|
[1]黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術.五南圖書, 2010. [2]J. Hajek, Contents, Vol. 118, No. 4-5, 1949. Ophthalmologica 1949, 118, 212. [3]D. Murphy, Materials for advanced batteries, Vol. 2, Springer Science & Business Media, 2013. [4]S. Basu, Editor, USA Patent 4, 423 (1983). [5]T. Ohzuku, A. Ueda, Solid‐state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells. Journal of The Electrochemical Society 1994, 141, 2972. [6]D. Rahner, S. Machill, K. Siury, M. Kloß, W. Plieth, Intercalation materials for lithium rechargeable batteries, New Promising Electrochemical Systems for Rechargeable Batteries, Springer, 1996, 35. [7]G. T. K. Fey, W. Li, J. Dahn, LiNiVO4: a 4.8 volt electrode material for lithium cells. Journal of The Electrochemical Society 1994, 141, 2279. [8]J. Besenhard, M. Hess, P. Komenda, Dimensionally stable Li-alloy electrodes for secondary batteries. Solid State Ionics 1990, 40, 525. [9]J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 2011, 171. [10] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science 2014, 7, 3857. [11] B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, R. P. Raffaelle, Carbon nanotubes for lithium ion batteries. Energy & Environmental Science 2009, 2, 638. [12] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144, 1188. [13] G. Feuillade, P. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 1975, 5, 63. [14] N. Wu, Q. Cao, X. Wang, X. Li, H. Deng, A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries. Journal of Power Sources 2011, 196, 8638. [15] H.-R. Jung, W.-J. Lee, Electrochemical characteristics of electrospun poly (methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery. Electrochimica Acta 2011, 58, 674. [16] Y. Ito, K. Kanehori, K. Miyauchi, T. Kudo, Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly (ethylene glycol). Journal of materials science 1987, 22, 1845. [17] A. S. Gozdz, C. N. Schmutz, J.-M. Tarascon, P. C. Warren, Polymeric electrolytic cell separator membrane, 1995 [18] M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, I. Shinohara, High lithium ionic conductivity of polymeric solid electrolytes. Die Makromolekulare Chemie, Rapid Communications 1981, 2, 741. [19] R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons 2016, 3, 487. [20] X. Andrieu, J. Fauvarque, A. Goux, T. Hamaide, R. M'hamdi, T. Vicedo, Solid polymer electrolytes based on statistical poly (ethylene oxide-propylene oxide) copolymers. Electrochimica acta 1995, 40, 2295. [21] A. S. Gozdz, J. M. Tarascon, P. C. Warren, C. N. Schmutz, and F. K. Shokoohi, Proceedings of the Fifth International Symposium on Polymer Electrolyte. Uppsala, Sweden, 11-16 (1996).. [22] H. R. Allcock, P. E. Austin, T. X. Neenan, J. T. Sisko, P. M. Blonsky, D. F. Shriver, ^Polyphosphazenes with etheric side groups: prospective biomedical and solid electrolyte polymers. Macromolecules 1986, 19, 1508. [23] M. Shibata, T. Kobayashi, R. Yosomiya, M. Seki, Polymer electrolytes based on blends of poly (ether urethane) and polysiloxanes. European polymer journal 2000, 36, 485. [24] T. Fujinami, A. Tokimune, M. A. Mehta, D. Shriver, G. C. Rawsky, Siloxyaluminate polymers with high Li+ ion conductivity. Chemistry of materials 1997, 9, 2236. [25] Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Design principles for solid-state lithium superionic conductors. Nature materials 2015, 14, 1026. [26] P. G. Bruce, A. West, The A‐C Conductivity of Polycrystalline LISICON, Li2+ 2x Zn1− x GeO4, and a Model for Intergranular Constriction Resistances. Journal of The Electrochemical Society 1983, 130, 662. [27] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. y. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate. Journal of the electrochemical society 1990, 137, 1023. [28] Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, High ionic conductivity in lithium lanthanum titanate. Solid State Communications 1993, 86, 689. [29] R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition 2007, 46, 7778. [30] X. Yu, J. Bates, G. Jellison, F. Hart, A stable thin‐film lithium electrolyte: lithium phosphorus oxynitride. Journal of the electrochemical society 1997, 144, 524. [31] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A lithium superionic conductor. Nature materials 2011, 10, 682. [32] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1, 16030. [33] A. Vlad, N. Singh, C. Galande, P. M. Ajayan, Design considerations for unconventional electrochemical energy storage architectures. Advanced Energy Materials 2015, 5, 1402115. [34] C.