跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾宇賢
研究生(外文):Yu-HsienTseng
論文名稱:現址凝固型膠態電解質在鋰電池之應用
論文名稱(外文):On-Site Coagulation Type Gel Polymer Electrolyte for Lithium Batteries
指導教授:鄧熙聖
指導教授(外文):Hsisheng Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:91
中文關鍵詞:鋰電池膠態高分子電解質聚丙烯腈自凝成膠
外文關鍵詞:Lithium batteryGel polymer electrolytePoly(acrylonitrile)Auto-gelation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以現有鋰電池產線為基礎,不須更改設備和製程,透過注液方式將開發之膠態電解質注入鋰電池中,能得到具高安全性之鋰電池。此膠態高分子電解質以聚丙烯腈(Poly(acrylonitrile-co-methyl acrylate),PAN-MA)高分子為主架構,混摻聚乙二醇(Poly(ethylene glycol),PEG)高分子,加入商用液態有機電解液(LE; 1M LiPF6 in EC/DMC=1/1 v/v)中,加熱攪拌至高分子完全溶解呈均勻相,靜置一段時間後會自凝成膠轉變為果凍狀之膠態高分子電解質(GPE),具現址成膠能力。
藉由Raman分析、導離子度量測、黏度測試、介電譜分析、鋰離子遷移常數(0.62)分析與電化學穩定電位窗(~5.3 V)測量,得知GPE因加入高分子,存在鋰鹽-高分子作用力,能促進鋰鹽完全解離,雖然黏度比LE稍高,但仍不影響鋰電池電解質注液過程,且高分子能與溶劑化鋰離子產生作用力,藉由自身的鏈段運動傳遞鋰離子,並同時吸引PF6-減少離子基團團聚,相對LE而言,上述性質有助於提升系統的導離子度和鋰離子遷移數,還能避免鋰鹽電化學分解反應的進行,進而提升膠態高分子電解質的電化學穩定電位窗。
而在電池性能表現方面,使用磷酸鋰鐵正極搭配鋰金屬負極,並選擇用於超級電容器中的cellulose作為隔離膜,以LE與GPE組裝成2032鈕扣型電池進行測試及比較差異。在室溫25 ℃及0.1 C-rate的放電速率下,GPE電池擁有164 mAh/g之高電容量,在15 C-rate的放電速率下仍擁有22 mAh/g之電容量,遠遠優於LE電池(0.1 C-rate具有158mAh/g之電容量;13 C-rate具有9 mAh/g之電容量)。將電池進行長效充放電測試,以1 C-rate充電、5 C-rate放電,循環充放電300圈後,GPE鋰電池電容維持率仍有83 %。最後進一步組成軟包電池做可行性和安全性測試,發現不論是彎折、剪斷都未影響電池放電能力,且未發現有任何電解質滲漏的情況發生,故我們可以利用此系統自凝成膠之特性,應用在現有鋰電池生產線中,不需投入資金更改設備和製程,即可生產不會發生漏液且具高效能、高安全性之膠態鋰電池。

關鍵字:鋰電池、膠態高分子電解質、聚丙烯腈、自凝成膠
This study incorporates polymer into commercial liquid electrolyte (LE) to form gel polymer electrolyte (GPE) which exhibits auto-gelation after standing for a while. The GPE comprises polyacrylonitrile-co-methyl acrylate (PAN-MA) blending polyethylene glycol (PEG) as a host dissolved by a LE of 1 M LiPF6 in a carbonate solvent. The battery which used GPE exhibits high safety and excellent performance because its polymer chain would interact with Li-EC complexes and facilitate Li-ion migrate. Also, it has interaction with PF6− anions to effectively disperse the cluster ions and decreased the solvation degree of Li+ that accelerate the transport of Li+ ion. As a result, GPE exhibits high ionic conductivity (1.72×10-3 S/cm at room temperature) , a wide electrochemical window of 5.3 V (vs. Li/Li+) and high lithium ion transfer number (0.62). The battery assembled using GPE, i.e., Li/GPE/LiFePO4, delivering a capacity of 164 mAh·g-1 at 0.1 C-rate and 22 mAh·g-1 at 15 C-rate. The most important is GPE in this study can be applied in battery industrial process without any equipment change, and the flexibility is helpful for application in various sizes of electronic devices. That mean, we can manufacture high safety lithium batteries which could fully avoid electrolyte leakage by existing battery factories.

