跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝昕佑
研究生(外文):Hsin-Yu Hsieh
論文名稱:熱燈絲化學氣相沉積法製作P型矽薄膜之特性研究與其在矽異質接面太陽能電池之應用
論文名稱(外文):Fabrication and characterization of p-type silicon films using hot-wire chemical vapor deposition for heterojunction solar cell applications
指導教授:武東星
口試委員:洪瑞華莊賦祥張守進
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:96
中文關鍵詞:矽異質接面太陽電池熱燈絲化學氣相沉積法氫流量比晶片規格
外文關鍵詞:SHJPVHWCVDH2 flow ratiowafer specification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來隨著世界各地環保意識的高漲,使綠色能源的太陽能電池越來越被重視。而本研究也將焦點放在具有前瞻性的矽異質太陽能電池,主要是利用熱燈絲化學氣相沉積法,以加熱鎢絲裂解SiH4、B2H6和H2等製程氣體,並改變各項製程參數,優化p型矽薄膜
  而要了解p型矽薄膜是否被優化之前,本研究利用分析結構的X光繞射分析儀、場發射掃描式電子顯微鏡、拉曼光譜儀、高解析度穿透式顯微鏡和傅立葉轉換紅外光譜儀,以及分析光電特性的n&k光學量測系統和霍爾效應量測。在這個研究發現,當氫流量比例增加時,p型矽薄膜的結晶度增加、光學能隙下降。在此研究中,發現當氫流量為50 sccm有最佳的載子遷移率1.38 cm2/V-s以及載子濃度1.8x1019 cm-3之p型矽薄膜。並以最佳化的p型矽薄膜製作成Al/ITO/p-uc-Si/intrinsic a-Si/n-wafer/ITO/Ag/Al 的結構,且製作出12.55 %的轉換效率太陽能電池元件
  而研究結果發現,當晶片的厚度由675減少到100 um時,元件轉換效率由12.29下降到11.64 %;當晶片的阻值由2下降到140 ohm-cm時,元件轉換效率由12.24下降到10.9 %;當晶片載子生命期由37.5增加到169.5 us,元件之轉換效率由12.04提升到12.71 %。在此研究顯示,不只是p型矽薄膜對太陽能電池的轉換效率會有很大的影響,晶片的規格也會對太陽能電池的轉換效率有很大的影響。

  The silicon heterojunction solar cell (SHJPV) has received much attention because of its high conversion efficiency that could be achieved using a simple structure and a low process temperature. In this thesis, the device-quality p-type microcrystalline silicon thin film (p-uc-Si) was fabricated by hot-wire chemical vapor deposition (HWCVD) technique and the effects of wafer specification on the SHJPV cell performance were also investigated.
  In order to optimize the film quality, the HWCVD p-uc-Si films were fabricated under various hydrogen flow ratios. The film properties were identified by X-ray diffractormeter, field emission scanning electron microscopy, transmission electron microscopy, Raman spectrometer, Fourier-transform infrared spectrometer, Hall measurement and n&k analyzer. The results indicated that the crystallinity of p-uc-Si films was improved with increasing the H2 flow ratio. The optical energy gap, however, decreased as the H2 flow ratio increased. Under an optimum hydrogen flow rate of 50 sccm, a device-quality p-uc-Si film with carrier mobility of 1.38 cm2/V-s and concentration of 1.8x1019 cm-3 was obtained. The SHJPV (Al/ITO/p-uc-Si/intrinsic a-Si/n-wafer/ITO/Ag/Al) with an efficiency of 12.55% can be obtained using the p-uc-Si film as a window layer.
  For the wafer verification, it was found that the thicker wafer (100 to 675 um) leads to a higher efficiency (11.64 to 12.29 %). The smaller bulk resistivity (140 to 2 ohm-cm) results in a higher efficiency (10.9 to 12.24 %). The longer bulk lifetime (37.5 to 169.5 us) promotes a higher cell efficiency (12.04 to 12.71 %). These indicate that the wafer properties play important roles in determining the cell performance. Finally, the SHJPV with an efficiency of 12.71 % was achieved. This is a very promising result for future high-efficiency and low-cost SHJPVs.


