., J.S.J, Deventer, V., “The geopolymerisation of alumino-silicate minerals”, International Journal of Mineral Processing, Vol. 59, pp.247-266, 2000.
[22]Leong, H.Y., Leong Ong, D.E., Sanjayan, J.G., Nazari, A, “The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer”, Construction and Building Materials, Vol. 106, pp.500-511, 2016.
[23]Song, S., Jennings, H.M., “Pore solution chemistry of alkali-activated groud granulated blast-furnace slag,” Cement and Concrete Research, Vol. 29(2), pp.159-170, 1999.
[24]Glukivski, V.D., “ Alkali-earth binder and concrete produced with them,”, USSR, Russian, Visheka shkola, Kiev, 1979.
[25]Fernández-Jiménez, A., Palomo, J.G., Puertas, F., “Alkali-Activated Slag Mortars Mechanical Strength Behaviour”, Cement and Concrete Research, Vol. 29, pp.1313-1321, 1999.
[26]Shi, C., Krivenko, P.V., Roy, D., “Alkali-Activated Cements and Concrete, ” Taylor & Francis Group, 2006.
[27]Davidovits, J., “Geopolymer: inorganic polymeric new meterials”, Thermal Analysis, vol. 37, pp. 1633-1656, 1991.
[28]Davidovits, J., “Geopolymer chemistry and applications”, France, Saint-Quentin, Institut Géopolymère. pp.384 –385, 2008.
[29]林瑋倫,「鹼激發爐石基膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系,2009。[30]陳冠孙,「鹼激發爐石基膠體配比因子對其工程性質之研究」,碩士論文,國立台灣科技大學營建工程系,2010。
[31]黃立遠,「飛灰基無機聚合物工程性質及應用之研究」,博士論文,國立台灣科技大學營建工程系,2010。[32]楊仁佑,「低溫養護對爐石基無機聚合物工程性質之影響」,碩士論文,國立台灣科技大學營建工程系,2011。[33]Bernal, S.A., Gutierrez, R.M., Provis, J. L. , “Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends”, Construction and Building Materials, Vol. 33, pp.99-108, 2012.
[34]陳子謙,「複合型無機聚合物砂漿之工程性質」,碩士論文,國立台灣科技大學營建工程系,2012。[35]Li, X., Duan, C., Ma, B., Huang, J., Yin, Z., “Influence of fibre on cracking performance of metakaolin-based geopolymer”, J. Wuhan Univ. Tech., Vol.35(6), pp.7-12, 2013.
[36]王志豪、鄭大偉,「填充物對改善高爐爐石製成無機聚合物收縮性之影響研究」,材料系教育基金會刊,第5期,第48-53頁。
[37]Tchakoutéa, H.K., Rüscher, C.H., Kong, S., Kamseu, E., Leonelli, C.,“Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study,” Construction and Building Materials, Vol.14, pp. 276-289, 2016.
[38]Huang, X., Huang, T., Li, S., Muhammad, F., Xu, G., Zhao, Z., Yu, L., Yan, Y., Li, D., Jiao, B., “Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer”, Ceramics International, Vol.42(8), pp.9538-9548, 2016.
[39]可滲透式人形鋪面材料(無細骨材混凝土)及施工方法研究,內政部建築研究計畫成果報告,MOIS 891005,2000。
[40]潘昌林、鄭瑞濱,「透水混凝土與工程應用介紹」,台大營建知識網,http://www.c-km.org.tw/pcp/pcp.htm,2001。
[41]ACI 522R-10 Report Pervious Concrete, American Concrete Institute, Detroit, USA, 2010.
[42]李明君、邱垂德、顏聰,2008,透水混凝土應用於停車場之探討,港灣報導,第79期, 第17-25頁。
[43]ACI 211.3R-02 Report Pervious Concrete, American Concrete Institute, Detroit, USA, 2002.
[44]行政院公共工程委員會公共工程技術資料庫,http://pcces.archnowledge.com/csi/Default.aspx?FunID=Fun_0。
[45]雷掦中,「焚化爐底碴應用於道路工程之研究」,碩士論文,中央大學土木工程研究所,2004。
[46]邱永芳、朱金元、張道光、黃然、張建智、葉為忠,透水混凝土運用於交通工程之研究(1/2),交通部運輸研究所,2007。
[47]Yeih, W., Fu,T.C., Chang, J.J., Huang, R., “Properties of pervious concrete made with air-cooling electric arc furnace slag as aggregates”, Construction and Building Materials, Vol.93, pp.737–745, 2015.
[48]Tho-in, T., Sata, V., Chindaprasirt, P., Jaturapitakkul, C., “Pervious high-calcium fly ash geopolymer concrete”, Construction and Building Materials, Vol.30, pp.366-371, 2012.
[49]Kuo, W.T., Liu, C.C., Su, D.S., “Use of washed municipal solid waste incinerator bottom ash in pervious concrete”, Cement and Concrete Composites, Vol.37, pp.328-335, 2013.
[50]Jang, J.G., Ahn, Y.B., Souri, H., Lee, H.K., “A novel eco-friendly porous concrete fabricated with coal ashand geopolymeric binder: Heavy metal leaching characteristics and compressive strength”, Construction and Building Materials, Vol.79, pp.173-181, 2015.
[51]Park, S.B., Tia, M., “An experimental study on the water-purification properties of porous concrete” , Cement and Concrete Research, Vol.34, pp.177-184, 2004.
[52]Zaetang, Y., Wongsa, A., Sata, V., Chindaprasirt, P., “Use of coal ash as geopolymer binder and coarse aggregate in pervious concrete”, Construction and Building Materials, Vol.96, pp.289-295, 2015.
[53]Chang, J.J., Yeih, W., Chung, T.J., Huang, R., “Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement”, Construction and Building Materials, Vol.109, pp.34-40, 2016.
[54]余憲亮,「磷酸鎂水泥對透水混凝土性質影響之研究」,碩士論文,國立台灣海洋大學河海工程學系,2015。[55]Japan Road Association. Pavement Testing Manual, supplement volume, 1996.317 p. [in Japanese].
[56]ASTM C138/C138M-14, Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete, ASTM International, PA, USA,2014.
[57]ASTM C39/C39M-14, Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, PA, USA, 2014.
[58]ASTM D790-10, Standard test method for flexural strength of concrete(using simple beam with center-point loading), ASTM International, PA, USA, 2010.
[59]ASTM C496/C496M-11, Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM International, PA, USA, 2011.
[60]ASTM C936/C936M-15, Standard Specification for Solid Concrete Interlocking Paving Units, ASTM International, PA, USA, 2015.
[61]ASTM E303-93, Standard test method for measuring surface frictional properties using the British pendulum tester, ASTM International, PA, USA, 2013.
[62]孫凡撰,「骨材粒徑與膠結將體變化下對透水混凝土行為影響之研究」,碩士論文,國立台灣海洋大學河海工程學系,2006。
[63]Jordi, M., “Mean absolute percentage error and bias in economic forecasting”, Economics Letters, Vol.113(3), pp.259-262, 2011.
[64]ACI 318-99、318R-99 Report Building code requirements for structural concrete and commentary, American Concrete Institute, Detroit, USA, 1999.