跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王鼎升
研究生(外文):Ding-Sheng Wang
論文名稱:應用具有SSD-FN-KCF的深度學習於全方位移動機器人與指定人士之人機互動
論文名稱(外文):Interactions Between Specific Human and Omnidirectional Mobile Robot Using Deep Learning Approach: SSD-FN-KCF
指導教授:黃志良黃志良引用關係
指導教授(外文):Chih-Lyang Hwang
口試委員:施慶隆蔡奇謚吳修明
口試委員(外文):Ching-Long ShihChi-Yi TsaiHsiu-Ming Wu
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:70
中文關鍵詞:深度學習人士偵測人臉辨識視覺追蹤全方位移動機器人自適應有限時間分層約束控制人士追隨
外文關鍵詞:Deep learningHuman detectionFace recognitionVisual trackingOmnidirectional service robotAdaptive hierarchical finite-time saturated controlHuman following
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:1
為了完成人機互動的任務,如何確實地偵測到指定人士(Specific Human (SH))就變得非常重要與關鍵。在本論文中,研發了整合Single-Shot Detection (SSD)、FaceNet (FN)及核化相關濾波器(Kernelized Correlation Filter (KCF))的深度學習法則:SSD-FN-KCF,以達成搜尋(指定)人士及追隨指定人士的任務。實驗一開始,在8公尺的距離內,使用SSD搭配輸出解析度320×240的RGB-D鏡頭進行人士偵測,之後命令全方位移動機器人(ODMR)移動至3公尺附近,使得深度檢測器可以準確地偵測到人體姿態與深度訊息。然後命令ODMR移動至1公尺和相對於光軸0度的方位,並藉由FaceNet辨識他(她)是否為SH。為了減少FaceNet的運算時間並擴展性能以持續追蹤指定人士,並使用KCF追蹤SH以達成追隨之人機互動。緊接著,根據影像處理的資訊,以基於影像的適應有限時間之分層約束控制 (IB-AFTHCC) 達成ODMR的搜尋或追蹤(指定)人士所需的姿態。最後,藉由比較SH與ODMR之間的實驗,驗證本論文所提出的控制法則的效能與強健性。
To fulfill the tasks of human-robot interactions, how to detect the specific human (SH) becomes paramount. In this paper, the deep learning approach:SSD-FN-KCF by the integration of Single-Shot Detection(SSD), FaceNet(FN), and Kernelized Correlation Filter (KCF) is developed. From the outset, the SSD is employed to detect the human up to 8m using RGB-D camera with the resolution of After that, the omnidirectional mobile robot (ODMR) is commanded to the neighborhood of 3.0m such that the depth image can accurately estimate the detected human’s pose. Then the ODMR is commanded to the vicinity of 1.0m and 0 with respect to the optical axis to identify whether he/she is the SH by FaceNet. To reduce the computation time of FaceNet and extend the tracking of the SH, the KCF accomplished the goal for the human-robot interactions (e.g., human following). Based on the information of image processing, the required pose for searching or tracking (specific) human is also accomplished by the ODMR with the image-based adaptive finite-time hierarchical constraint control (IB-AFTHCC). Finally, compared experiments between SH and ODMR validate the effectiveness and robustness of the proposed control.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 導論與文獻回顧 1
1.1 導論 1
1.2 文獻回顧 3
第二章 系統建構與任務陳述 6
2.1 系統建構 6
2.2 任務陳述 9
2.2.1 人士偵測 11
2.2.2 人士趨近 12
2.2.3 人臉辨識 12
2.2.4 人士追隨 13
第三章 SSD-FN-KCF深度學習法則 14
3.1 SSD人士偵測 14
3.1.1 預測 16
3.1.2 難分樣本挖掘 17
3.1.3 損失函數 18
3.1.4 性能測試 21
3.2 FaceNet指定人臉辨識 21
3.2.1 深度架構 23
3.2.2 L2范數歸一化 23
3.2.3 崁入 23
3.2.4 三元損失 24
3.2.5 歐式距離比較 26
3.2.6 性能測試 27
3.3 KCF追蹤器 28
3.3.1 循環矩陣 30
3.3.2 線性回歸與脊回歸 30
3.3.3 傅氏空間對角化 31
3.3.4 非線性回歸與核技巧 32
3.3.5 快速檢測 33
3.3.6 性能測試 34
第四章 指定人士與全方位移動機器人之互動 36
4.1 影像基礎的期望姿態 36
4.2 適應有限時間之分層約束控制 38
第五章 實驗結果與分析討論 46
5.1 實驗結果 46
5.2 分析討論 55
第六章 結論與未來建議 56
參考文獻 57
[1]N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886-893, June 20th-25th, 2005.