目錄
誌謝 I
摘要 II
ABSTRACT III
目錄 IV
表目錄 VIII
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2太陽能電池歷史與背景 1
1-3研究動機 3
第二章 理論基礎與文獻回顧 5
2-1太陽光譜 5
2-2二極體之太陽能電池基本原理 6
2-3太陽能電池等效電路圖 7
2-3-1何謂為開路電壓、短路電流 8
2-3-2並聯、串聯電阻對太陽能電池之影響 9
2-3-3效率計算 10
2-4熱燈絲化學氣相沉積法 11
2-4-1薄膜成長理論 11
2-4-2熱燈絲化學氣相沉積法文獻回顧 13
2-4-3 熱燈絲化學氣相沈積機制原理 13
2-5矽晶片基板 18
2-6 SANYO的異質接面太陽能電池發展 18
第三章 研究方法 20
3-1前置作業與基板的選用 21
3-2製程設備 22
3-2-1熱燈絲氣相沉積系統簡介 22
3-2-2電子槍蒸鍍機 24
3-2-3感應式耦合電漿 25
3-3太陽能電池光電元件製作方法 26
3-3-1矽基板表面粗化 26
3-3-2 鍍膜前處理 26
3-3-3矽薄膜沉積 27
3-3-4透明導電膜與金屬電極 27
3-3-5邊緣處理 29
3-4薄膜、太陽能電池元件分析 30
3-4-1表面粗度儀 30
3-4-2 X光繞射分析儀 30
3-4-3矽薄膜表面形貌分析 31
3-4-4霍爾效應量測 33
3-4-5薄膜光暗電導量測 34
3-4-6活化能量測 35
3-4-7光學量測系統 36
3-4-8 拉曼光譜儀 37
3-4-9 傅立葉轉換紅外光譜儀 38
3-4-10太陽電池模擬光源量測系統 39
3-4-11 外部量子效率 40
第四章 結果與討論 41
4-1 基板溫度之p型矽薄膜分析 41
4-1-1基板溫度之p型矽薄膜鍍率分析 41
4-1-2基板溫度之p型矽薄膜微結構分析 43
4-1-3基板溫度之p型矽薄膜光特性分析 50
4-1-4基板溫度之p型矽薄膜電特性分析 51
4-2 摻雜氣體流量比例之p型矽薄膜分析 54
4-2-1摻雜氣體流量比例之p型矽薄膜鍍率分析 55
4-2-2摻雜氣體流量比例之p型矽薄微結構分析 56
4-2-3摻雜氣體流量比例之p型矽薄膜光特性分析 60
4-2-4摻雜氣體流量比例之p型矽薄膜電特性分析 61
4-3 氫流量比例之p型矽薄膜分析 64
4-3-1氫流量比例之p型矽薄膜鍍率分析 65
4-3-2氫流量比例之p型矽薄微結構分析 66
4-3-3氫流量比例之p型矽薄膜光特性分析 71
4-3-4氫流量比例之p型矽薄膜電特性分析 71
4-4 太陽能電池元件分析 74
4-4-1表面粗化結果分析 74
4-4-2本質矽薄膜結果分析 76
4-4-3透明導電膜與金屬電極結果分析 76
4-4-4太陽能電池元件之效率 77
4-5 N型矽晶片分析 78
4-5-1 n型矽晶片厚度分析 79
4-5-2 n型矽晶片阻值分析 81
4-5-3 n型矽晶片載子之生命期分析 84
第五章 結論與未來工作 87
參考文獻 89


表目錄
表3.1 機台的固定製程參數 23
表3.2矽晶片表面粗化之參數 26
表3.3氫處理製程參數 27
表3.4矽薄膜沉積參數 27
表3.5金屬電極製程參數 28
表3.6 ICP製程參數 30
表4.1 不同基板溫度之沉積p型矽薄膜參數 41
表4.2 p型矽薄膜之基板溫度與沉積速率 42
表4.3 p型矽薄膜之基板溫度與半寬高、晶粒尺寸之關係 44
表4.4 p型矽薄膜之基板溫度和氫含量、結構因子 49
表4.5 p型矽薄膜之基板溫度與光學能隙 51
表4.6 p型矽薄膜之基板溫度和載子濃度、活化能 52
