跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 19:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳韻伃
研究生(外文):Yun-Yu Chen
論文名稱:植物化學成分抑制脂肪細胞分化之研究
論文名稱(外文):The inhibitory effect of phytochemicals on adipocyte differentiation
指導教授:蔡英傑蔡英傑引用關係
指導教授(外文):Ying-Chieh Tsai
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:94
中文關鍵詞:精油脂肪細胞分化細辛腦肉桂酸甲酯
外文關鍵詞:essential oiladipocyte differentiationbeta-asaronemethyl cinnamatePPARgammaC/EBPalpha
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肥胖人口的遽增,已是許多國家所面臨相當嚴重的健康議題,不但造成生活品質下降,醫療花費的增加,更是許多疾病的危險因子。而肥胖發生的主要機制在於脂肪的形成與堆積,因此抑制脂肪細胞的新生為預防肥胖的首要關鍵。至今已有許多研究證實天然植物或中草藥萃取物中含有抑制脂肪細胞新生及脂肪累積的活性成份,被視為治療與預防肥胖的一個新療法,在本實驗中,利用3T3-L1細胞模式,篩選出石菖蒲精油與花椒精油具有抑制脂肪細胞分化的作用,並且鑑定出其中有效成份分別為-asarone及methyl cinnamate。因此,本研究主要目的為探討-asarone及methyl cinnamate對脂肪細胞新生的影響以及可能的分子作用機制。結果顯示-asarone及methyl cinnamate能有效降低脂肪細胞內三酸甘油酯的累積,-asarone可降低脂肪細胞分化相關轉錄因子C/EBP、PPARγ及C/EBP的表現,並且在細胞分化早期顯著抑制phospho-ERK的蛋白質表現。而methyl cinnamate則抑制了C/EBP、SREBP-1、PPARγ及C/EBP的表現,並且造成PPARγ下游基因aP2、adiponectin表現以及GPDH酵素活性下降,此外methyl cinnamate還具有拮抗PPARγ的轉錄活性,而methyl cinnamate則是透過活化CaMKK2-AMPK訊號傳遞途徑抑制脂肪細胞基因的表現及脂質的合成,達到抑制脂肪細胞分化的作用。綜合以上結果,本實驗證實-asarone及methyl cinnamate具有抑制脂肪細胞形成的活性,並進一步了解其作用機制,為未來治療肥胖或是肥胖相關代謝性疾病的藥物開發奠定基礎。
The incidence of obesity dramatically rising worldwide and is a major contributor to the global burden of metabolic disorders. Excessive accumulation of adipose tissue mass contributes to the development of obesity. Adipogenesis, combines with adipocyte differentiation and proliferation, is an important mechanism that leading to the increase of adipocytes. Therefore, inhibition of adipogenesis is the key way to prevent obesity. Several studies have been discussed the therapeutic potentials of essential oil and their volatile components, including anti-obesity. In this study, we used 3T3-L1 preadipocytes to find the anti-adipogenic effect of essential oils and the active components. Acorus calamus and Zanthoxylum armatum essential oils showed the ability to suppress adipogenesis in 3T3-L1 preadipocytes. Two active compounds, -asarone and methyl cinnamate, were identified, respectively. -Asarone significantly reduced triglyceride accumulation during adipocyte differentiation in a dose-dependent manner. The expressions of adipocyte transcription factors, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein  (C/EBP) and C/EBP were down-regulated after treatment with -asarone. Moreover, ERK activation known to regulate the early phase of adipogenesis was inhibited by treatment with -asarone. Methyl cinnamate markedly suppressed triglyceride accumulation associated with down-regulation of adipogenic transcription factors expression, including sterol regulatory element binding protein-1 (SREBP-1), C/EBP, PPARγ and C/EBP. Additionally, methyl cinnamate-inhibited PPARγ activity and adipocyte differentiation were partially reversed by PPARγ agonist, troglitazone. Furthermore, methyl cinnamate stimulated Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2), phospho-AMP-activated protein kinase (AMPK) and phospho-ERK expression during adipogenesis. The results suggested methyl cinnamate has anti-adipogenic activity through mechanisms mediated, in part, by CaMKK2-AMPK signaling pathway in 3T3-L1 cells. Overall, our studies suggested -asarone and methyl cinnamate exhibited anti-adipogenic activity and have the potential to be developed as an anti-obesity agent and a treatment for obesity-related metabolic syndrome.
