|
[1] F.F. Chen, Introduction to Plasma Physics and Controlled Fusion. New York and London: Plenum Press, second edition, 1983. [2] L. Tonks and I. Langmuir, “A general theory of the plasma of an Arc,” Phys. Rev., vol. 34, pp. 876-922, 1929. [3] D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields, A. Guthrie and R.K. Wakerling, Eds. New York and London: McGraw-Hill, 1949. [4] R.N. Franklin, “The plasma-sheath boundary region,” J. Phys. D: Appl. Phys., vol. 36, pp. 309-320, 2003. [5] R.N. Franklin, “Where is the ‘sheath edge’?,” J. Phys. D: Appl. Phys., vol. 37, pp. 1342-1345, 2004. [6] K.-U. Riemann, "Kinetic theory of the plasma sheath transition in a weakly ionized plasma," Physics of Fluids, vol.24, pp.2163-2172, 1981. [7] K.-U. Riemann, "The plasma sheath transition of a weakly ionized plasma with reflecting walls," Proc. XVIIth Int. Conf. on Phenomena in Ionixed Gases, Budapest, pp. 519-521, 1985. [8] K.-U. Riemann, "The Bohm criterion and the field singularity at the sheath edge," Physics of Fluids B, vol.1, pp.961-963, 1989. [9] K.-U. Riemann, "The Bohm criterion and sheath formation," J. Physics D: Applied Physics, vol.24, pp.493-518, 1991. [10] K.-U. Riemann, "The Bohm criterion and boundary conditions for a multicomponent system," IEEE Transactions on Plasma Science, vol.23, pp.709-716, 1995. [11] O. Buneman, “Dissipation of currents in ionized media,” Phys. Rev., vol. 115, pp. 503-517, 1959. [12] J.M. Dawson, “One-dimensional plasma model,” Phys. Fluids, vol. 5, pp. 445-459, 1962. [13] S. Kondo and K. Nanbu, “PIC/MC analysis of three-dimensional DC magnetron discharge,” Rep. Inst. Fluid Sci., vol. 12, pp. 111-142, 2000. [14] J.P. Verboncoeur, “Particle simulation of plasmas: review and advances,” Plasma Phys. Control. Fusion, vol. 47, pp. 231-260, 2005. [15] R.J. Procassini, C.K. Birdsall, and E.C. Morse, “A fully, self-consistent particle simulation model of the collisionless plasma-sheath region,” Phys. Fluids B, vol. 2, pp. 3191-3205, 1990. [16] G.A. Emmert, R.M. Wieland, A.T. Mense, and J.N. Davidson, “Electric sheath and presheath in a collisionless, finite ion temperature plasma,” Phys. Fluids, vol. 23, pp. 803-812, 1980. [17] R.C. Bissell and P.C. Johnson, “The solution of the plasma equation in plane parallel geometry with a Maxwellian source,” Phys. Fluids, vol. 30, pp. 779-786, 1987. [18] J.T. Scheuer and G.A. Emmert, “Sheath and presheath in a collisionless plasma with a Maxwellian source,” Phys. Fluids, vol. 31, pp. 3645-3648, 1988. [19] B. Briehl and H.M. Urbassek, “Note on boundary conditions in plasma sheath simulations using the particle-in-cell algorithm,” IEEE Trans. Plasma Sci., vol. 29, pp. 809-814, 2001. [20] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. New York: Wiley, 1994. [21] R.T. Farouki, M. Dalvie, and L.F. Pavarino, “Boundary-condition refinement of the Child-Langmuir law for collisionless DC plasma sheaths,” J. Appl. Phys, vol. 68, pp. 6106-6116, 1990. [22] K. Nanbu, “Probability theory of electron-molecule, ion-molecule, molecule- molecule, and coulomb collisions for particle modeling of materials processing plasmas and gases,” IEEE Trans. Plasma Sci., vol. 28, pp. 971-990, 2000. [23] R.W. Boswell and I.J. Morey, “Self-consistent simulation of a parallel-plate RF discharge,” App. Phys. Lett., vol. 52, pp. 21-23, 1988. [24] V. Vahedi and M. Surendra, “A Monte Carlo