表4.7 p型矽薄膜之基板溫度和電阻率、載子遷移率 53
表4.8 p型矽薄膜之B2H6流量比例之沉積p型矽薄膜參數表 55
表4.9 p型矽薄膜之B2H6流量比例與沉積速率 55
表4.10 p型矽薄膜之B2H6流量比例和氫含量、結構因子 59
表4.11 p型矽薄膜之B2H6流量比例與光學能隙 61
表4.12 p型矽薄膜之B2H6流量比例和載子濃度、活化能 62
表4.13 p型矽薄膜之B2H6流量比例和電阻率、載子遷移率 64
表4.14 氫流量比例之沉積p型矽薄膜參數表 65
表4.15 p型矽薄膜之氫流量比例與沉積速率 65
表4.16 p型矽薄膜之氫流量比例和氫含量、結構因子 69
表4.17 p型矽薄膜之氫流量比例與光學能隙 71
表4.18 p型矽薄膜之氫流量比例和電阻率、載子遷移率 72
表4.19 p型矽薄膜之氫流量比例和載子濃度、活化能 74
表4.20製作太陽電池元件之p型矽薄膜參數 77
表4.21有無ICP處理之太陽能電池元件效率比較 78
表4.22不同矽晶片厚度的規格 80
表4.23晶片厚度與元件效率之關係 81
表4.24不同矽晶片阻值的規格 84
表4.25不同矽晶片載子lifetime的規格 84
表4.26晶片載子之生命期與元件效率之關係 86

圖目錄
圖1.1各種太陽能電池技術之效率演進 2
圖1.2披覆射極背面局部擴散太陽能電池 3
圖1.3 Sanyo的HIT結構太陽能電池 4
圖2.1太陽相對位置與AM之關係 5
圖2.2氙弧燈的光譜與加了濾鏡所得到AM0與AM1.5 6
圖2.3照光之後電子電洞激發 7
圖2.4太陽電池等效電路 8
圖2.5元件IV曲線之特性 10
圖2.6異質成核表面能平衡圖 11
圖2.7薄膜成長機制 12
圖2.8矽甲烷接觸燈絲表面受催化示意圖 14
圖2.9熱燈絲化學氣相沉積法沉積薄膜機制圖 14
圖2.10 Sanyo異質接面太陽能電池的發展歷程 18
圖3.1製程流程圖 20
圖3.2玻璃基板的清洗過程 21
圖3.3矽基板的清洗過程 21
圖3.4 HWCVD系統示意圖 22
圖3.5電子槍產生原理示意圖 24
圖3.6感應式耦合電漿的示意圖 25
圖3.7有無ITO載子移動機制 28
圖3.8正面魚骨狀電極示意圖 28
圖3.9矽薄膜鍍到邊緣示意圖 29
圖3.10經由ICP蝕刻後之元件示意圖 29
圖3.11 α-step量測膜厚示意圖 30
圖3.12 XRD低掠角量測法示意圖 31
圖3.13掃描式電子顯微鏡系統示意圖 32
圖3.14穿透式電子顯微鏡系統示意圖 33
圖3.15霍爾效應 34
圖3.16量測光暗電導示意圖 35
圖3.17 N&K量測系統 36
圖3.19 FTIR示意圖 39
圖3.20模擬太陽光源器 40
圖4.1 p型矽薄膜之基板溫度與沉積速率之關係 42
圖4.2 p型矽薄膜之基板溫度之XRD圖 43
圖4.3 p型矽薄膜之基板溫度與半寬高、晶粒尺寸之關係 45
圖4.4 p型矽薄膜之基板溫度下的拉曼光譜 46
圖4.5 p型矽薄膜之基板溫度的結晶率 46
圖4.6晶相和結晶率、結晶大小之關係 47
圖4.7 p型矽薄膜之基板溫度下的FTIR圖 48
圖4.8 p型矽薄膜之基板溫度之氫含量、結構因子圖 49
圖4.9 p型矽薄膜之基板溫度之SEM俯視圖 50
圖4.10 p型矽薄膜之基板溫度和波長、穿透率之關係之關係 50
圖4.11 p型矽薄膜之基板溫度之光學能隙圖 51
圖4.12 p型矽薄膜之基板溫度和載子濃度、活化能之關係 52
圖4.13 p型矽薄膜之基板溫度和電阻率、載子遷移率之關係 54
圖4.14 p型矽薄膜之B2H6流量比例和沉積速率之關係圖 56
圖4.15 p型矽薄膜之B2H6流量比例之XRD圖 57