中文摘要 4
Abstract 5
第一章、緒論 7
一、肥胖症介紹 7
二、脂肪組織(adipose tissue) 8
三、脂肪細胞的新生(adipogenesis) 9
1. 調控脂肪細胞新生的轉錄因子 9
2. Insulin與MAPK訊號傳遞途徑 11
3. AMPK訊號傳遞途徑 12
四、3T3-L1脂肪細胞模式 13
五、精油與植物化合物 14
六、治療肥胖的藥物 15
七、石菖蒲精油(Acorus calamus)與-asaone 16
八、花椒精油(Zanthoxylum armatum)與methyl cinnamate 17
九、研究動機與目的 18
十、實驗架構與策略 18
第二章、材料與方法 20
一、實驗材料 20
1. 細胞培養 20
2. 化學藥品 20
3. 抗體 21
4. 儀器設備 21
二、實驗方法 22
1. 3T3-L1細胞培養與分化 22
2. Oil red O染色 22
3. 三酸甘油酯含量分析 22
4. 細胞存活率分析(MTT assay) 23
5. RNA萃取與即時定量PCR (quantitative real time-PCR) 24
6. 蛋白質萃取與定量 24
7. 西方墨點法(Western blot) 25
8. 氣相層析質譜儀分析(GC/MS analysis) 26
9. 矽膠管柱層析分離 26
10. 高效能液相層析儀分析(high performance liquid chromatography; HPLC) 27
11. GPDH活性測定 27
12. PPAR活性測定 28
13. 統計分析 28
第三章、結果 29
一、抑制脂肪細胞分化之植物精油篩選結果 29
二、石菖蒲精油對於脂肪細胞分化的影響 29
三、石菖蒲精油成分分析及有效成分分離 30
四、-Asarone對於脂肪細胞分化的影響 31
五、-asarone對於C/EBP、C/EBP及PPAR表現的影響 31
六、-asarone對於ERK蛋白表現的影響 31
七、花椒精油對脂肪細胞分化的影響 32
八、花椒精油主要活性成分分析 32
九、Methyl cinnamate對脂肪細胞分化之影響 33
十、Methyl cinnamate對GPDH活性的影響 33
十一、Methyl cinnamate對脂肪細胞專一指標因子表現的影響 34
十二、Methyl cinnamate對於PPAR轉錄活性的影響 35
十三、Methyl cinnamate對於CaMKK2-AMPK訊號傳遞途徑的影響 35
十四、Methyl cinnamate對於ERK及C/EBP表現的影響 36
十五、Methyl cinnamate結構類似化合物對於脂肪新生的影響 37
第四章、討論 38
一、植物性化合物治療肥胖的潛力 38
二、-Asarone抑制脂肪細胞分化作用機制 39
三、Methyl cinnamate抑制脂肪細胞分化作用機制 40
四、PPAR活性調控的重要 42
五、物質結構和抑制脂肪新生功能相關性 43
六、-Asarone與Methyl cinnamate安全性探討 44
七、抑制脂肪細胞分化治療減肥研究的爭議 45
八、總結 46
第五章、表格與附圖 48
表一、Real time-PCR引子序列 48
表二、RT-PCR引子序列 49
表三、石菖蒲精油主要成分列表 50
表四、石菖蒲精油Fraction 3主要成分列表 51
表五、花椒精油主要成分列表 52
表六、精油成分對於3T3-L1細胞內三酸甘油酯累積的影響 53
圖一、石菖蒲精油抑制3T3-L1細胞內三酸甘油酯的累積 54
圖二、石菖蒲精油GC/MS分析圖譜 55
圖三、HPLC純化asarones分析圖譜 56
圖四、化合物結構圖 57
圖五、-Asarone對3T3-L1細胞分化的影響之oil red o染色圖 58
圖六、-Asarone對3T3-L1細胞內三酸甘油酯含量的影響 59
圖七、在3T3-L1細胞分化過程中-Asarone對於C/EBP表現的影響 60
圖八、在3T3-L1細胞分化過程中-Asarone對於C/EBP及PPAR表現的影響 61
圖九、在3T3-L1細胞分化過程中-Asarone對於ERK蛋白表現的影響 62
圖十、花椒精油對3T3-L1細胞分化的影響 63
圖十一、花椒精油GC/MS分析圖譜 64
圖十二、Methyl cinnamate對於3T3-L1脂肪細胞存活率的影響 65
圖十三、Methyl cinnamate對於3T3-L1脂肪細胞分化的影響 66
圖十四、Methyl cinnamate對於3T3-L1細胞內油滴累積及GPDH活性的 影響 67
圖十五、Methyl cinnamate抑制脂肪細胞PPAR、C/EBP及SREBP-1基因表現 68
圖十六、Methyl cinnamate對於3T3-L1細胞aP2及adiponectin基因表現的影響 69
圖十七、Methyl cinnamate對於3T3-L1細胞PPAR、C/EBP及resistin蛋白質表現的影響 70
圖十八、Methyl cinnamate對於3T3-L1細胞PPAR轉錄活性的影響 71
圖十九、Methyl cinnamate對於CaMKK2-AMPK訊號途徑蛋白表現的影響 72
圖二十、CaMKK2抑制劑STO-609緩解methyl cinnamte抑制脂肪細胞分化的作用 73
圖二十一、Methyl cinnamate對於phospho-ERK及C/EBP蛋白表現的影響 74