[2]W. Chung, H. Kim, Y. Yoo, C. Moon, and J. Park, “The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3156–3166, Aug. 2012.
[3]L. Li, S. Yan, X. Yu, Y. K. Tan, and H. Li, “Robust multiperson detection and tracking for mobile service and social robots,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 42, no. 5, pp. 1398-1412, Oct. 2012.
[4]N. Khamsemanan, C. Nattee, and N. Jianwattanapaisarn, “Human identification from freestyle walks using posture-based gait feature,” IEEE Trans. Information Forensics and Security, vol. 13, no. 1, pp. 119-128, Jan. 2018.
[5]J. Nie, L. Huang, W. Zhang, G. Wei, and Z. Wei, “Deep feature ranking for person re-identification,” IEEE Access, to be published, 2019.
[6]L. Chen, M. Li, W. Su, M. Wu, K. Hirota, and W. Pedrycz, “Adaptive feature selection-based AdaBoost-KNN with direct optimization for dynamic emotion recognition in human–robot interaction,” IEEE Trans. Emerging Topics in Computational Intelligence, to be published, 2019.
[7]S. K. Biswas and P. Milanfar, “One shot detection with Laplacian object and fast matrix cosine similarity,” IEEE Trans. Pattern Anal. and Mach. Intell., vol. 38, no. 3, pp. 546-562, Mar. 2016.
[8]S. Duffner and C. Garcia, “Fast pixelwise adaptive visual tracking of non-rigid objects,” IEEE Trans. Image Processing, vol. 26, no. 5, pp. 2368-2380, May 2017.
[9]Y. Liu, Q. Wang, Y. Zhuang, and H. Hu, “A novel trail detection and scene understanding framework for a quadrotor UAV with monocular vision,” IEEE. Sensors Journal, vol. 17, no. 20, pp. 6778- 6787, Oct. 2017.
[10]W. Zhang, Z. Wang, X. Liu, H. Sun, J. Zhou, Y. Liu, W. Gong, “Deep learning-based real-time fine-grained pedestrian recognition using stream processing,” IET Intell. Transp. Syst., vol. 12, no. 7, pp. 602-609, 2018.
[11]M. Liao, B. Shi, and X. Bai, “TextBoxes++: A single-shot oriented scene text detector,” IEEE Trans. Image Processing, vol. 27, no. 8, pp. 3676-3690, Aug. 2018.
[12]F.-J. Chu, R. Xu , and P. A. Vela, “Real-world multiobject, multigrasp detection,” IEEE Robotics and Autom. Lett., vol. 3, no. 4, pp. 3355-3362, Oct. 2018.
[13]C.-L. Hwang and Y. Lee, “Tracking design of an omni- direction autonomous ground vehicle by hierarchical enhancement using fuzzy 2nd order variable structure control,” ASME J. of Dynamic Systems, Measurement and Control, vol. 140, pp. 1-11, Sep. 2018.
[14]C.-L. Hwang, W. H. Hung, and Y. Lee, “Tracking design of omnidirectional drive service robot using hierarchical adaptive finite-time control,” IEEE IECON-2018, Washington D.C., USA, pp. 5680-5685, Oct. 21st -Oct. 23rd, 2018.
[15]F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and clustering,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 815-823, June 7th -12th, 2015.
[16]N. Werghi, C. Tortorici, S. Berretti, and A. D. Bimbo, “Boosting 3D LBP-based face recognition by fusing shape and texture descriptors on the mesh,” 2016, IEEE Trans. Information Forensics and Security, vol. 11, no. 5, pp. 964-979, May 2016.
[17]A. Rikhtegar, M., Pooyan, and M. T. Manzuri-Shalmani, “Genetic algorithm- optimised structure of convolutional neural network for face recognition applications,” IET Computer Vision, vol. 10, no. 6, pp. 559-566, 2016.
[18]M. A. Abuzneid, and A. Mahmood, “Enhanced human face recognition using LBPH descriptor, Multi-KNN, and back-propagation neural network,” IEEE Access, vol. 6, pp. 20641-20651, 2018.
[19]H. B. Abebe and C.-L. Hwang, “RGB-D face recognition using LBP with suitable feature dimension of depth image,” IET Cyber Physical Systems: Theory & Applications, to be published, Feb. 2019.