圖4.16 p型矽薄膜之B2H6流量比例之拉曼光譜 58
圖4.17 p型矽薄膜之B2H6流量比例的結晶率 58
圖4.18 p型矽薄膜之B2H6流量比例之FTIR圖 59
圖4.19 p型矽薄膜之B2H6流量比例之氫含量、結構因子圖 60
圖4.20 p型矽薄膜之B2H6流量比例之SEM俯視圖 60
圖4.21 p型矽薄膜之B2H6流量比例之光學能隙圖 61
圖4.22 p型矽薄膜之B2H6流量比例和載子濃度、活化能之關係 63
圖4.23 p型矽薄膜之B2H6流量比例和電阻率、載子遷移率之關係 64
圖4.24 氫流量比例和沉積速率之關係圖 65
圖4.25 p型矽薄膜之氫流量比例之XRD圖 66
圖4.26 p型矽薄膜之氫流量比例之拉曼光譜 68
圖4.27 p型矽薄膜之氫流量比例的結晶率 68
圖4.28 p型矽薄膜之氫流量比例之FTIR圖 69
圖4.29 p型矽薄膜之氫流量比例之氫含量、結構因子圖 70
圖4.30 p型矽薄膜之氫流量比例之TEM剖面圖 70
圖4.31 p型矽薄膜之氫流量比例之光學能隙圖 71
圖4.32 p型矽薄膜之氫流量比例和電阻率、載子遷移率之關係 73
圖4.33 p型矽薄膜之氫流量比例和載子濃度、活化能之關係 74
圖4.34表面粗化後的SEM剖面圖 75
圖4.35表面粗化後的SEM平面圖 75
圖4.36本質矽薄膜之XRD圖 76
圖4.37 ITO在不同波長下的穿透率圖 77
圖4.38有無ICP處理之太陽能電池IV曲線特性 78
圖4.39元件效率隨氫流量比例變化 79
圖4.40晶片厚度對n、FF、Voc、Jsc之影響 80
圖4.41晶片厚度對元件IV曲線之影響 81
圖4.42晶片阻值對載子遷移率之影響 83
圖4.43晶片阻值對n、FF、Voc、Jsc之影響 83
圖4.44模擬不同晶片阻值下波長對IQE作圖結果 83
圖4.45晶片載子之生命期與元件IV曲線之關係 84
圖4.46晶片載子之生命期與元件EQE之關係 85
圖4.47晶片載子之生命期與元件IQE之關係 86


[1]莊嘉琛,"太陽能工程-太陽電池篇",全華科技圖書出版 (2003)。
[2]楊素華、蔡泰成,科學發展, 390期,2005年6月。
[3]J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham and M. A. Green, “24% efficient PERL silicon solar cell: Recent improvements in high efficiency silicon cell research”, Sol. Energy Mater. Sol. Cells, vol. 41-40, pp. 88-89, 1996.
[4]M. B. Prince, “Silicon solar energy converters”, J. Appl. Phys., vol.26, pp. 534-540, 1955.
[5]L. Kazmerski, D. Gwinnwe, and A. Hicks, “National renewable energy laboratory”, 2007.
[6]J. Zhao, “Recent advances of high-efficiency single crystalline silicon solar cells in processing technologies and substrate materials”, Sol. Energy Mater. Sol. Cells, vol. 82, pp. 53-64, 2004.