圖二十二、Methyl cinnamate結構類似物質對脂肪細胞油滴累積的影響 75
圖二十三、Methyl cinnamate抑制脂肪細胞分化可能的調控機制 76
附圖一、脂肪細胞新生過程示意圖 77
附圖二、脂肪細胞分化過程及轉錄因子的調控 78
附圖三、Insulin調控脂肪細胞新生傳遞途徑 79
附圖四、MAPK調控脂肪細胞新生傳遞途徑 80
附圖五、AMPK調控脂肪細胞分化及脂質合成傳遞途徑 81
附圖六、活化CaMKK2-AMPK訊號傳遞抑制脂肪細胞分化可能調控機制圖 82
參考文獻 83

Andrews, N. C., and Faller, D. V. (1991). A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic. Acids Res., 19, 2499.
Auwerx, J., Cock, T. A., and Knouff, C. (2003). PPAR-gamma: a thrifty transcription factor. Nucl. Recept. Signal., 1, e006.
Ballabeni, V., Tognolini, M., Chiavarini, M., Impicciatore, M., Bruni, R., Bianchi, A., and Barocelli, E. (2004). Novel antiplatelet and antithrombotic activities of essential oil from Lavandula hybrida Reverchon "grosso". Phytomedicine, 11, 596-601.
Bhatia, S. P., Wellington, G. A., Cocchiara, J., Lalko, J., Letizia, C. S., and Api, A. M. (2007). Fragrance material review on methyl cinnamate. Food Chem. Toxicol., 45 (Suppl.1), S113-119.
Bordia, A. (1981). Effect of garlic on blood lipids in patients with coronary heart disease. Am. J. Clin. Nutr., 34, 2100-2103.
Bost, F., Aouadi, M., Caron, L., and Binetruy, B. (2005). The role of MAPKs in adipocyte differentiation and obesity. Biochimie., 87, 51-56.
Camp, H. S., Ren, D., and Leff, T. (2002). Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol. Med., 8, 442-447.
Carson, C. F., Hammer, K. A., and Riley, T. V. (2006). Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev., 19, 50-62.
Cavalieri, E., Mariotto, S., Fabrizi, C., de Prati, A. C., Gottardo, R., Leone, S., Berra, L. V., Lauro, G. M., Ciampa, A. R., and Suzuki, H. (2004). alpha-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem. Biophys. Res. Commun., 315, 589-594.
Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother. Res., 21, 308-323.
Ejaz, A., Wu, D., Kwan, P., and Meydani, M. (2009). Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr., 139, 919-925.
Fahelbum, I. M., and James, S. P. (1977). The absorption and metabolism of methyl cinnamate. Toxicology, 7, 123-132.
Fang, Y. Q., Shi, C., Liu, L., and Fang, R. M. (2012). Analysis of transformation and excretion of beta-asarone in rabbits with GC-MS. Eur. J. Drug Metab. Pharmacokinet. DOI: 10.1007/s13318-012-0083-z
Farmer, S. R. (2006). Transcriptional control of adipocyte formation. Cell Metab., 4, 263-273.