collision model for the particle- in-cell method: applications to argon and oxygen discharges,” Comput. Phys. Commun., vol. 87, pp. 179-198, 1995. [25] S.L. Lin and J.N. Bardsley, “Monte Carlo simulation of ion motion in drift tubes,” J. Chem. Phys., vol. 66, pp. 435-445, 1977. [26] J.P. Boeuf and E. Marode, “A Monte Carlo analysis of an electron swarm in a non-uniform field:the cathode region of a glow discharge in helium,” J. Phys. D: Appl. Phys., vol. 15, pp. 2169-2187, 1982. [27] M. Surendra, D.B. Graves, and I.J. Morey, “Electron heating in low-pressure RF glow discharges,” Appl. phys. Lett., vol. 56, pp. 1022-1024, 1990. [28] C.K. Birdsall, “Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with Neutral Atoms, PIC-MCC,” IEEE. Plasma Sci., vol. 19, pp. 65-85, 1991. [29] V. Vahedi, C.K. Birdsall, M.A. Lieberman, G. DiPeso, and T.D. Rognlien, “Capacitive RF discharges modeled by particle-in-cell Monte Carlo simulation. I: analysis of numerical techniques,” Plasma Source Sci. Technol., vol. 2, pp. 261-272, 1993. [30] T. Takizuka and H. Abe, “A binary collision model for plasma simulation with a particle code,” J. Comput. Phys., vol. 25, pp. 205-219, 1977. [31] K. Nanbu, “Theory of cumulative small-angle collisions in plasmas,” Phys. Rev. E, vol. 55, pp. 4642-4652, 1997. [32] E. Kawamura and C.K. Birdsall, “Effect of Coulomb scattering on low-pressure high-density electronegative discharges,” Phys. Rev. E, vol. 71, 026403, 2005. [33] J.D. Blahovec, Jr., L.A. Bowers, J.W. Luginsland, G.E. Sasser, and J.J. Watrous, “3D ICEPIC simulations of the relativistic klystron oscillator,” IEEE Trans. Plasma Sci., vol. 28, pp. 821-829, 2000. [34] P.C. Liewer and V.K. Decyk, “A general concurrent algorithm for plasma particle-in-cell codes,” J. Comput. Phys., vol. 85, pp. 302-322, 1989. [35] B. Di Martino, S. Briguglio, G. Vlad, and P. Sguazzero, “Parallel PIC plasma simulation through particle decomposition techniques,” Parallel Comput., vol. 27, pp. 295-314, 2001. [36] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation. New York: McGraw-Hill, 1985. [37] R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles. New York: McGraw-Hill, 1981. [38] C.K. Birdsall and J.M. Dawson, “Plasma physics,” Computers and their Role in the Physical Sciences, S. Fernbach and A. Taub, Eds. New York: Academic, 1970, pp. 247-310. [39] J. Denavit and W.L. Kruer, “How to get started in particle simulation,” Comments Plasma Phys. Contr. Fusion, vol. 6, pp. 35-44, 1980. [40] J.M. Dawson, “Particle simulation of plasmas,” Rev. Mod. Phys., vol. 55, pp. 403-447, 1983. [41] J.P. Verboncoeur, A.B. Langdon, and N.T. Gladd, “An object-oriented electromagnetic PIC code,” Comput. Phys. Commun., vol. 87, pp. 199-211, 1995. [42] 錢振型 主編,固體電子學中的等離子體技術,電子工業出版社,1987。 [43] 邵福球 編著,等離子體粒子模擬,科學出版社,2002。 [44] A. Anders, “Fundamentals of pulsed plasmas for materials processing,” Surface & Coatings Technology, vol. 183, pp. 301-311, 2004. [45] K.U. Riemann, “The Bohm Criterion and Boundary Conditions for a Multicomponent System,” IEEE Trans. Plasma Sci., vol. 23, pp. 709-716, 1995. [46] E. Zawaideh, F. Najmabadi, and R.W. Conn, “Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas,” Phys. Fluids, vol. 29, pp. 463-474, 1986. [47] A. Bogerts, R. Gijbels, and J. Vlcek, “Collisional-radiative model for an argon glow discharge,” J. Appl. Phys., vol. 84, pp. 121-136, 1998.
|