[7]H. Matsumura, H. Umemoto and A. Masuda, “Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon”, J. Non-Cryst. Solids, vol. 338, pp. 19-26, 2004.
[8]K. Ishibashi, M. Karasawa, G. Xu, N. Yokokawa, M. Ikemoto, A. Masuda and H. Matsumura, “Development of Cat-CVD apparatus for 1-m-size large-area deposition”, Thin Solid Films, vol. 430, pp. 58-62, 2003.
[9]戴寶通、鄭晃忠,"太陽能電池技術手冊",台灣電子材料與元件協會出版。
[10]黃惠良、曾百亨,"太陽電池 Solar Cells",五南出版社。
[11]D. A. Neamen, “Semiconductor physics and devices”, The McGraw Hill Companies, 1992.
[12]S. O. Kasap, “Optoelectronics and photonics principles and particles”, Pearson Prentice Hall Companies.2001.
[13]羅吉宗,"薄膜科技與應用(修訂版)",全華科技圖書出版。
[14]B. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S. Crandall and H. M. Branz, “High-deposition rate a-Si:H n–i–p solar cells grown by HWCVD”, Thin Solid Films, vol.395, pp. 292-297, 2001.
[15]H. Wiesmann, A. K. Ghosh, T. McMahon and M. Strongin, “a-Si:H produced by high-temperature thermal decomposition of silane”, J. Appl. Phys., vol. 50, pp. 3752-3754, 1979.
[16]H. Matsumura and H. Tachibana, “Amorphous Silicon Produced by a New Thermal Chemical Vapor Deposition Method Using Intermediate Species SiF2”, J. Appl. Phys., vol. 47, pp. 833-835, 1985.
[17]A. H. Mahan, J. Carapella, B. P. Nelson, and R.S. Crandall, “Deposition of device quality, low H content amorphous silicon”, J. Appl. Phys., vol. 69, pp. 6728-6730, 1991.
[18]H. Matsumura, “Formation of Polysilicon films by catalytic chemical vapor deposition (Cat-CVD) method”, Jpn. J. Appl. Phys., vol. 30, pp. 1522-1524, 1991.
[19]H. Matsumura, “Silicon nitride produced by catalytic chemical vapor deposition method,” J. Appl. Phys., vol. 66, pp. 3612-3617, 1989.
[20]R. E. I. Schropp and M. Zeman, “Amorphous and microcrystalline silicon solar cell: modeling materials and device technology”, Kluwer Academic Publishers.
[21]陳力俊,"材料電子顯微鏡學",全華科技圖書出版。
[22]S. K. Chong, B. T. Goh, Z. Aspanut, M. R. Muhamad, C. F. Dee and S. A. Rahman, “Effect of substrate temperature on gold-catalyzed silicon nanostructures growth by hot-wire chemical vapor deposition(HWCVD)”, App. Surf. Sci., vol. 257, pp. 3320-3324, 2011.
[23]U. Weber, M. Koob, R. O. Dusane, C. Mukherjee, H. Seitz and B. Schröder, ”a-Si:H based solar cells entirely deposited by Hot-Wire CVD”, Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, pp. 286-289, 2000.
[24]K. Inoue, S. Tange, K. Tonokure and M. Koshi, “Anti-heat shock protein-27 (Hsp-27) antibody levels in patients with chest pain: Association with established cardiovascular risk factors”, Thin Solid Films, vol. 395, pp. 42-46, 2001.
[25]M. Koshi, F. Tamura and H. Matsui, “Rate constants for the reactions of hydrogen atoms with SiHnF4 - n (n = 4, 3, 2)”, Chem. Phys. Lett. vol. 173, pp. 235-240, 1990.
[26]H. Matsumura, “Silicon nitride produced by catalytic chemical vapor deposition method”, J. Appl. Phys., vol. 66, pp. 3612-3617, 1989.
[27]A. Gallagher, “Some physics and chemistry of hot-wire deposition”, Thin Solid Films, vol. 395, pp. 25-28, 2001.
[28]E. C. Molenbroek, “Deposition of hydrogenated amorphous silicon with the hot wire technique”, Ph. D. Thesis, University of Colorado,1995.
