跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾華安
研究生(外文):Hwa-AnTseng
論文名稱:一個十二位元每秒取樣五千萬次的時間交錯型逐漸趨近式類比數位轉換器
論文名稱(外文):A 12-bit 50-MS/s Time-Interleaved Successive-Approximation Analog-to-Digital Converter
指導教授:張順志
指導教授(外文):Soon-Jyh Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:101
中文關鍵詞:殘值超取樣時間交錯型逐漸趨近式類比數位轉換器
外文關鍵詞:residue oversamplingtime interleavingsuccessive-approximationSARanalog-to-digital converterADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個十二位元每秒取樣五千萬次的時間交錯型逐漸趨近式類比數位轉換器。與過去的高解析度時間交錯型類比數位轉換器相比,本研究提出的使用殘值超取樣技術的時間交錯型類比數位轉換器架構,可以藉由提高各單一子通道類比數位轉換器的線性度,來改善整體時間交錯型類比數位轉換器的線性度。此架構不僅可以省去校正參考準位類比數位轉換器的使用,更可以降低校正電路的複雜度。
本設計以台積電90奈米CMOS標準1P9M製程實作晶片,核心電路面積佔685μm × 360μm。量測結果顯示,在0.9伏特電源供電,輸入頻率為五十萬赫茲,每秒分別取樣五千萬次及二千五百萬次的操作速度下,訊號雜訊比之最大值分別為60.01及60.58分貝,可推得每次資料轉換所消耗的能量分別為20.24及24.28飛焦耳。
This thesis presents a 12-bit 50-MS/s time-interleaved (TI) successive-approximation (SA; SAR) analog-to-digital converter (ADC). The proposed architecture, which combines the residue oversampling technique with the time-interleaved scheme, can improve the linearity of the overall time-interleaved ADC by enhancing the linearity of each sub-channel ADC. In comparison with early proposed high-resolution TI-SAR ADCs, this architecture can not only remove the reference sub-channel ADC utilized for calibration but also reduce the complexity of calibration circuit.
The proof-of-concept prototype was fabricated in TSMC 90-nm CMOS standard 1P9M process where the core area occupies 680μm × 360μm. With 0.9V supply and 0.5MHz input frequency, the measured peak signal-to-noise and distortion ratios (SNDRs) are 60.01dB at sampling rate of 50MS/s, and 60.58dB at sampling rate of 25MS/s. The corresponding figure-of-merits (FoMs) are 20.24fJ/conversion-step and 24.28fJ/conversion-step, respectively.
Abstract II
List of Figures VIII
List of Tables XII
Chapter 1 Introduction 1
1.1 BACKGROUND AND MOTIVATION 1
1.2 ORGANIZATION 4
Chapter 2 Fundamentals of Analog-to-Digital Converters 5
2.1 THE BASICS OF ADCS 5
2.1.1 Quantization Error 6
2.1.2 Resolution 8
2.1.3 Accuracy 9
2.2 STATIC SPECIFICATIONS 9
2.2.1 Offset Error 9
2.2.2 Gain Error 10
2.2.3 Nonlinearity 11
2.3 DYNAMIC SPECIFICATIONS 15
2.3.1 Signal-to-Noise Ratio 16
2.3.2 Signal-to-Noise and Distortion Ratio 16
2.3.3 Effective Number of Bits 17
2.3.4 Spurious Free Dynamic Range 17
2.3.5 Total Harmonic Distortion 18
2.3.6 Effective Resolution Bandwidth (ERBW) 19
2.3.7 Figure of Merit (FoM) 20

Chapter 3 Introduction of High-Resolution Time-Interleaved
SAR ADCs 21
3.1 TIME-INTERLEAVED ADC 22
3.1.1 The Concepts of Time-interleaved ADC 22
3.1.2 Effects of Channel Mismatches 24
3.2 THE BASICS OF SAR ADC 34
3.2.1 The Concepts of SAR Scheme 34
3.2.2 Circuit Operation of the SAR Architecture 37
3.3 RESIDUE OVERSAMPLING 41
3.3.1 Concept of Residue Oversampling 41
3.3.2 An Embodiment of a Residue Oversampling ADC 44
3.3.3 Simplified DEM 45
Chapter 4 A 12-bit 50-MS/s 4x-Interleaved SAR ADC 48
4.1 ARCHITECTURE OF THE PROPOSED TI-SAR ADC 49
4.1.1 Matlab Simulations with Noise 59
4.1.2 Matlab Simulations with Capacitor Mismatch 61
4.2 CIRCUIT IMPLEMENTATION 62
4.2.1 Clock Phase Generator 63
4.2.2 Modified Global-clock Bootstrapped Switch 64
4.2.3 Dynamic Two-stage Comparator 68
4.2.4 Mixed Switching Method 69
4.2.5 Digital Error Correction Decoder 71
4.2.6 Capacitor DAC Array 73

Chapter 5 Simulation and Measurement Results 77
5.1 LAYOUT AND CHIP FLOOR PLAN 77
5.2 POST-LAYOUT SIMULATION RESULT 80
5.3 GROUNDING IN PCB DESIGN 83
5.4 DIE MICROGRAPH AND MEASUREMENT SETUP 86
5.5 MEASUREMENT RESULTS 88
Chapter 6 Conclusions and Future Work 94
Bibliography 96
[1]P. Harpe, A. Baschirotto, and K. A. A. Makinwa, High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing. Heidelberg, Germany: Springer, 2015.
