跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/07 06:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡諭鋒
研究生(外文):TSAI, YU-FENG
論文名稱:複合膜滲透水電聯產系統於考量膜結垢效應下之架構最適化與經濟模式預測控制
論文名稱(外文):Structural Optimization and Economic Model Predictive Control of RO/PRO Integrated System for Water and Power Production with Membrane Fouling Consideration
指導教授:鄭智成鄭智成引用關係
指導教授(外文):JENG, JYH-CHENG
口試委員:王國彬李瑞元陳誠亮
口試委員(外文):WANG, GOW-BINLEE, JUI-YUANCHEN, CHENG-LIANG
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:89
中文關鍵詞:逆滲透緩壓滲透水電聯產膜結垢最適化架構經濟模式預測控制
外文關鍵詞:Reverse osmosisPressure retarded osmosisDual-purpose power/desalination plantMembrane foulingStructural optimizationEconomic model predictive control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
可用水和能源將會逐漸地無法滿足人類需求乃是當前公認的趨勢,為了開發永續資源,利用膜滲透程序進行海水淡化和鹽濃度差產電之技術亟需發展。逆滲透(RO)程序為目前海水淡化的主流技術,但逆滲透程序需較多能耗。因此許多研究皆導向將再生能源與逆滲透程序進行結合。而緩壓滲透(PRO)程序為新興的再生能源技術之一。故本篇研究將兩程序結合建立一水電聯產複合系統,並針對其成本進行最適化設計。儘管過去已有許多研究針對此複合系統進行探討,但鮮少有研究進行在考慮膜結垢效應下之最適化設計與控制。且於最小成本設計架構下帶入經濟模式預測控制。針對複合系統考量長時間下結垢對於此系統水電聯產隨時間變化之效應進行週期時間內之最佳化設計,得出複合系統之最小成本設計架構。再依據此設計架構,利用經濟模式預測控制策略使達到最佳利潤,使系統在面臨模式誤差、未知干擾以及水電價格波動的影響下,仍可維持於最佳總利潤操作。並由結果發現,於不同產水架構與單位電價狀況下,此系統可由RO/PRO複合系統轉變為RO/FO複合系統,藉此達到最大總利潤之操作條件。
It is recognized that potable water and energy are gradually insufficient for human needs. To exploit sustainable resources, technologies have been developed to desalinate seawater and produce power using salinity gradient. Reverse osmosis (RO) is one of the major technologies for desalinating seawater, while pressure retarded osmosis (PRO) is a promising technology for power production. Therefore, the hybridization of RO and PRO processes enables the build of dual-purpose power and desalination plants. The effect of membrane fouling is the main reason of decreasing the yield of osmosis system. Although, there were lots of research about the RO/PRO integrated system, but less of them considered about membrane fouling. In this study, the production of water and power in RO/PRO integrated system with fouling is considered. Then, the model for synthesizing hybrid system is formulated as a mixed-integer nonlinear program (MINLP). After that applied this configuration to Economic model predictive control (EMPC) under predicted the effect like unknown disturbance, model error and floating electricity prices to the hybrid system can still be maintained in the maximum profits. The results shows that the hybrid system under EMPC could become RO/FO hybrid system and RO/PRO hybrid system at different electricity pricing and configuration.
摘要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 5
1.4 章節組織 6
第二章 逆滲透與緩壓滲透系統數學模型 7
2.1 逆滲透(RO)及緩壓滲透(PRO)系統背景 7
2.1.1 逆滲透程序之滲透膜介紹 10
2.1.2 緩壓滲透程序之滲透膜介紹 10
2.2 逆滲透與緩壓滲透膜單元結垢之數學模型 11
2.2.1 逆滲透單元程序介紹 11
2.2.2 緩壓滲透單元程序介紹 12
2.2.3 逆滲透單元數學模型 13
2.2.4 緩壓滲透單元數學模型 14
2.2.5 逆滲透單元結垢數學模型 16
2.2.6 緩壓滲透單元結垢數學模型 18
第三章 RO/PRO複合系統架構與設計 21
3.1 RO/PRO複合系統架構 21
3.2 RO/PRO複合系統成本計算 24
3.2.1 RO/PRO複合系統設備成本計算 24
3.2.2 RO/PRO複合系統週期操作成本計算 26
3.2.3 RO/PRO複合系統總週期成本計算 29
3.3 RO/PRO複合系統架構設計 29
3.4 RO/PRO複合系統架構設計結果與分析 31
3.4.1 RO/PRO複合系統設計參數 31
3.4.2 相同產電需求下RO/PRO複合系統架構設計結果分析 32
3.4.3 相同產水需求下RO/PRO複合系統架構設計結果分析 39
3.4.4 無結垢考量下複合系統之架構設計應用結垢程序結果分析 46
第四章 經濟模式預測控制應用於RO/PRO複合系統 48
4.1 經濟模式預測控制介紹 48
4.2 經濟模式預測控制設計 49
4.3 經濟模式預測控制結果與分析 52
4.3.1 電單價變化對經濟模式預測控制結果與分析 52
4.3.2 於不同產水設計架構下對經濟模式預測控制結果與分析 56
4.3.3 海水濃度變化對經濟模式預測控制結果與分析 60
4.3.4 結垢物濃度變化對經濟模式預測控制結果與分析 65
4.3.5 結垢物孔隙度變化對經濟模式預測控制結果與分析 68
4.3.6 有無誤差校正下外部干擾於經濟模式預測控制結果與分析 71
4.3.7 有無誤差校正下模式誤差之經濟模式預測控制結果與分析 74
4.4 分流率為操作變數之經濟模式預測控制 76
第五章 結論與未來展望 81
5.1 結論 81
5.2 未來展望 82
參考文獻 83
符號彙整 85

1.Jones, E., M. Qadir, M.T.H. van Vliet, V. Smakhtin, and S.-m. Kang, The state of desalination and brine production: A global outlook. Science of The Total Environment, 2019. 657: p. 1343-1356.
