|
1.Jones, E., M. Qadir, M.T.H. van Vliet, V. Smakhtin, and S.-m. Kang, The state of desalination and brine production: A global outlook. Science of The Total Environment, 2019. 657: p. 1343-1356. 2.ARAB NEWS, UAE to build $900m desalination plant with Saudi Arabia’s ACWA Power, http://www.arabnews.com/node/1523236/business-economy. 3.Sun, J., Y. Wang, S. Xu, and S. Wang, Energy Recovery Device with a Fluid Switcher for Seawater Reverse Osmosis System*. Chinese Journal of Chemical Engineering, 2008. 16(2): p. 329-332. 4.Pattle, R.E., Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile. Nature, 1954. 174(4431): p. 660-660. 5.Jarle Aaberg, R., Osmotic power: A new and powerful renewable energy source? Vol. 4. 2003. 48–50. 6.U.S. Energy Information Administration, http://www.eia.doe.gov. 7.Loeb, S., One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure-retarded osmosis. Desalination, 2001. 141(1): p. 85-91. 8.Seppälä, A. and M.E.H. Assad, The Effect of Solute Leakage on the Thermodynamical Performance of an Osmotic Membrane, in Journal of Non-Equilibrium Thermodynamics. 2003. p. 269. 9.Seppälä, A. and M. J. Lampinen, Thermodynamic optimizing of pressure-retarded osmosis power generation systems. Vol. 161. 1999. 115. 10.Skilhagen, S.E., J.E. Dugstad, and R.J. Aaberg, Osmotic power — power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination, 2008. 220(1): p. 476-482. 11.Gude, V.G., N. Khandan, S. Deng, and A. Maganti, Energy consumption and recovery in reverse osmosis. 2013. 12.Choi, Y., Y. Shin, H. Cho, Y. Jang, T.-M. Hwang, and S. Lee, Economic evaluation of the reverse osmosis and pressure retarded osmosis hybrid desalination process. Desalination and Water Treatment, 2016. 57(55): p. 26680-26691. 13.He, W., Y. Wang, A. Sharif, and M.H. Shaheed, Thermodynamic analysis of a stand-alone reverse osmosis desalination system powered by pressure retarded osmosis. Desalination, 2014. 352: p. 27-37. 14.Almansoori, A. and Y. Saif, Structural optimization of osmosis processes for water and power production in desalination applications. Desalination, 2014. 344: p. 12-27. 15.Altaee, A., A. Sharif, G. Zaragoza, and A.F. Ismail, Evaluation of FO-RO and PRO-RO designs for power generation and seawater desalination using impaired water feeds. Desalination, 2015. 368: p. 27-35. 16.Kim, J., M. Park, S.A. Snyder, and J.H. Kim, Reverse osmosis (RO) and pressure retarded osmosis (PRO) hybrid processes: Model-based scenario study. Desalination, 2013. 322: p. 121-130. 17.Jeong, K., M. Park, S.J. Ki, and J.H. Kim, A systematic optimization of Internally Staged Design (ISD) for a full-scale reverse osmosis process. Journal of Membrane Science, 2017. 540: p. 285-296. 18.Nagy, E., I. Hegedűs, E. W. Tow, and J. H. Lienhard V, Effect of fouling on performance of pressure retarded osmosis (PRO) and forward osmosis (FO). Vol. 565. 2018. 19.Ferramosca, A., J. B. Rawlings, D. Limon, and E. Camacho, Economic MPC for a changing economic criterion. 2010. 6131-6136. 20.Ellis, M. and P.D. Christofides, Performance Monitoring of Economic Model Predictive Control Systems. Industrial & Engineering Chemistry Research, 2014. 53(40): p. 15406-15413. 21.Malek, A., M.N.A. Hawlader, and J.C. Ho, Design and economics of RO seawater desalination. Desalination, 1996. 105(3): p. 245-261. 22.Yip, N.Y., A. Tiraferri, W.A. Phillip, J.D. Schiffman, L.A. Hoover, Y.C. Kim, and M. Elimelech, Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients. Environmental Science & Technology, 2011. 45(10): p. 4360-4369. 23.Rosenthal, R.E., GAMS — A User’s Guide. GAMS Development Corporation, Washington, DC, USA. 24.Yang, X., G. Liu, A. Li, and L. Van Dai, A Predictive Power Control Strategy for DFIGs Based on a Wind Energy Converter System. Energies, 2017. 10: p. 1098.
|