[2]B. Murmann, “ADC Performance Survey 1997-2018, [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[3]W. C. Black, and D. A. Hodges, “Time-interleaved converter arrays, IEEE J. Solid-State Circuits, vol. 15, no. 12, pp. 1022–1029, Dec. 1980.
[4]C.-W. Hsu, S.-J. Chang, C.-P. Huang, L.-J. Chang, Y.-T. Shyu, C.-H. Hou, H.-A. Tseng, C.-Y. Kung, and H.-J. Hu, “A 12-b 40-MS/s calibration-free SAR ADC, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 3, pp. 881–890, Mar. 2018.
[5]B. Razavi, “Design considerations for interleaved ADCs, IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1806–1817, Aug. 2013.
[6]N. Kurosawa, K. Maruyama, H. Kobayashi, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 3, pp. 261–271, Mar. 2001.
[7]N. Kurosawa, H. Kobayashi, and K. Kobayashi, “Channel linearity mismatch effects in time-interleaved ADC systems, in Proc. ISCAS, 2001, pp. 420–423.
[8]W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600MS/s 30mW 0.13µm CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization, in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 82–84.
[9]A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.
[10]B. Razavi, Principles of Data Conversion System Design. New York, USA: Wiley-IEEE Press, 1995.
[11]R. V. D. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd ed. Boston, USA: Kluwer Academic Publishers, 2003.
[12]N.-Y. Wang, “A 10-bit 110-MS/s SAR ADC with 2.5-bit predictive capacitor switching procedure, M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2011.
[13]T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed. New York, USA: Wiley, 2013.
[14]P. E. Allen, and D. R. Holberg, CMOS Analog Circuit Design, 3rd ed. New York, USA: Oxford University Press, 2011.
[15]Y.-T. Huang, “A 6-bit 220-MS/s successive-approximation analog-to-digital converter, M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2008.
[16]C.-Y. Liou, and C.-C. Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-averaging switching DAC in 90nm CMOS, in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 280–281.
[17]H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS, in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197.
[18]F. H. Irons, and D. M. Hummels, “The modulo time plot —A useful data acquisition diagnostic tool, IEEE Trans. Instrum. Meas., vol. 45, no. 3, pp. 734–738, Jun. 1996.
[19]J. L. McCreary, and P. R. Gray, “All-MOS charge distribution analog-to-digital conversion techniques–part I, IEEE J. Solid-State Circuits, vol. SSC10, no. 6, pp. 371379, Dec. 1975.
[20]B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7mW 11b 250Ms/s 2× interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS, in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 466–468.
[21]B. Verbruggen, K. Deguchi, B. Malki, and J. Craninckx, “ A 70dB SNDR 200MS/s 2.3mW dynamic pipelined SAR ADC in 28nm digital CMOS, in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1–2.
[22]Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “Split-SAR ADCs: Improved linearity with power and speed optimization, IEEE Trans. VLSI Syst., vol. 22, no. 2, pp. 372–383, Feb. 2014.
[23]A.-H. Chang, H.-S. Lee, and D. Boning, “A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration, in Proc. IEEE ESSCIRC, 2013, pp. 109–112.
[24]R. Kapustsa, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS, in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 472–473.
[25]R. V. D. Plassche, “Dynamic element matching for high-accuracy monolithic D/A converters, IEEE J. Solid-State Circuits, vol. 11, no. 6, pp. 795–800, Dec. 1976.
[26]W. Kester, Data Conversion Handbook. Burlington, MA, USA: Newnes, 2005.
[27]M.Gustavsson, J. Wikner, and N.Tan, CMOS Data Converters for Communications. Boston, USA: Kluwer Academic Publishers, 2000.
[28]Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, and S.-J. Chang, “A 9-bit 150-MS/s subrange ADC based on SAR architecture in 90-nm CMOS, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 570–581, Mar. 2013.
[29]R.-C. Liu, C.-Y. Lin, E. Harris, S. Merchant, S. W. Downey, G. Weber, N. A. Ciampa, W. Tai, W. Y. C. Lai, M. D. Morris, J. E. Bower, J. F. Miner, J. Frackoviak, W. Mansfield, D. Barr, R. Keller, C.-P. Chang, C.-S. Pai, S. N. Rogers, and R. Gregor, “Single mask metal-insulator-metal (MIM) capacitor with copper damascene metallization for sub-0.18μm mixed mode signal and system-on-a-chip (SoC) applications, in Proc. IEEE IITC, 2000, pp. 111–113.