Feve, B. (2005). Adipogenesis: cellular and molecular aspects. Best. Pract. Res. Clin. Endocrinol. Metab., 19, 483-499.
Furuhashi, M., Tuncman, G., Gorgun, C. Z., Makowski, L., Atsumi, G., Vaillancourt, E., Kono, K., Babaev, V. R., Fazio, S., Linton, M. F., Sulsky, R., Robl, J. A., Parker, R. A., and Hotamisligil, G. S. (2007). Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature, 447, 959-965.
Gehart, H., Kumpf, S., Ittner, A., and Ricci, R. (2010). MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep., 11, 834-840.
Geng, Y., Li, C., Liu, J., Xing, G., Zhou, L., Dong, M., Li, X., and Niu, Y. (2010). Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biol. Pharm. Bull., 33, 836-843.
Gesta, S., Tseng, Y. H., and Kahn, C. R. (2007). Developmental origin of fat: tracking obesity to its source. Cell, 131, 242-256.
Ghosh, M. (2006). Antifungal properties of haem peroxidase from Acorus calamus. Ann. Bot. (Lond), 98, 1145-1153.
Gilani, A. U., Shah, A. J., Ahmad, M., and Shaheen, F. (2006). Antispasmodic effect of Acorus calamus Linn. is mediated through calcium channel blockade. Phytother. Res., 20, 1080-1084.
Giri, S., Rattan, R., Haq, E., Khan, M., Yasmin, R., Won, J. S., Key, L., Singh, A. K., and Singh, I. (2006). AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model. Nutr. Metab. (Lond), 3, 31.
Gonzalez-Castejon, M., and Rodriguez-Casado, A. (2011). Dietary phytochemicals and their potential effects on obesity: a review. Pharmacol. Res., 64, 438-455.
Gormand, A., Henriksson, E., Strom, K., Jensen, T. E., Sakamoto, K., and Goransson, O. (2011). Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes. J. Cell Biochem., 112, 1364-1375.
Green, H. K., O. (1974). Sublines of mouse 3T3 Cells that accumulate lipid. Cell, 1, 113-116.
Gregoire, F. M. (2001). Adipocyte differentiation: from fibroblast to endocrine cell. Exp. Biol. Med. (Maywood), 226, 997-1002.
Grey, A., Bolland, M., Gamble, G., Wattie, D., Horne, A., Davidson, J., and Reid, I. R. (2007). The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J. Clin. Endocrinol. Metab., 92, 1305-1310.
Guo, T., Deng, Y. X., Xie, H., Yao, C. Y., Cai, C. C., Pan, S. L., and Wang, Y. L. (2011). Antinociceptive and anti-inflammatory activities of ethyl acetate fraction from Zanthoxylum armatum in mice. Fitoterapia, 82, 347-351.
Habinowski, S. A., and Witters, L. A. (2001). The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem. Biophys. Res. Commun., 286, 852-856.
Hasani-Ranjbar, S., Nayebi, N., Larijani, B., and Abdollahi, M. (2009). A systematic review of the efficacy and safety of herbal medicines used in the treatment of obesity. World J. Gastroenterol., 15, 3073-3085.
Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G., and Hardie, D. G. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab., 2, 9-19.
Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., and Hotamisligil, G. S. (2002). A central role for JNK in obesity and insulin resistance. Nature, 420, 333-336.
Hong, J. W., and Park, K. W. (2009). Further understanding of fat biology: Lessons from a fat fly. Exp. Mol. Med., 42, 12-20.
Hotamisligil, G. S., Johnson, R. S., Distel, R. J., Ellis, R., Papaioannou, V. E., and Spiegelman, B. M. (1996). Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science, 274, 1377-1379.
Hsu, C. L., and Yen, G. C. (2007). Effects of capsaicin on induction of apoptosis and inhibition of adipogenesis in 3T3-L1 cells. J. Agric. Food Chem., 55, 1730-1736.
Hu, Y., and Davies, G. E. (2009). Berberine inhibits adipogenesis in high-fat diet-induced obesity mice. Fitoterapia. 81, 358-366.
Huang, C., Zhang, Y., Gong, Z., Sheng, X., Li, Z., Zhang, W., and Qin, Y. (2006). Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway. Biochem. Biophys. Res. Commun., 348, 571-578.