[29]J. Zhao, A. Wang, P. P. Altermatt and M. A. Green, “High efficiency PERT cells on n-type silicon substrates”, Proceedings of the 29th IEEE Photovoltaic Specialist Conference, New Orleans, pp. 218-221, 2002.
[30]J. Schmidt, A. G. Aberle, and R. Hezel, “Investigation of carrier lifetime instabilities in Cz-grown silicon”, Proceedings of the 26th IEEE Photovoltaic Specialist Conference, Anaheim, pp. 13-18, 1997.
[31]蕭睿中、陳建勳、林景熙、徐偉智、葉芳耀,工業雜誌,281期,2100年,5月。
[32]T. Yagi, Y. Uraoka and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2647-2656, 2006.
[33]T. Oshima, A. Yamada and M. Konagai, “Analysis of H2-dilution effects on photochemical vapor deposition of Si thin films”, Jpn. J. Appl. Phys. , vol. 36, pp. 6481-6487, 1997.
[34]A. Tabata and M. Mori, “Structural changes of hot-wire CVD silicon carbide thin films induced by gas flow rates”, Thin Solid Films, vol. 516, pp. 626-629, 2008.
[35]K. Tao, D. Zhang, J. Zhao, L. Wang, H. Cai and Y. Sun, “Low temperature deposition of boron-doped microcrystalline Si:H thin film and its application in silicon based thin film solar cells”, J. Non-Cryst. Solids, vol. 356, pp. 299-303, 2009.
[36]J. Li, J. Wang, M. Yin, P. Gao, D. He, Q. Chen, Y. Li and H. Shirai, “Study on the initial growth process of crystalline silicon films on aluminum-coated polyethylene napthalate by Raman spectroscopy”, J. Non-Cryst. Solids, vol. 308, pp. 330-333, 2007.
[37]R. Saleh and N. H. Nickel, “Raman spectroscopy of B-doped microcrystalline silicon films”, Thin Solid Films, vol. 427, pp. 266-269, 2003.
[38]M. Ledinský, A. Vetushka, J. Stuchlík, T. Mates, A. Fejfar, J. Kočka and J. Štěpánek, “Crystallinity of the mixed phase silicon thin films by Raman spectroscopy”, J. Non-Cryst. Solids, vol. 354, pp. 2253-2257, 2007.
[39]Z. Iqbal, S. Veprek, A.P. Webb and P. Capezzuto, “Raman scattering from small particle size polycrystalline silicon”, Solid State Commun., vol. 37, pp. 993-996, 1981.
[40]U. Kroll, J. Meier, A. Shah, S. Mikhailov, and J. Weber, “Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution”, J. Appl. Phys, vol. 80, pp. 4971-4975, 1996.
[41]H. Wagner, R. Butz, U. Backes and D. Bruchmann, “Hydrogen vibrations on Si (111)”, Solid State Commun., vol. 38, pp. 1155-1157, 1981.
[42]D. Predoia, R. Cléracb, A. Jitianuc, M. Zaharescuc, M. Crisanc and M. Raileanuc, “Study of fexoy-SiO2 nanoparticles obtained by sol-gel synthesis”, Digest Journal of Nanomaterials and Biostructures, vol. 01, pp. 93-97, 2006.
[43]J. P. Condea, P. Brogueirab and V. Chuc, “Amorphous and microcrystalline silicon films obtained by hot-wire chemical vapor deposition using high filament temperatures between 1900 and 2500°C ”, Philosophical Magazine Part B, vol. 76, pp. 299-308, 1997.
[44]S. Furukawaand T. Miyasato, “Quantum size effects on the optical and electrical properties of microcrystalline Si:H”, Superlattices Microstruct., vol. 5, pp. 317-320, 1989.
[45]S. R. Jadkar, J. V. Sali, S. T. Kshrisagar and M. G. Takwale, “Deposition of hydrogenated amorphous silicon (a-Si:H) films by hot wire chemical vapor deposition: role of filament temperature”, Thin Solid Films, vol. 437, pp. 18-24, 2003.