[30]V. Tripathi, and B. Murmann, “Mismatch characterization of small metal fringe capacitors, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 8, pp. 2236–2242, Aug. 2014.
[31]G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS, in IEEE A-SSCC, 2013, pp. 289–292.
[32]S. Haenzsche, S. Henker, and R. Schuffny, “Modelling of capacitor mismatch and non-linearity effects in charge redistribution SAR ADCs, in Proc. IEEE MIXDES, 2010, pp. 300–305.
[33]C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation, in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386–387.
[34]K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, and A. Montijo, “A 20GS/s 8b ADC with a 1MB memory in 0.18µm CMOS, in IEEE ISSCC Dig. Tech. Papers, 2003, pp. 318–320.
[35]X. Gao, E. A. M. Klumperink, and B. Nauta, “Advantages of shift registers over DLLs for flexible low jitter multiphase clock generation, IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 55, no. 3, pp. 244–248, Mar. 2008.
[36]Y. Zhu, C.-H. Chan, S.-P. U, and R. P. Martins, “An 11b 900 MS/s time-interleaved sub-ranging pipelined-SAR ADC, in Proc. ESSCIRC, 2014, pp. 211–214.
[37]O. Semenov, A. Vassighi, and M. Sachdev, “Leakage current in sub-quarter micron MOSFET: A perspective on stressed delta-IDDQ testing, J. Electron. Test., vol. 19, no. 19, pp. 341–352, Jun. 2003.
[38]P. M. Figueiredo, and J. C. Vitla, ‘‘Kickback noise reduction techniques for CMOS latched comparators,’’ IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 53, no. 7, pp. 541–545, Jul. 2006.
[39]M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating dynamic comparator for high-speed ADCs, in IEEE A-SSCC, 2008, pp. 554–557.
[40]Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/conversion-step capacitor-swapping SAR ADC in 110-nm CMOS, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 10–18, Jan. 2015.
[41]L. Deng, C. Yang, M. Zhao, Y. Liu, and X. Wu, “A 12-bit 200KS/s SAR ADC with a mixed switching scheme and integer-based split capacitor array, in IEEE NEWCAS, 2013, pp. 1–4.
[42]V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency, Electron. Lett., vol. 46, no. 9, pp. 620–621, Apr. 2010.
[43]C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure, IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
[44]H. Zumbahlen, “Staying Well Grounded, Analog Dialogue, vol. 46, no. 6, Jun. 2012.
[45]C.-Y. Lin, and T.-C. Lee, “A 12-bit 210-MS/s 2-times interleaved pipelined-SAR ADC with a passive residue transfer technique, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 7, pp. 929–938, Jul. 2016.
[46]H.-W. Kang, H.-K. Hong, W. Kim, and S.-T. Ryu, “ A time-interleaved 12-b 270-MS/s SAR ADC with virtual-timing-reference timing-skew calibration scheme, IEEE J. Solid-State Circuits, vol. 53, no. 9, pp. 2584–2594, Sep. 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 一個不需校正之十二位元每秒取樣一千萬次逐漸趨近式類比數位轉換器
2. 一個十一位元每秒取樣二千萬次的寬輸入振幅逐漸趨近式類比數位轉換器
3. 一個時序偏移不敏感之十位元每秒取樣六億次雙通道逐漸趨近式類比數位轉換器
4. 一個基於只有前置放大的比較器之十位元每秒取樣三億次逐漸趨近式類比數位轉換器
5. 一個利用殘值超取樣及自我偏壓技術的十二位元每秒取樣四百萬次之雙模式連續漸進逼近式類比數位轉換器
6. 一個使用低複雜度碼相依參考電源漣波抑制技術之十一位元每秒取樣二千萬次的類比數位轉換器
7. 一個基於二元搜尋樹的回切技巧與殘值超取樣架構的十四位元每秒取樣二百萬次之逐漸趨近式類比數位轉換器
8. 一個以硬體實現的主動式抗噪系統
9. 一個操作在極低電壓下使用動態臨界電壓電晶體之低功耗十位元逐漸趨近式類比數位轉換器
10. 一個基於時序適應性窗口之每秒取樣十萬次的十位元低功耗逐漸趨近式類比數位轉換器
11. 一個擁有偏移背景校正之八位元每秒取樣十六億次的快閃與逐漸趨近式時間交錯型類比數位轉換器
12. 逐漸趨近式類比數位轉換器的位元錯誤率估計方法及測試技術
13. 具十位元連續漸近式類比數位轉換器之電阻式溫度感測晶片
14. 一個使用只有前置放大器的比較器以及不需校正機制之八位元每秒取樣四億次的逐漸趨近式類比數位轉換器
15. 一個使用數位碼錯誤校正之2.5-bit/cycle十位元每秒取樣一億六千萬次的逐漸趨近式類比數位轉換器