Keywords:Lithium battery, Gel polymer electrolyte, Poly(acrylonitrile), Auto-gelation
中文摘要 I
英文摘要 III
誌謝 X
本文目錄 XII
表目錄 XV
圖目錄XVI
第一章 緒論 1
1-1前言-電池發展與介紹 1
1-2 鋰電池與鋰離子電池 3
1-2-1裝置構造 4
1-2-2工作原理 4
1-3電極材料 6
1-3-1正極材料 6
1-3-2負極材料 10
1-4電解質 12
1-4-1液態有機電解質 13
1-4-2膠態高分子電解質 15
1-4-3固態高分子電解質 16
1-4-4無機固態電解質 19
1-5常見鋰離子電池專有名詞與計算 21
1-5-1理論電容量計算 21
1-5-2專有名詞介紹 22
1-5-3電池組串並聯計算 23
1-6全球鋰電池商業概況 25
1-7研究動機與目的 29
第二章 理論說明與文獻回顧 31
2-1 聚丙烯腈性質與回顧 31
2-2 導離子度 33
2-3 正離子遷移常數 35
第三章 實驗方法與儀器原理介紹 38
3-1 實驗藥品 38
3-2 實驗儀器設備 39
3-3 磷酸鋰鐵(LiFePO4)正極之極片製作 41
3-4 石墨(graphite)負極之極片製作 41
3-5 膠態高分子電解質製備 42
3-6鈕扣型電池(coin-cell)組裝 43
3-7軟包鋰電池製作 44
3-8實驗分析儀器與裝置分析儀器原理簡介 45
3-9電化學測試 50
3-10電池性能測試 52
3-11實驗流程 53
第四章 結果與討論 54
4-1 膠態高分子電解質物理化學分析 56
4-1-1隔離膜與膠態高分子電解質形貌 56
4-1-2 SEM分析 57
4-1-3熱穩定性分析 58
4-1-4 Raman分析 59
4-2 膠態高分子電解質電化學分析 62
4-2-1離子傳導度(Ionic conductivity, σ) 62
4-2-2鋰離子遷移數(Lithium transference number, tLi+) 66
4-2-3電化學穩定度量測 69
4-3 電池性能測試 71
4-3-1 LiFePO4電池充放電測試 71
4-3-2電池短路性能測試 75
4-4 軟包裝鋰電池安全性測試 76
4-5 介電常數測試 77
4-6 文獻比較 80
第五章 結論與建議 81
參考文獻 82
[1]黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術.五南圖書, 2010.
[2]J. Hajek, Contents, Vol. 118, No. 4-5, 1949. Ophthalmologica 1949, 118, 212.
[3]D. Murphy, Materials for advanced batteries, Vol. 2, Springer Science & Business Media, 2013.
[4]S. Basu, Editor, USA Patent 4, 423 (1983).
[5]T. Ohzuku, A. Ueda, Solid‐state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells. Journal of The Electrochemical Society 1994, 141, 2972.
[6]D. Rahner, S. Machill, K. Siury, M. Kloß, W. Plieth, Intercalation materials for lithium rechargeable batteries, New Promising Electrochemical Systems for Rechargeable Batteries, Springer, 1996, 35.
[7]G. T. K. Fey, W. Li, J. Dahn, LiNiVO4: a 4.8 volt electrode material for lithium cells. Journal of The Electrochemical Society 1994, 141, 2279.
[8]J. Besenhard, M. Hess, P. Komenda, Dimensionally stable Li-alloy electrodes for secondary batteries. Solid State Ionics 1990, 40, 525.
[9]J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 2011, 171.
[10] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science 2014, 7, 3857.
[11] B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, R. P. Raffaelle, Carbon nanotubes for lithium ion batteries. Energy & Environmental Science 2009, 2, 638.
[12] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144, 1188.
[13] G. Feuillade, P. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 1975, 5, 63.
[14] N. Wu, Q. Cao, X. Wang, X. Li, H. Deng, A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries. Journal of Power Sources 2011, 196, 8638.
[15] H.-R. Jung, W.-J. Lee, Electrochemical characteristics of electrospun poly (methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery. Electrochimica Acta 2011, 58, 674.
[16] Y. Ito, K. Kanehori, K. Miyauchi, T. Kudo, Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly (ethylene glycol). Journal of materials science 1987, 22, 1845.