2.ARAB NEWS, UAE to build $900m desalination plant with Saudi Arabia’s ACWA Power, http://www.arabnews.com/node/1523236/business-economy.
3.Sun, J., Y. Wang, S. Xu, and S. Wang, Energy Recovery Device with a Fluid Switcher for Seawater Reverse Osmosis System*. Chinese Journal of Chemical Engineering, 2008. 16(2): p. 329-332.
4.Pattle, R.E., Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile. Nature, 1954. 174(4431): p. 660-660.
5.Jarle Aaberg, R., Osmotic power: A new and powerful renewable energy source? Vol. 4. 2003. 48–50.
6.U.S. Energy Information Administration, http://www.eia.doe.gov.
7.Loeb, S., One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure-retarded osmosis. Desalination, 2001. 141(1): p. 85-91.
8.Seppälä, A. and M.E.H. Assad, The Effect of Solute Leakage on the Thermodynamical Performance of an Osmotic Membrane, in Journal of Non-Equilibrium Thermodynamics. 2003. p. 269.
9.Seppälä, A. and M. J. Lampinen, Thermodynamic optimizing of pressure-retarded osmosis power generation systems. Vol. 161. 1999. 115.
10.Skilhagen, S.E., J.E. Dugstad, and R.J. Aaberg, Osmotic power — power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination, 2008. 220(1): p. 476-482.
11.Gude, V.G., N. Khandan, S. Deng, and A. Maganti, Energy consumption and recovery in reverse osmosis. 2013.
12.Choi, Y., Y. Shin, H. Cho, Y. Jang, T.-M. Hwang, and S. Lee, Economic evaluation of the reverse osmosis and pressure retarded osmosis hybrid desalination process. Desalination and Water Treatment, 2016. 57(55): p. 26680-26691.
13.He, W., Y. Wang, A. Sharif, and M.H. Shaheed, Thermodynamic analysis of a stand-alone reverse osmosis desalination system powered by pressure retarded osmosis. Desalination, 2014. 352: p. 27-37.
14.Almansoori, A. and Y. Saif, Structural optimization of osmosis processes for water and power production in desalination applications. Desalination, 2014. 344: p. 12-27.
15.Altaee, A., A. Sharif, G. Zaragoza, and A.F. Ismail, Evaluation of FO-RO and PRO-RO designs for power generation and seawater desalination using impaired water feeds. Desalination, 2015. 368: p. 27-35.
16.Kim, J., M. Park, S.A. Snyder, and J.H. Kim, Reverse osmosis (RO) and pressure retarded osmosis (PRO) hybrid processes: Model-based scenario study. Desalination, 2013. 322: p. 121-130.
17.Jeong, K., M. Park, S.J. Ki, and J.H. Kim, A systematic optimization of Internally Staged Design (ISD) for a full-scale reverse osmosis process. Journal of Membrane Science, 2017. 540: p. 285-296.
18.Nagy, E., I. Hegedűs, E. W. Tow, and J. H. Lienhard V, Effect of fouling on performance of pressure retarded osmosis (PRO) and forward osmosis (FO). Vol. 565. 2018.
19.Ferramosca, A., J. B. Rawlings, D. Limon, and E. Camacho, Economic MPC for a changing economic criterion. 2010. 6131-6136.
20.Ellis, M. and P.D. Christofides, Performance Monitoring of Economic Model Predictive Control Systems. Industrial & Engineering Chemistry Research, 2014. 53(40): p. 15406-15413.
21.Malek, A., M.N.A. Hawlader, and J.C. Ho, Design and economics of RO seawater desalination. Desalination, 1996. 105(3): p. 245-261.
22.Yip, N.Y., A. Tiraferri, W.A. Phillip, J.D. Schiffman, L.A. Hoover, Y.C. Kim, and M. Elimelech, Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients. Environmental Science & Technology, 2011. 45(10): p. 4360-4369.
23.Rosenthal, R.E., GAMS — A User’s Guide. GAMS Development Corporation, Washington, DC, USA.
24.Yang, X., G. Liu, A. Li, and L. Van Dai, A Predictive Power Control Strategy for DFIGs Based on a Wind Energy Converter System. Energies, 2017. 10: p. 1098.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