[46]J. C. Noya, C. P. Herrero, and R. Ramírez, “Microscopic structure and reorientation kinetics of B-H complexes in silicon”, Phys. Rev. B, vol. 56, pp. 15139-15150, 1997.
[47]H. Chen, M. H. Gullanar and W. Z. Shen, “Effects of high hydrogen dilution on the optical and electrical properties in B-doped nc-Si:H thin films”, J. Cryst. Growth, vol. 260, pp. 91-101, 2003.
[48]K. Shimakawa, “Percolation-controlled electronic properties in microcrystalline silicon: effective medium approach”, J. Non-Cryst. Solids, vol. 266-269, pp. 223-226, 2000.
[49]A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, vol. 337, pp. 1-6, 1999.
[50]S. R. Jadkara, J. V. Salia, M. G. Takwale, D. V. Musaleb and S. T. Kshirsagarb, “Synthesis of highly conductive boron-doped p-type hydrogenated microcrystalline silicon (μc-Si:H) by a hot-wire chemical vapor deposition (HWCVD) technique”, Sol. Energy Mater. Sol. , vol. 64, pp. 333-346, 2000.
[51]J. C. Lee, K. H. Kang, S. K. Kim, K. H. Yoon, J. Song, S. W. Kwon, K. S. Lim, and I. J. Park, “Deposition of device quality μc-Si:H films by hot-wire CVD for solar cell applications”, Proceedings of the 29th IEEE Photovoltaic Specialist Conference, New Orleans, pp. 1258-1261, 2002.
[52]J. K. Rath and R. E. I. Schropp, “Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure”, Sol. Energy Mater. Sol., vol. 53, pp. 189-203, 1998.
[53]C. Mukherjee, U. Weber, H. Seitz and B. Schröder, “Growth of device quality p-type μc-Si:H films by hot-wire CVD for a-Si pin and c-Si heterojunction solar cells”, Thin Solid Films, vol. 395, pp. 310-314, 2001.
[54]S. Mingji, W. Zhanguo, L. Shiyong, P. Wenbo, X. Haibo, Z. Changsha and Z. Xiangbo, “Boron-doped silicon film as a recombination layer in the tunnel junction of a tandem solar cell”, J. Semi., vol. 30, No. 6, 2009.
[55]H. L. Hsiao, Y. Y. Shieh, R. S. Lee, R. Y. Wang, K. C. Wang, H. L. Hwang and A. B. Yang, “Electrical and structural properties of low temperature boron- and phosphorus-doped polycrystalline silicon thin films prepared by ECR-CVD”, Appl. Surf. Sci., vol. 142, pp. 400-406, 1999.
[56]S. A. Filonovich, M. Ribeiro, A. G. Rolo and P. Alpuim, “Phosphorous and boron doping of nc-Si:H thin films deposited on plastic substrates at 150 °C by Hot-Wire Chemical Vapor Deposition”, Thin Solid Films, vol. 516, pp. 576-579, 2008.
[57]J. V. Sali, V. D. Panaskar, M. G. Takwale, B. R. Marathe and V. G. Bhide, “Preparation of highly conductive p-type μc-Si:H window layer using lower concentration of hydrogen in the rf glow discharge plasma”, Sol. Energy Mater. Sol., vol. 45, pp. 413-421, 1997.
[58]K. R. McIntosh, M. J. Cudzinovic, D. D. Smith, W. P. Mulligan and R. M. Swanson, “The choice of silicon wafer for the production of low-cost rear-contact solar cells”, Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Osaka, vol. 1, pp. 971-974, 2003.
[59]M. Hilali, A. Ebong, A. Rohatgi and D. L. Meier, “Resistivity dependence of minority carrier lifetime and cell performance in p-type dendritic web silicon ribbon”, Solid-State Electron., vol. 45, pp. 1973-1978, 2001.
[60]L. Zhao, H. L. Li, C. L. Zhou, H. W. Diao and W. J. Wang, “Optimized resistivity of p-type Si substrate for HIT solar cell with Al back surface field by computer simulation”, Solar Energy, vol. 83, pp. 812-816, 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top