Huang, Q. S., Zhu, Y. J., Li, H. L., Zhuang, J. X., Zhang, C. L., Zhou, J. J., Li, W. G., and Chen, Q. X. (2009). Inhibitory effects of methyl trans-cinnamate on mushroom tyrosinase and its antimicrobial activities. J. Agric. Food Chem., 57, 2565-2569.
Hwang, J. T., Kwon, D. Y., and Yoon, S. H. (2009). AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. New Biotechnology, 26, 17-22.
Hwang, J. T., Park, I. J., Shin, J. I., Lee, Y. K., Lee, S. K., Baik, H. W., Ha, J., and Park, O. J. (2005). Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun., 338, 694-699.
Kawai, M., and Rosen, C. J. (2010). PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat. Rev. Endocrinol., 6, 629-636.
Kawai, M., Sousa, K. M., MacDougald, O. A., and Rosen, C. J. (2010). The many facets of PPARgamma: novel insights for the skeleton. Am. J. Physiol. Endocrinol. Metab., 299, E3-9.
Kim, J., Seo, S. M., Lee, S. G., Shin, S. C., and Park, I. K. (2008). Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem., 56, 7316-7320.
Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404, 635-643.
Lage, R., Dieguez, C., Vidal-Puig, A., and Lopez, M. (2008). AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol. Med., 14, 539-549.
Lee, J. Y., Yun, B. S., and Hwang, B. K. (2004). Antifungal activity of beta-asarone from rhizomes of Acorus gramineus. J. Agric. Food Chem., 52, 776-780.
Lee, Y. K., Lee, W. S., Hwang, J. T., Kwon, D. Y., Surh, Y. J., and Park, O. J. (2009). Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J. Agric. Food Chem., 57, 305-310.
Lefterova, M. I., and Lazar, M. A. (2009). New developments in adipogenesis. Trends Endocrinol. Metab., 20, 107-114.
Lin, F., Ribar, T. J., and Means, A. R. (2011). The Ca2+/Calmodulin-Dependent Protein Kinase Kinase, CaMKK2, Inhibits Preadipocyte Differentiation. Endocrinology. 152, 3668-3679.
Lin, J., Della-Fera, M. A., and Baile, C. A. (2005). Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes. Res., 13, 982-990.
Liu, L., Fang, Y. Q., Xue, Z. F., He, Y. P., Fang, R. M., and Li, L. (2012). Beta-asarone attenuates ischemia-reperfusion-induced autophagy in rat brains via modulating JNK, p-JNK, Bcl-2 and Beclin 1. Eur. J .Pharmacol., 680, 34-40.
Lu, X. G., Zhan, L. B., Feng, B. A., Qu, M. Y., Yu, L. H., and Xie, J. H. (2004). Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene. World J. Gastroenterol., 10, 2140-2144.
Manikandan, S., Srikumar, R., Jeya Parthasarathy, N., and Sheela Devi, R. (2005). Protective effect of Acorus calamus LINN on free radical scavengers and lipid peroxidation in discrete regions of brain against noise stress exposed rat. Biol. Pharm. Bull., 28, 2327-2330.
Mehta M.B., K. M., Srivastava R., Verma K.C. (1981). Antimicrobial and anthelmintic activities of the essential oil of Zanthoxylum alatum Roxb. Indian Perfumer., 25, 19-21.
Molyneux, R. J., Lee, S. T., Gardner, D. R., Panter, K. E., and James, L. F. (2007). Phytochemicals: the good, the bad and the ugly? Phytochemistry, 68, 2973-2985.
Moon, H. S., Lee, H. G., Choi, Y. J., Kim, T. G., and Cho, C. S. (2007). Proposed mechanisms of (-)-epigallocatechin-3-gallate for anti-obesity. Chem. Biol. Interact., 167, 85-98.
Nawrocki, A. R., and Scherer, P. E. (2005). Keynote review: the adipocyte as a drug discovery target. Drug Discov. Today., 10, 1219-1230.
Nevas, M., Korhonen, A. R., Lindstrom, M., Turkki, P., and Korkeala, H. (2004). Antibacterial efficiency of Finnish spice essential oils against pathogenic and spoilage bacteria. J. Food Prot., 67, 199-202.
