|
[1]P. Harpe, A. Baschirotto, and K. A. A. Makinwa, High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing. Heidelberg, Germany: Springer, 2015. [2]B. Murmann, “ADC Performance Survey 1997-2018, [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html. [3]W. C. Black, and D. A. Hodges, “Time-interleaved converter arrays, IEEE J. Solid-State Circuits, vol. 15, no. 12, pp. 1022–1029, Dec. 1980. [4]C.-W. Hsu, S.-J. Chang, C.-P. Huang, L.-J. Chang, Y.-T. Shyu, C.-H. Hou, H.-A. Tseng, C.-Y. Kung, and H.-J. Hu, “A 12-b 40-MS/s calibration-free SAR ADC, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 3, pp. 881–890, Mar. 2018. [5]B. Razavi, “Design considerations for interleaved ADCs, IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1806–1817, Aug. 2013. [6]N. Kurosawa, K. Maruyama, H. Kobayashi, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 3, pp. 261–271, Mar. 2001. [7]N. Kurosawa, H. Kobayashi, and K. Kobayashi, “Channel linearity mismatch effects in time-interleaved ADC systems, in Proc. ISCAS, 2001, pp. 420–423. [8]W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600MS/s 30mW 0.13µm CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization, in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 82–84. [9]A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996. [10]B. Razavi, Principles of Data Conversion System Design. New York, USA: Wiley-IEEE Press, 1995. [11]R. V. D. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd ed. Boston, USA: Kluwer Academic Publishers, 2003. [12]N.-Y. Wang, “A 10-bit 110-MS/s SAR ADC with 2.5-bit predictive capacitor switching procedure, M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2011. [13]T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed. New York, USA: Wiley, 2013. [14]P. E. Allen, and D. R. Holberg, CMOS Analog Circuit Design, 3rd ed. New York, USA: Oxford University Press, 2011. [15]Y.-T. Huang, “A 6-bit 220-MS/s successive-approximation analog-to-digital converter, M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2008. [16]C.-Y. Liou, and C.-C. Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-averaging switching DAC in 90nm CMOS, in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 280–281. [17]H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS, in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197. [18]F. H. Irons, and D. M. Hummels, “The modulo time plot —A useful data acquisition diagnostic tool, IEEE Trans. Instrum. Meas., vol. 45, no. 3, pp. 734–738, Jun. 1996. [19]J. L. McCreary, and P. R. Gray, “All-MOS charge distribution analog-to-digital conversion techniques–part I, IEEE J. Solid-State Circuits, vol. SSC10, no. 6, pp. 371379, Dec. 1975. [20]B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7mW 11b 250Ms/s 2× interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS, in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 466–468. [21]B. Verbruggen, K. Deguchi, B. Malki, and J. Craninckx, “ A 70dB SNDR 200MS/s 2.3mW dynamic pipelined SAR ADC in 28nm digital CMOS, in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1–2. [22]Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “Split-SAR ADCs: Improved linearity with power and speed optimization, IEEE Trans. VLSI Syst., vol. 22, no. 2, pp. 372–383, Feb. 2014. [23]A.-H. Chang, H.-S. Lee, and D. Boning, “A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration, in Proc. IEEE ESSCIRC, 2013, pp. 109–112. [24]R. Kapustsa, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS, in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 472–473. [25]R. V. D. Plassche, “Dynamic element matching for high-accuracy monolithic D/A converters, IEEE J. Solid-State Circuits, vol. 11, no. 6, pp. 795–800, Dec. 1976. [26]W. Kester, Data Conversion Handbook. Burlington, MA, USA: Newnes, 2005. [27]M.Gustavsson, J. Wikner, and N.Tan, CMOS Data Converters for Communications. Boston, USA: Kluwer Academic Publishers, 2000. [28]Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, and S.-J. Chang, “A 9-bit 150-MS/s subrange ADC based on SAR architecture in 90-nm CMOS, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 570–581, Mar. 2013. [29]R.-C. Liu, C.-Y. Lin, E. Harris, S. Merchant, S. W. Downey, G. Weber, N. A. Ciampa, W. Tai, W. Y. C. Lai, M. D. Morris, J. E. Bower, J. F. Miner, J. Frackoviak, W. Mansfield, D. Barr, R. Keller, C.-P. Chang, C.-S. Pai, S. N. Rogers, and R. Gregor, “Single mask metal-insulator-metal (MIM) capacitor with copper damascene metallization for sub-0.18μm mixed mode signal and system-on-a-chip (SoC) applications, in Proc. IEEE IITC, 2000, pp. 111–113. [30]V. Tripathi, and B. Murmann, “Mismatch characterization of small metal fringe capacitors, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 8, pp. 2236–2242, Aug. 2014. [31]G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS, in IEEE A-SSCC, 2013, pp. 289–292. [32]S. Haenzsche, S. Henker, and R. Schuffny, “Modelling of capacitor mismatch and non-linearity effects in charge redistribution SAR ADCs, in Proc. IEEE MIXDES, 2010, pp. 300–305. [33]C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation, in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386–387. [34]K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, and A. Montijo, “A 20GS/s 8b ADC with a 1MB memory in 0.18µm CMOS, in IEEE ISSCC Dig. Tech. Papers, 2003, pp. 318–320. [35]X. Gao, E. A. M. Klumperink, and B. Nauta, “Advantages of shift registers over DLLs for flexible low jitter multiphase clock generation, IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 55, no. 3, pp. 244–248, Mar. 2008. [36]Y. Zhu, C.-H. Chan, S.-P. U, and R. P. Martins, “An 11b 900 MS/s time-interleaved sub-ranging pipelined-SAR ADC, in Proc. ESSCIRC, 2014, pp. 211–214. [37]O. Semenov, A. Vassighi, and M. Sachdev, “Leakage current in sub-quarter micron MOSFET: A perspective on stressed delta-IDDQ testing, J. Electron. Test., vol. 19, no. 19, pp. 341–352, Jun. 2003. [38]P. M. Figueiredo, and J. C. Vitla, ‘‘Kickback noise reduction techniques for CMOS latched comparators,’’ IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 53, no. 7, pp. 541–545, Jul. 2006. [39]M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating dynamic comparator for high-speed ADCs, in IEEE A-SSCC, 2008, pp. 554–557. [40]Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/conversion-step capacitor-swapping SAR ADC in 110-nm CMOS, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 10–18, Jan. 2015. [41]L. Deng, C. Yang, M. Zhao, Y. Liu, and X. Wu, “A 12-bit 200KS/s SAR ADC with a mixed switching scheme and integer-based split capacitor array, in IEEE NEWCAS, 2013, pp. 1–4. [42]V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency, Electron. Lett., vol. 46, no. 9, pp. 620–621, Apr. 2010. [43]C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure, IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010. [44]H. Zumbahlen, “Staying Well Grounded, Analog Dialogue, vol. 46, no. 6, Jun. 2012. [45]C.-Y. Lin, and T.-C. Lee, “A 12-bit 210-MS/s 2-times interleaved pipelined-SAR ADC with a passive residue transfer technique, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 7, pp. 929–938, Jul. 2016. [46]H.-W. Kang, H.-K. Hong, W. Kim, and S.-T. Ryu, “ A time-interleaved 12-b 270-MS/s SAR ADC with virtual-timing-reference timing-skew calibration scheme, IEEE J. Solid-State Circuits, vol. 53, no. 9, pp. 2584–2594, Sep. 2018.
|