[17] A. S. Gozdz, C. N. Schmutz, J.-M. Tarascon, P. C. Warren, Polymeric electrolytic cell separator membrane, 1995
[18] M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, I. Shinohara, High lithium ionic conductivity of polymeric solid electrolytes. Die Makromolekulare Chemie, Rapid Communications 1981, 2, 741.
[19] R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons 2016, 3, 487.
[20] X. Andrieu, J. Fauvarque, A. Goux, T. Hamaide, R. M'hamdi, T. Vicedo, Solid polymer electrolytes based on statistical poly (ethylene oxide-propylene oxide) copolymers. Electrochimica acta 1995, 40, 2295.
[21] A. S. Gozdz, J. M. Tarascon, P. C. Warren, C. N. Schmutz, and F. K. Shokoohi, Proceedings of the Fifth International Symposium on Polymer Electrolyte. Uppsala, Sweden, 11-16 (1996)..
[22] H. R. Allcock, P. E. Austin, T. X. Neenan, J. T. Sisko, P. M. Blonsky, D. F. Shriver, ^Polyphosphazenes with etheric side groups: prospective biomedical and solid electrolyte polymers. Macromolecules 1986, 19, 1508.
[23] M. Shibata, T. Kobayashi, R. Yosomiya, M. Seki, Polymer electrolytes based on blends of poly (ether urethane) and polysiloxanes. European polymer journal 2000, 36, 485.
[24] T. Fujinami, A. Tokimune, M. A. Mehta, D. Shriver, G. C. Rawsky, Siloxyaluminate polymers with high Li+ ion conductivity. Chemistry of materials 1997, 9, 2236.
[25] Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Design principles for solid-state lithium superionic conductors. Nature materials 2015, 14, 1026.
[26] P. G. Bruce, A. West, The A‐C Conductivity of Polycrystalline LISICON, Li2+ 2x Zn1− x GeO4, and a Model for Intergranular Constriction Resistances. Journal of The Electrochemical Society 1983, 130, 662.
[27] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. y. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate. Journal of the electrochemical society 1990, 137, 1023.
[28] Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, High ionic conductivity in lithium lanthanum titanate. Solid State Communications 1993, 86, 689.
[29] R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition 2007, 46, 7778.
[30] X. Yu, J. Bates, G. Jellison, F. Hart, A stable thin‐film lithium electrolyte: lithium phosphorus oxynitride. Journal of the electrochemical society 1997, 144, 524.
[31] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A lithium superionic conductor. Nature materials 2011, 10, 682.
[32] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1, 16030.
[33] A. Vlad, N. Singh, C. Galande, P. M. Ajayan, Design considerations for unconventional electrochemical energy storage architectures. Advanced Energy Materials 2015, 5, 1402115.
[34] C.-L. Chen, H. Teng, Y.-L. Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly (acrylonitrile-co-vinyl acetate). Journal of Materials Chemistry 2011, 21, 628.
[35] H. Akashi, K. Sekai, K.-i. Tanaka, A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries. Electrochimica acta 1998, 43, 1193.
[36] P. Carol, P. Ramakrishnan, B. John, G. Cheruvally, Preparation and characterization of electrospun poly (acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. Journal of Power Sources 2011, 196, 10156.
[37] P. Raghavan, J. Manuel, X. Zhao, D.-S. Kim, J.-H. Ahn, C. Nah, Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. Journal of Power Sources 2011, 196, 6742.
[38] G. Appetecchi, F. Croce, B. Scrosati, Kinetics and stability of the lithium electrode in poly (methylmethacrylate)-based gel electrolytes. Electrochimica Acta 1995, 40, 991.
[39] Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ionics 1999, 121, 141.
[40] H. Hong, C. Liquan, H. Xuejie, X. Rongjian, Studies on PAN-based lithium salt complex. Electrochimica acta 1992, 37, 1671.
[41] X. Hou, K. S. Siow, Electrochemical characterization of plasticized polymer electrolytes based on ABS/PMMA blends. Journal of Solid State Electrochemistry 2001, 5, 293.
[42] R. Prasanth, V. Aravindan, M. Srinivasan, Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly (methyl methacrylate)/polystyrene for lithium ion batteries—Preparation and electrochemical characterization. Journal of Power Sources 2012, 202, 299.
[43] F. Krok, J. Dygas, B. Misztal-Faraj, Z. Florjańczyk, W. Bzducha, Impedance and polarisation studies of new lithium polyelectrolyte gels. Journal of power sources 1999, 81, 766.