Ntambi, J. M., and Takova, T. (1996). Role of Ca2+ in the early stages of murine adipocyte differentiation as evidenced by calcium mobilizing agents. Differentiation, 60, 151-158.
Ntambi, J. M., and Young-Cheul, K. (2000). Adipocyte differentiation and gene expression. J. Nutr., 130, 3122S-3126S.
Oswald, E. O., Fishbein, L., and Corbett, B. J. (1969). Metabolism of naturally occurring propenylbenzene derivatives. I. Chromatographic separation of ninhydrin-positive materials of rat urine. J. Chromatogr., 45, 437-445.
Paithankar V.V., S. L. B., Charde R. M., and Vyas J. V. (2011). Acorus calamus: an overview. Int. J. Biomed. Res., 2, 518-529.
Parab, R. S., and Mengi, S. A. (2002). Hypolipidemic activity of Acorus calamus L. in rats. Fitoterapia, 73, 451-455.
Park, H. J., Yang, J. Y., Ambati, S., Della-Fera, M. A., Hausman, D. B., Rayalam, S., and Baile, C. A. (2008). Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J. Med. Food, 11, 773-783.
Ramos-Ocampo, V. E., and Hsia, M. T. S. (1988). Mutagenic and DNA-damaging activity of calamus oil, asarone isomers and dimethoxypropenylbenzenes analogues. Philippine Entomologist, 7, 275–291.
Ranawat, L., Bhatt, J., and Patel, J. (2010). Hepatoprotective activity of ethanolic extracts of bark of Zanthoxylum armatum DC in CCl4 induced hepatic damage in rats. J. Ethnopharmacol, 127, 777-780.
Rayalam, S., Della-Fera, M. A., and Baile, C. A. (2008). Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem., 19, 717-726.
Rayalam, S., Yang, J. Y., Ambati, S., Della-Fera, M. A., and Baile, C. A. (2008). Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother. Res., 22, 1367-1371.
Reusch, J. E., Colton, L. A., and Klemm, D. J. (2000). CREB activation induces adipogenesis in 3T3-L1 cells. Mol. Cell Biol., 20, 1008-1020.
Rieusset, J., Touri, F., Michalik, L., Escher, P., Desvergne, B., Niesor, E., and Wahli, W. (2002). A new selective peroxisome proliferator-activated receptor gamma antagonist with antiobesity and antidiabetic activity. Mol. Endocrinol., 16, 2628-2644.
Rosen, E. D. (2005). The transcriptional basis of adipocyte development. Prostaglandins Leukot. Essent. Fatty Acids, 73, 31-34.
Rosen, E. D., and MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol., 7, 885-896.
Rosen, E. D., and Spiegelman, B. M. (2000). Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Bio., 16, 145-171.
Rossmeisl, M., Flachs, P., Brauner, P., Sponarova, J., Matejkova, O., Prazak, T., Ruzickova, J., Bardova, K., Kuda, O., and Kopecky, J. (2004). Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores. Int. J. Obesity, 28(Suppl. 4), S38-44.
Salas, A., Noe, V., Ciudad, C. J., Romero, M. M., Remesar, X., and Esteve, M. (2007). Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue. BMC Genom., 8, 292.
Saltiel, A. R., and Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414, 799-806.
Sawahata, T., Shimano, S., and Suzuki, M. (2008). Tricholoma matsutake 1-Ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta). Mycorrhiza, 18, 111-114.
Sharma, A. M., and Staels, B. (2007). Review: Peroxisome proliferator-activated receptor gamma and adipose tissue--understanding obesity-related changes in regulation of lipid and glucose metabolism. J. Clin. Endocrinol. Metab., 92, 386-395.
Shi, H., Halvorsen, Y. D., Ellis, P. N., Wilkison, W. O., and Zemel, M. B. (2000). Role of intracellular calcium in human adipocyte differentiation. Physiol. Genomics, 3, 75-82.
Shukla, P. K., Khanna, V. K., Ali, M. M., Maurya, R., Khan, M. Y., and Srimal, R. C. (2006). Neuroprotective effect of Acorus calamus against middle cerebral artery occlusion-induced ischaemia in rat. Hum. Exp. Toxicol., 25, 187-194.