-L. Chen, H. Teng, Y.-L. Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly (acrylonitrile-co-vinyl acetate). Journal of Materials Chemistry 2011, 21, 628. [35] H. Akashi, K. Sekai, K.-i. Tanaka, A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries. Electrochimica acta 1998, 43, 1193. [36] P. Carol, P. Ramakrishnan, B. John, G. Cheruvally, Preparation and characterization of electrospun poly (acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. Journal of Power Sources 2011, 196, 10156. [37] P. Raghavan, J. Manuel, X. Zhao, D.-S. Kim, J.-H. Ahn, C. Nah, Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. Journal of Power Sources 2011, 196, 6742. [38] G. Appetecchi, F. Croce, B. Scrosati, Kinetics and stability of the lithium electrode in poly (methylmethacrylate)-based gel electrolytes. Electrochimica Acta 1995, 40, 991. [39] Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ionics 1999, 121, 141. [40] H. Hong, C. Liquan, H. Xuejie, X. Rongjian, Studies on PAN-based lithium salt complex. Electrochimica acta 1992, 37, 1671. [41] X. Hou, K. S. Siow, Electrochemical characterization of plasticized polymer electrolytes based on ABS/PMMA blends. Journal of Solid State Electrochemistry 2001, 5, 293. [42] R. Prasanth, V. Aravindan, M. Srinivasan, Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly (methyl methacrylate)/polystyrene for lithium ion batteries—Preparation and electrochemical characterization. Journal of Power Sources 2012, 202, 299. [43] F. Krok, J. Dygas, B. Misztal-Faraj, Z. Florjańczyk, W. Bzducha, Impedance and polarisation studies of new lithium polyelectrolyte gels. Journal of power sources 1999, 81, 766. [44] H. S. Min, D. W. Kang, D. Y. Lee, D. W. Kim, Gel polymer electrolytes prepared with porous membranes based on an acrylonitrile/methyl methacrylate copolymer. Journal of Polymer Science Part B: Polymer Physics 2002, 40, 1496. [45] S.H. Wang, S.S. Hou, P.L. Kuo, H. Teng, Poly (ethylene oxide)-co-poly (propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. ACS applied materials & interfaces 2013, 5, 8477. [46] M. M. Nasef, R. R. Suppiah, K. Z. M. Dahlan, Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization. Solid State Ionics 2004, 171, 243. [47] B. Choi, Y. Kim, H. Shin, Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochimica Acta 2000, 45, 1371. [48] M.J.C.Plancha, C. A. C. Sequeira, and D. M. F. Santos, Polymer electrolytes. UK: Woodhead Publishing Limited, (2010).. [49] P. G. Bruce, M. T. Hardgrave, C. A. Vincent, The determination of transference numbers in solid polymer electrolytes using the Hittorf method. Solid State Ionics 1992, 53, 1087. [50] J. Evans, C. A. Vincent, P. G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324. [51] P. G. Bruce, C. A. Vincent, Steady state current flow in solid binary electrolyte cells. Journal of electroanalytical chemistry and interfacial electrochemistry 1987, 225, 1. [52] C. W. Huang, C. A. Wu, S. S. Hou, P. L. Kuo, C. T. Hsieh, H. Teng, Gel Electrolyte Derived from Poly (ethylene glycol) Blending Poly (acrylonitrile) Applicable to Roll‐to‐Roll Assembly of Electric Double Layer Capacitors. Advanced Functional Materials 2012, 22, 4677. [53] C. Barlowz, Reaction of water with hexafluorophosphates and with Li bis (perfluoroethylsulfonyl) imide salt. Electrochemical and solid-state letters 1999, 2, 362. [54] A. Khursheed, Scanning electron microscope optics and spectrometers, World scientific, 2011. [55] M. Mastragostino, C. Arbizzani, F. Soavi, Polymer-based supercapacitors. Journal of power sources 2001, 97, 812. [56] 郝静怡, 王习文, 超级电容器隔膜纸的特性和发展趋势, 2014. [57] J. Y. Kim, D. O. Shin, S.-H. Kim, J. H. Lee, K. M. Kim, J. Oh, J. Kim, M. J. Lee, Y.-S. Yang, S.-Y. Lee, Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries. Journal of Power Sources 2018, 401, 126. [58] J. Sheng, R. Wang, R. Yang, Physicochemical Properties of Cellulose Separators for Lithium Ion Battery: Comparison with Celgard2325. Materials 2019, 12, 2. [59] C. Yang, H. Tong, C. Luo, S. Yuan, G. Chen, Y. Yang, Boehmite particle coating modified microporous polyethylene membrane: a promising separator for lithium ion batteries. Journal of Power Sources 2017, 348, 80. [60] S. Choi, J. Kim, S. Jo, W. Lee, Y.