[44] H. S. Min, D. W. Kang, D. Y. Lee, D. W. Kim, Gel polymer electrolytes prepared with porous membranes based on an acrylonitrile/methyl methacrylate copolymer. Journal of Polymer Science Part B: Polymer Physics 2002, 40, 1496.
[45] S.H. Wang, S.S. Hou, P.L. Kuo, H. Teng, Poly (ethylene oxide)-co-poly (propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. ACS applied materials & interfaces 2013, 5, 8477.
[46] M. M. Nasef, R. R. Suppiah, K. Z. M. Dahlan, Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization. Solid State Ionics 2004, 171, 243.
[47] B. Choi, Y. Kim, H. Shin, Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochimica Acta 2000, 45, 1371.
[48] M.J.C.Plancha, C. A. C. Sequeira, and D. M. F. Santos, Polymer electrolytes. UK: Woodhead Publishing Limited, (2010)..
[49] P. G. Bruce, M. T. Hardgrave, C. A. Vincent, The determination of transference numbers in solid polymer electrolytes using the Hittorf method. Solid State Ionics 1992, 53, 1087.
[50] J. Evans, C. A. Vincent, P. G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324.
[51] P. G. Bruce, C. A. Vincent, Steady state current flow in solid binary electrolyte cells. Journal of electroanalytical chemistry and interfacial electrochemistry 1987, 225, 1.
[52] C. W. Huang, C. A. Wu, S. S. Hou, P. L. Kuo, C. T. Hsieh, H. Teng, Gel Electrolyte Derived from Poly (ethylene glycol) Blending Poly (acrylonitrile) Applicable to Roll‐to‐Roll Assembly of Electric Double Layer Capacitors. Advanced Functional Materials 2012, 22, 4677.
[53] C. Barlowz, Reaction of water with hexafluorophosphates and with Li bis (perfluoroethylsulfonyl) imide salt. Electrochemical and solid-state letters 1999, 2, 362.
[54] A. Khursheed, Scanning electron microscope optics and spectrometers, World scientific, 2011.
[55] M. Mastragostino, C. Arbizzani, F. Soavi, Polymer-based supercapacitors. Journal of power sources 2001, 97, 812.
[56] 郝静怡, 王习文, 超级电容器隔膜纸的特性和发展趋势, 2014.
[57] J. Y. Kim, D. O. Shin, S.-H. Kim, J. H. Lee, K. M. Kim, J. Oh, J. Kim, M. J. Lee, Y.-S. Yang, S.-Y. Lee, Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries. Journal of Power Sources 2018, 401, 126.
[58] J. Sheng, R. Wang, R. Yang, Physicochemical Properties of Cellulose Separators for Lithium Ion Battery: Comparison with Celgard2325. Materials 2019, 12, 2.
[59] C. Yang, H. Tong, C. Luo, S. Yuan, G. Chen, Y. Yang, Boehmite particle coating modified microporous polyethylene membrane: a promising separator for lithium ion batteries. Journal of Power Sources 2017, 348, 80.
[60] S. Choi, J. Kim, S. Jo, W. Lee, Y.-R. Kim, Electrochemical and spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes. Journal of the Electrochemical Society 2005, 152, A989.
[61] G. Bouteau, A. N. Van-Nhien, M. Sliwa, N. Sergent, J.C. Lepretre, G. Gachot, I. Sagaidak, F. Sauvage, Effect of standard light illumination on electrolyte’s stability of lithium-ion batteries based on ethylene and di-methyl carbonates. Scientific reports 2019, 9, 135.
[62] S. Chaurasia, R. Singh, S. Chandra, Ion–polymer complexation and ion-pair formation in a polymer electrolyte PEO: LiPF6 containing an ionic liquid having same anion: A Raman study. Vibrational Spectroscopy 2013, 68, 190.
[63] C. M. Burba, R. Frech, Spectroscopic measurements of ionic association in solutions of LiPF6. The Journal of Physical Chemistry B 2005, 109, 15161.
[64] K. Kondo, M. Sano, A. Hiwara, T. Omi, M. Fujita, A. Kuwae, M. Iida, K. Mogi, H. Yokoyama, Conductivity and solvation of Li+ ions of LiPF6 in propylene carbonate solutions. The Journal of Physical Chemistry B 2000, 104, 5040.