Smas, C. M., Chen, L., Zhao, L., Latasa, M. J., and Sul, H. S. (1999). Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation. J. Biol. Chem., 274, 12632-12641.
Sottile, V., and Seuwen, K. (2001). A high-capacity screen for adipogenic differentiation. Analytical Biochemistry, 293, 124-128.
Spalding, K. L., Arner, E., Westermark, P. O., Bernard, S., Buchholz, B. A., Bergmann, O., Blomqvist, L., Hoffstedt, J., Naslund, E., Britton, T., Concha, H., Hassan, M., Ryden, M., Frisen, J., and Arner, P. (2008). Dynamics of fat cell turnover in humans. Nature, 453, 783-787.
Steinberg, G. R., and Kemp, B. E. (2009). AMPK in Health and Disease. Physiol. Rev., 89, 1025-1078.
Tang, Q. Q., Otto, T. C., and Lane, M. D. (2003). Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc. Natl. Acad. Sci. U. S. A., 100, 44-49.
Tiwary, M., Naik, S. N., Tewary, D. K., Mittal, P. K., and Yadav, S. (2007). Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J. Vector Borne Dis., 44, 198-204.
Uysal, K. T., Scheja, L., Wiesbrock, S. M., Bonner-Weir, S., and Hotamisligil, G. S. (2000). Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology, 141, 3388-3396.
Vazquez-Vela, M. E., Torres, N., and Tovar, A. R. (2008). White adipose tissue as endocrine organ and its role in obesity. Arch. Med. Res., 39, 715-728.
Verma, N., and Khosa, R. L. (2010). Hepatoprotective activity of leaves of Zanthoxylum armatum DC in CCl4 induced hepatotoxicity in rats. Indian J. Biochem. Biophys., 47, 124-127.
Vernochet, C., Peres, S. B., and Farmer, S. R. (2009). Mechanisms of obesity and related pathologies: transcriptional control of adipose tissue development. FEBS J., 276, 5729-5737.
Weissinger, W. R., McWatters, K. H., and Beuchat, L. R. (2001). Evaluation of volatile chemical treatments for lethality to Salmonella on alfalfa seeds and sprouts. J. Food Prot., 64, 442-450.
Wiseman, R. W., Miller, E. C., Miller, J. A., and Liem, A. (1987). Structure-activity studies of the hepatocarcinogenicities of alkenylbenzene derivatives related to estragole and safrole on administration to preweanling male C57BL/6J x C3H/HeJ F1 mice. Cancer Res., 47, 2275-2283.
Woods, A., Dickerson, K., Heath, R., Hong, S. P., Momcilovic, M., Johnstone, S. R., Carlson, M., and Carling, D. (2005). Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab., 2, 21-33.
Wu, H. B., and Fang, Y. Q. (2004). [Pharmacokinetics of beta-asarone in rats]. Yao Xue Xue Bao, 39, 836-838.
Wu, H. S., Li, Y. Y., Weng, L. J., Zhou, C. X., He, Q. J., and Lou, Y. J. (2007). A fraction of Acorus calamus L. extract devoid of beta-asarone enhances adipocyte differentiation in 3T3-L1 cells. Phytother. Res., 21, 562-564.
Xu, J., and Liao, K. (2004). Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation. J. Biol. Chem., 279, 35914-35922.
Yanovski, S. Z., and Yanovski, J. A. (2002). Obesity. N. Engl. J. Med., 346, 591-602.
Yaturu, S., Bryant, B., and Jain, S. K. (2007). Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care, 30, 1574-1576.
Yun, J. W. (2010). Possible anti-obesity therapeutics from nature--a review. Phytochemistry, 71, 1625-1641.
Zhang, M., Ikeda, K., Xu, J. W., Yamori, Y., Gao, X. M., and Zhang, B. L. (2009). Genistein suppresses adipogenesis of 3T3-L1 cells via multiple signal pathways. Phytother. Res., 23, 713-718.
Zou, D. J., Wang, G., Liu, J. C., Dong, M. X., Li, X. M., Zhang, C., Zhou, L., Wang, R., and Niu, Y. C. (2011). Beta-asarone attenuates beta-amyloid-induced apoptosis through the inhibition of the activation of apoptosis signal-regulating kinase 1 in SH-SY5Y cells. Pharmazie, 66, 44-51.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top