-R. Kim, Electrochemical and spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes. Journal of the Electrochemical Society 2005, 152, A989. [61] G. Bouteau, A. N. Van-Nhien, M. Sliwa, N. Sergent, J.C. Lepretre, G. Gachot, I. Sagaidak, F. Sauvage, Effect of standard light illumination on electrolyte’s stability of lithium-ion batteries based on ethylene and di-methyl carbonates. Scientific reports 2019, 9, 135. [62] S. Chaurasia, R. Singh, S. Chandra, Ion–polymer complexation and ion-pair formation in a polymer electrolyte PEO: LiPF6 containing an ionic liquid having same anion: A Raman study. Vibrational Spectroscopy 2013, 68, 190. [63] C. M. Burba, R. Frech, Spectroscopic measurements of ionic association in solutions of LiPF6. The Journal of Physical Chemistry B 2005, 109, 15161. [64] K. Kondo, M. Sano, A. Hiwara, T. Omi, M. Fujita, A. Kuwae, M. Iida, K. Mogi, H. Yokoyama, Conductivity and solvation of Li+ ions of LiPF6 in propylene carbonate solutions. The Journal of Physical Chemistry B 2000, 104, 5040. [65] R. Aroca, M. Nazri, G. Nazri, A. Camargo, M. Trsic, Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries. Journal of Solution Chemistry 2000, 29, 1047. [66] S.H. Wang, P.L. Kuo, C.T. Hsieh, H. Teng, Design of poly (acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries. ACS applied materials & interfaces 2014, 6, 19360. [67] P.L. Kuo, W.J. Liang, T.Y. Chen, Solid polymer electrolytes V: microstructure and ionic conductivity of epoxide-crosslinked polyether networks doped with LiClO4. Polymer 2003, 44, 2957. [68] J. Saunier, F. Alloin, J. Y. Sanchez, G. Caillon, Thin and flexible lithium-ion batteries: investigation of polymer electrolytes. Journal of Power Sources 2003, 119-121, 454. [69] M. H. Cohen, D. Turnbull, Molecular Transport in Liquids and Glasses. The Journal of Chemical Physics 1959, 31, 1164. [70] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1, 16030. [71] H. Sumathipala, J. Hassoun, S. Panero, B. Scrosati, Li-LiFePO4 rechargeable polymer battery using dual composite polymer electrolytes. Journal of Applied Electrochemistry 2008, 38, 39. [72] F. B. Dias, L. Plomp, J. B. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources 2000, 88, 169. [73] S. Leroy, F. Blanchard, R. Dedryvere, H. Martinez, B. Carré, D. Lemordant, D. Gonbeau, Surface film formation on a graphite electrode in Li‐ion batteries: AFM and XPS study. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 2005, 37, 773. [74] J. Gnanaraj, M. Levi, Y. Gofer, D. Aurbach, M. Schmidt, LiPF3(CF2CF3) 3: A Salt for Rechargeable Lithium Ion Batteries. Journal of The Electrochemical Society 2003, 150, A445. [75] Y. Zhang, Z. B. Wang, F. D. Yu, L. F. Que, M. J. Wang, Y. F. Xia, Y. Xue, J. Wu, Studies on stability and capacity for long-life cycle performance of Li(Ni0.5Co0.2Mn0.3)O-2 by Mo modification for lithium-ion battery. Journal of Power Sources 2017, 358, 1. [76] S. B. Chikkannanavar, D. M. Bernardi, L. Y. Liu, A review of blended cathode materials for use in Li-ion batteries. Journal of Power Sources 2014, 248, 91. [77] A. Kraytsberg, Y. Ein-Eli, Higher, Stronger, Better ... A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials 2012, 2, 922. [78] G. T.K. Fey, New High Voltage Cathode Materials for Rechargeable Lithium Batteries. Active and passive electronic components 1995, 18, 11. [79] A. Yamada, H. Koizumi, N. Sonoyama, R. Kanno, Phase change in LixFePO4. Electrochemical and Solid State Letters 2005, 8, A409. [80] J. W. Choi, Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1. [81] P.L. Kuo, High Performance of Transferring Lithium Ion for Polyacrylonitrile-Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte. ACS applied materials & interfaces 2014, 6, 3156. [82] J. Y. Kim, Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries. Journal of Power Sources 2018, 401, 126. [83] R. P. Liu, Z. R. Wu, P. He, H. Y. Fan, Z. Y. Huang, L. Zhang, X. S. Chang, H. Liu, C. A. Wang, Y. T. Li, A self-standing, UV-cured semi-interpenetrating polymer network reinforced composite gel electrolytes for dendrite-suppressing lithium ion batteries. Journal of Materiomics 2019, 5, 185. [84] Z. Du, Y. Z. Su, Y. Y. Qu, L. Z. Zhao, X. B. Jia, Y. Mo, F. Yu, J. Du, Y. Chen, A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochimica Acta 2019, 299, 19. [85] S. Z. Zhang, X. H. Xia, D. Xie, R. C. Xu, Y. J. Xu, Y. Xia, J. B. Wu, Z. J. Yao, X. L. Wang, J. P. Tu, Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries. Journal of Power Sources 2019, 409, 31. [86] J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews 2018, 1, 35. [87] P. Mohanty, S. Nöjd, M. Bergman, G. Nägele, S. Arrese-Igor, A. Alegria, R. Roa, P. Schurtenberger, J. Dhont, Dielectric spectroscopy of ionic microgel suspensions. Soft matter 2016, 12, 9705.
|