[65] R. Aroca, M. Nazri, G. Nazri, A. Camargo, M. Trsic, Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries. Journal of Solution Chemistry 2000, 29, 1047.
[66] S.H. Wang, P.L. Kuo, C.T. Hsieh, H. Teng, Design of poly (acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries. ACS applied materials & interfaces 2014, 6, 19360.
[67] P.L. Kuo, W.J. Liang, T.Y. Chen, Solid polymer electrolytes V: microstructure and ionic conductivity of epoxide-crosslinked polyether networks doped with LiClO4. Polymer 2003, 44, 2957.
[68] J. Saunier, F. Alloin, J. Y. Sanchez, G. Caillon, Thin and flexible lithium-ion batteries: investigation of polymer electrolytes. Journal of Power Sources 2003, 119-121, 454.
[69] M. H. Cohen, D. Turnbull, Molecular Transport in Liquids and Glasses. The Journal of Chemical Physics 1959, 31, 1164.
[70] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1, 16030.
[71] H. Sumathipala, J. Hassoun, S. Panero, B. Scrosati, Li-LiFePO4 rechargeable polymer battery using dual composite polymer electrolytes. Journal of Applied Electrochemistry 2008, 38, 39.
[72] F. B. Dias, L. Plomp, J. B. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources 2000, 88, 169.
[73] S. Leroy, F. Blanchard, R. Dedryvere, H. Martinez, B. Carré, D. Lemordant, D. Gonbeau, Surface film formation on a graphite electrode in Li‐ion batteries: AFM and XPS study. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 2005, 37, 773.
[74] J. Gnanaraj, M. Levi, Y. Gofer, D. Aurbach, M. Schmidt, LiPF3(CF2CF3) 3: A Salt for Rechargeable Lithium Ion Batteries. Journal of The Electrochemical Society 2003, 150, A445.
[75] Y. Zhang, Z. B. Wang, F. D. Yu, L. F. Que, M. J. Wang, Y. F. Xia, Y. Xue, J. Wu, Studies on stability and capacity for long-life cycle performance of Li(Ni0.5Co0.2Mn0.3)O-2 by Mo modification for lithium-ion battery. Journal of Power Sources 2017, 358, 1.
[76] S. B. Chikkannanavar, D. M. Bernardi, L. Y. Liu, A review of blended cathode materials for use in Li-ion batteries. Journal of Power Sources 2014, 248, 91.
[77] A. Kraytsberg, Y. Ein-Eli, Higher, Stronger, Better ... A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials 2012, 2, 922.
[78] G. T.K. Fey, New High Voltage Cathode Materials for Rechargeable Lithium Batteries. Active and passive electronic components 1995, 18, 11.
[79] A. Yamada, H. Koizumi, N. Sonoyama, R. Kanno, Phase change in LixFePO4. Electrochemical and Solid State Letters 2005, 8, A409.
[80] J. W. Choi, Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1.
[81] P.L. Kuo, High Performance of Transferring Lithium Ion for Polyacrylonitrile-Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte. ACS applied materials & interfaces 2014, 6, 3156.
[82] J. Y. Kim, Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries. Journal of Power Sources 2018, 401, 126.
[83] R. P. Liu, Z. R. Wu, P. He, H. Y. Fan, Z. Y. Huang, L. Zhang, X. S. Chang, H. Liu, C. A. Wang, Y. T. Li, A self-standing, UV-cured semi-interpenetrating polymer network reinforced composite gel electrolytes for dendrite-suppressing lithium ion batteries. Journal of Materiomics 2019, 5, 185.
[84] Z. Du, Y. Z. Su, Y. Y. Qu, L. Z. Zhao, X. B. Jia, Y. Mo, F. Yu, J. Du, Y. Chen, A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochimica Acta 2019, 299, 19.
[85] S. Z. Zhang, X. H. Xia, D. Xie, R. C. Xu, Y. J. Xu, Y. Xia, J. B. Wu, Z. J. Yao, X. L. Wang, J. P. Tu, Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries. Journal of Power Sources 2019, 409, 31.
[86] J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews 2018, 1, 35.
[87] P. Mohanty, S. Nöjd, M. Bergman, G. Nägele, S. Arrese-Igor, A. Alegria, R. Roa, P. Schurtenberger, J. Dhont, Dielectric spectroscopy of ionic microgel suspensions. Soft matter 2016, 12, 9705.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