[20]J. F. Henriques, R. Caseiro, P. Martins, and J. Batista , “High-speed tracking with kernelized correlation filters,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583-596, Mar. 2015.
[21]J. Leng and Y. Liu, “Real-time RGB-D visual tracking with scale estimation and occlusion handling,” IEEE Access, vol. 6, pp. 24256-24263, 2018.
[22]Q. Liu, G. Hu, and M. M. Isla, “Fast visual tracking with robustifying kernelized correlation filters,” IEEE Access, vol. 6, pp. 43302-43314, 2018.
[23]S. P. Bharati, Y. Wu, Y. Sui, C. Padgett, and G. Wang, “Real-time obstacle detection and tracking for sense-and -avoid mechanism in UAVs,” IEEE Trans. Intell. Veh., vol. 3, no. 2 , pp. 185-197, Jun. 2018.
[24]W. Tian, L. Chen, K. Zou, and M. Lauer, “Vehicle tracking at nighttime by kernelized experts with channel-wise and temporal reliability estimation,” IEEE Trans. Intell. Trans. Syst., vol. 19, no. 10, pp. 3159-3169, Oct. 2018.
[25]F. Fabrizio and A. D. Luca, “Real-time computation of distance to dynamic obstacles with multiple depth sensors,” IEEE Robotics and Autom. Lett., vol.. 2, no. 1, pp. 56-63, Jan. 2017.
[26]P. Long, W. Liu, and J. Pan, “Deep-learned collision avoidance policy for distributed multiagent navigation,” IEEE Robotics and Autom. Lett., vol.. 2, no. 2, pp. 656-663, Apr. 2017.
[27]C.-L. Hwang and H. H. Huang “Experimental validation for a car-like automated ground vehicle with trajectory tracking, obstacle avoidance, and target approach using hierarchical sliding mode tracking control,” IEEE IECON-2017, pp. 2858-2863, Beijing China, Oct. 29th- Nov. 1st, 2017.
[28]G. Plessen, D. Bernardini, H. Esen, and A. Bemporad, “Spatial-based predictive control and geometric corridor planning for adaptive cruise control coupled with obstacle avoidance,” IEEE Trans. Contr. Syst. Technol., vol. 26, no. 1, pp. 38-50, Jan. 2018.
[29]T. Zhao and R. Nevatia, “Tracking multiple humans in complex situations,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1208-1221, Sep. 2004.
[30]C. Wojek, S. Walk, S. Roth, K. Schindler, and B. Schiele, “Monocular visual scene understanding: understanding multi-object traffic scenes,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 4, pp. 882- 897, Apr. 2013.
[31]A. S. Rao, J. Gubbi, S. Marusic, and M. Palaniswami, “Crowd event detection on optical flow manifolds,” IEEE Trans. Cybern., vol. 46, no. 7, pp. 1524-1537, Jul. 2016.
[32]C.-L. Hwang and Y.-H. Chen, “Fuzzy fixed-time learning control with saturated input, nonlinear switching surface and switching gain to achieve null tracking error,” IEEE Trans. Fuzzy Syst., to be published, 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 基於改進的局部二元圖案的人臉表情辨識和深度影像定位之人與服務型全向移動機器人的互動
2. 基於增強語音命令的適應分層限定時間飽和控制之全向移動機器人的設計與實現
3. 基於分層自適應有限時間控制的全向驅動服務機器人之軌跡設計與實現
4. 以具深度卷積分類神經網路的立體視覺實現人機互動之任務
5. 應用模糊追蹤遞增控制於室外四旋翼之即時障礙物偵測、閃避及地圖建構
6. 應用階層可變結構控制於具有時變地形的全向移動機器人之軌跡追踪
7. 應用階層增強模糊動態滑動控制於具有不同載重與地面狀況的無人搬運車之路徑追蹤
8. 應用雙向長短期記憶模型於分佈式超寬頻模式及具遞迴神經網路之限定時間追蹤控制於全向服務型機器人的特定人士之追隨
9. 印尼泗水Kampung住宅區公共空間研究
10. 非線性動態多代理者之隊形及合作的適應追蹤設計及其應用
11. 利用反射式光彈法量測與分析圓管環縫填料對接殘留應力
12. 基於工業機器手臂之復健機器人研究
13. 具有再生能源之軟體定義衛星網路效能分析
14. 由元素矽水解法合成無機二氧化矽奈米顆粒及探討矽烷接枝二氧化矽顆粒、反應性微膠顆粒與矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯對乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響
15. 合成金屬有機框架與衍生奈米結構材料應用於檢測與觸媒催化