跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 06:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃品禎
研究生(外文):Huang, Pin-Jen
論文名稱:製備金奈米線及聚苯胺之核殼結構於石墨箔基材做為電極於擬電容之特性探討
論文名稱(外文):Preparation and characterization of gold/polyaniline core-shell nanowires on graphite foil as electrode for pseudocapacitor
指導教授:裘性天
指導教授(外文):Chiu, Hsin-Tien
口試委員:李紫原劉學儒
口試委員(外文):Lee, Chi-YoungLiu, Hsueh-Ju
口試日期:2019-2-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:39
中文關鍵詞:金奈米線聚苯胺電化學超級電容
外文關鍵詞:gold nanowirespolyanilineelectrohemistrysupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
於本研究中,我們藉由電化學沉積法在石墨箔表面進行一維金奈米線合成,並以循環伏安法進行聚苯胺電化學聚合,在金奈米線表層形成核殼結構。其中我們探討循環伏安法中的兩個參數: 合成掃描圈數以及速率,對於聚苯胺表層厚度與重量的變化,以及表面形貌對於電容表現的影響。由掃描式電子顯微鏡以及電化學聚合聚苯胺的重量分析,可以得知掃描圈數越多,在金奈米線表層所形成的聚苯胺重量越多,厚度增加。而掃描速率越低,會影響反應中苯胺單體的擴散速率,導致形成的聚苯胺重量越多,厚度增加。我們在硫酸鈉中以循環伏安法進行不同合成條件下的電容值分析,除了觀察到聚苯胺的氧化還原反應,表現出擬電容的特徵;也觀察到在固定10mV/s的掃速下,聚苯胺厚度5 nm,重量0.06 mg的條件下可以得到最高的比電容值,隨著厚度與重量增加而下降。根據其他聚苯胺核殼結構於擬電容的文獻,5-10 nm厚的聚苯胺層可以達到最低的內電阻以及最低電荷傳輸造成的電阻值。在合成掃描速率200 mV/s, 以及合成掃描圈數5的結構下,在比電容的分析中可於2 mV/s的掃描速率中得到最佳比電阻值1010 F/g,與其他PANI構成之電容材料相比擁有表現良好的比電容值。
In this thesis, the AuNWs/ PANI was fabricated on graphite substrate through electrochemical deposition and electrochemical polymerization. The influence of polymerization cycle and sweeping rate to AuNWs/PANI composites morphology and capacitance is investigated. By using scanning electrode microscope (SEM) and the weight loading of PANI, it could be concluded that the AuNWs/PANI structure has more PANI weight and thicker layer when increasing the polymerization cycle. In addition, the weight and thickness of PANI increased with slower polymerization sweeping rate due to the influence of diffusion of aniline in the electrolyte. The capacitance performance of electrodes under different synthesis condition was investigated using cyclic voltammetry in three-electrode system, 1 M Na2SO4. It was observed that the AuNWs/PANI composite electrode exhibited a highest specific capacitance of 1010 F/g under a scan rate 2 mV/s, with PANI thickness of 5 nm and weight 0.06 mg, and the specific capacitance decreased with higher PANI thickness and weight. This could be explained by the thickness of PANI had an ideal thickness of 5-10 nm to reduce the internal resistance and shorten the diffusion length of electrons.
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Supercapacitors 1
1.3 PANI as material for pseudocapacitors 3
1.4 gold nanostructures/ PANI composites as material for pseudocapacitors 5
1.5 The aim of the thesis 6
Chapter 2 Experimental section 8
2.1 Experimental chemicals 8
2.2 Experimental instruments 8
2.3 Preparation of graphite/Au composite substrate 9
2.4 Growth of Au nanowires (AuNWs) on graphite/Au composite substrate 9
2.5 Fabrication of graphite/Au/PANI core/shell nanowires (G/AuNWs/PANI) electrodes 10
2.6 Electrochemical Measurements 10
2.7 Calculations of electrochemical capacitance performances 11
Chapter 3 Result and Discussion 12
3.1 Characterization of Au nanowires (AuNWs) 12
3.2 Mechanism of polyaniline electrochemical polymerization 14
3.3 Characterization of G/AuNWs-PANI electrode 15
3.4 Optimization of capacitance performance 19
3.4.1 Thickness of synthesized PANI layer 19
3.4.2 Weight of synthesized PANI layer 21
3.4.3 Electrochemical behavior of G/AuNWs-PANI electrode 26
3.4.4 Relationship between PANI weight /thickness and capacitance 34
Conclusion 36
Reference 38
1. Li, R.; He, C.; Han, X.; Yang, Y., Carbon-Based Polyaniline Nanocomposites for Supercapacitors. Elsevier Inc.: 2018; Vol. 1, p 489-535.
2. Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J., Chemical Society Reviews 2015, 44 (21), 7484-7539.
3. Online, V. A., J. Mater. Chem. A 2014, 2 (3), 813-823.
4. Li Wang, X. L. S. L. Y. S., Journal of Materials Chemistry A 2014, 2, 4491-4509.
5. Links, D. A., 2012, (22), 16844-16850.
6. Wang, G.; Tang, Q.; Bao, H.; Li, X.; Wang, G., Journal of Power Sources 2013, 241, 231-238.
7. Wang, H.; Lin, J.; Shen, Z. X., Journal of Science: Advanced Materials and Devices 2016, 1 (3), 225-255.
8. Bhadra, S.; Khastgir, D.; Singha, N. K.; Hee, J., Progress in Polymer Science 2009, 34 (8), 783-810.
9. Han, J.; Wang, M.; Hu, Y.; Zhou, C.; Guo, R., Progress in Polymer Science 2017.
10. Oueiny, C.; Berlioz, S.; Perrin, F. X., Progress in Polymer Science 2014, 39 (4), 707-748.
11. Atassi, Y.; Tally, M., Materials Science 2013, 30 (2), 1-17.
12. Zhong, M.; Song, Y.; Li, Y.; Ma, C.; Zhai, X.; Shi, J., Journal of Power Sources 2012, 217, 6-12.
13. Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F., Carbon 2010, 48 (2), 487-493.
14. Ko, J. M.; Ryu, K. S.; Kim, S.; Kim, K. M., Journal of Applied Electrochemistry 2009, 39 (8), 1331-1337.
15. Kim, K.-s.; Park, S.-j., Journal of Solid State Electrochemistry 2012, 16 (8), 2751-2758.
16. Wang, X.; Shen, Y.; Xie, A.; Li, S.; Cai, Y.; Wang, Y.; Shu, H., Biosensors and Bioelectronics 2011, 26 (6), 3063-3067.
17. Zhang, Y. X.; Zeng, H. C., The Journal of Physical Chemistry C 2007, 111 (19), 6970-6975.
18. Ran, F.; Tan, Y.; Dong, W.; Liu, Z.; Kong, L.; Kang, L., Polymers for Advanced Technologies 2018, 29 (6), 1697-1705.
19. Lang, X.; Zhang, L.; Fujita, T.; Ding, Y.; Chen, M., Journal of Power Sources 2012, 197, 325-329.
20. Huang, W.-r.; Chen, Y.-l.; Lee, C.-y.; Chiu, H.-t., RSC Advances 2014, 4, 62393-62398.
21. Herricks, T.; Chen, J.; Xia, Y., Nano Letters 2004, 4 (12), 2367-2371.
22. Chen, Y.-L.; Lee, C.-Y.; Chiu, H.-T., J. Mater. Chem. B 2013, 1 (2), 186-193.
23. Shinomiya, T.; Gupta, V.; Miura, N., Electrochimica Acta 2006, 51 (21), 4412-4419.
24. Mohd Azmi, U.; Yusof, N.; Kusnin, N.; Abdullah, J.; Suraiya, S.; Ong, P.; Ahmad Raston, N.; Abd Rahman, S.; Mohamad Fathil, M., Sensors 2018, 18 (11), 3926-3926.
25. Horng, Y. Y.; Hsu, Y. K.; Ganguly, A.; Chen, C. C.; Chen, L. C.; Chen, K. H., Electrochemistry Communications 2009, 11 (4), 850-853.
26. Yoon, S.-b.; Yoon, E.-h.; Kim, K.-b., Journal of Power Sources 2011, 196 (24), 10791-10797.
27. Liu, F.; Luo, S.; Liu, D.; Chen, W.; Huang, Y.; Dong, L.; Wang, L., ACS Applied Materials and Interfaces 2017, 9 (39), 33791-33801.
28. Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H., Energy and Environmental Science 2013, 6 (4), 1185-1191.
29. Tan, Y.; Zhang, Y.; Kong, L.; Kang, L.; Ran, F., Journal of Alloys and Compounds 2017, 722, 1-7.
30. Yan, J.; Wang, Q.; Wei, T.; Fan, Z., Advanced Energy Materials 2014, 4 (4), 1300816-1300816.
31. Hung, P. J.; Chang, K. H.; Lee, Y. F.; Hu, C. C.; Lin, K. M., Electrochimica Acta 2010, 55 (20), 6015-6021.
32. Sawangphruk, M.; Kaewsongpol, T., Materials Letters 2012, 87, 142-145.
33. D.S.Dhawale, A.Vinub, C.D. Lokhande, Electrochimica Acta 2011, 56 (25), 9482-9487
34. J. Jang, J. Bae, M. Choi, Carbon 2005, 43 (13), 2730-2736
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