|
Reference [1] I. Kopin, G. Eisenhofer, and D. Goldstein, "Sympathoadrenal medullary system and stress," Mechanisms of physical and emotional stress, pp. 11-23: Springer, 1988. [2] N. D. Cottrell, and B. K. Barton, “The impact of artificial vehicle sounds for pedestrians on driver stress,” Ergonomics, vol. 55, no. 12, pp. 1476-86, 2012. [3] J. Reason, Human error: Cambridge university press, 1990. [4] R. Abdu, D. Shinar, and N. Meiran, “Situational (state) anger and driving,” Transportation Research Part F: Traffic Psychology and Behaviour, vol. 15, no. 5, pp. 575-580, 2012. [5] K. D. Kusano, and H. C. Gabler, “Safety benefits of forward collision warning, brake assist, and autonomous braking systems in rear-end collisions,” Intelligent Transportation Systems, IEEE Transactions on, vol. 13, no. 4, pp. 1546-1555, 2012. [6] A. Vahidi, and A. Eskandarian, “Research advances in intelligent collision avoidance and adaptive cruise control,” Intelligent Transportation Systems, IEEE Transactions on, vol. 4, no. 3, pp. 143-153, 2003. [7] C. T. Lin, K. C. Huang, C. F. Chao, J. A. Chen, T. W. Chiu, L. W. Ko, and T. P. Jung, “Tonic and phasic EEG and behavioral changes induced by arousing feedback,” Neuroimage, vol. 52, no. 2, pp. 633-42, Aug 15, 2010. [8] M. A. Schier, “Changes in EEG alpha power during simulated driving: a demonstration,” International Journal of Psychophysiology, vol. 37, no. 2, pp. 155-162, 2000. [9] J. A. Horne, and S. D. Baulk, “Awareness of sleepiness when driving,” Psychophysiology, vol. 41, no. 1, pp. 161-5, Jan, 2004. [10] C.-T. Lin, R.-C. Wu, S.-F. Liang, W.-H. Chao, Y.-J. Chen, and T.-P. Jung, “EEG-based drowsiness estimation for safety driving using independent component analysis,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 52, no. 12, pp. 2726-2738, 2005. [11] L. Schwabe, O. Hoffken, M. Tegenthoff, and O. T. Wolf, “Stress-induced enhancement of response inhibition depends on mineralocorticoid receptor activation,” Psychoneuroendocrinology, vol. 38, no. 10, pp. 2319-26, Oct, 2013. [12] G. Tan, T. K. Dao, L. Farmer, R. J. Sutherland, and R. Gevirtz, “Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): a pilot study,” Appl Psychophysiol Biofeedback, vol. 36, no. 1, pp. 27-35, Mar, 2011. [13] J. A. Healey, and R. W. Picard, “Detecting stress during real-world driving tasks using physiological sensors,” Intelligent Transportation Systems, IEEE Transactions on, vol. 6, no. 2, pp. 156-166, 2005. [14] S. Slobounov, K. Fukada, R. Simon, M. Rearick, and W. Ray, “Neurophysiological and behavioral indices of time pressure effects on visuomotor task performance,” Cognitive brain research, vol. 9, no. 3, pp. 287-298, 2000. [15] S. Haufe, M. S. Treder, M. F. Gugler, M. Sagebaum, G. Curio, and B. Blankertz, “EEG potentials predict upcoming emergency brakings during simulated driving,” J Neural Eng, vol. 8, no. 5, pp. 056001, Oct, 2011. [16] W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain research reviews, vol. 29, no. 2, pp. 169-195, 1999. [17] P. Putman, J. van Peer, I. Maimari, and S. van der Werff, “EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits,” Biol Psychol, vol. 83, no. 2, pp. 73-8, Feb, 2010. [18] A. N. Savostyanov, A. C. Tsai, M. Liou, E. A. Levin, J. D. Lee, A. V. Yurganov, and G. G. Knyazev, “EEG-correlates of trait anxiety in the stop-signal paradigm,” Neurosci Lett, vol. 449, no. 2, pp. 112-6, Jan 9, 2009. [19] F. Verbruggen, and G. D. Logan, “Response inhibition in the stop-signal paradigm,” Trends Cogn Sci, vol. 12, no. 11, pp. 418-24, Nov, 2008. [20] G. P. Band, M. W. Van Der Molen, and G. D. Logan, “Horse-race model simulations of the stop-signal procedure,” Acta psychologica, vol. 112, no. 2, pp. 105-142, 2003. [21] A. Osman, S. Kornblum, and D. E. Meyer, “The point of no return in choice reaction time: controlled and ballistic stages of response preparation,” Journal of Experimental Psychology: Human Perception and Performance, vol. 12, no. 3, pp. 243, 1986. [22] S. Makeig, A. J. Bell, T.-P. Jung, and T. J. Sejnowski, “Independent component analysis of electroencephalographic data,” Advances in neural information processing systems, pp. 145-151, 1996. [23] A. Delorme, and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J Neurosci Methods, vol. 134, no. 1, pp. 9-21, Mar 15, 2004. [24] R. Oostenveld, and T. F. Oostendorp, “Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull,” Hum Brain Mapp, vol. 17, no. 3, pp. 179-92, Nov, 2002. [25] S. Makeig, M. Westerfield, T. P. Jung, S. Enghoff, J. Townsend, E. Courchesne, and T. J. Sejnowski, “Dynamic brain sources of visual evoked responses,” Science, vol. 295, no. 5555, pp. 690-4, Jan 25, 2002. [26] S. Makeig, S. Debener, J. Onton, and A. Delorme, “Mining event-related brain dynamics,” Trends Cogn Sci, vol. 8, no. 5, pp. 204-10, May, 2004. [27] G. J. van Boxtel, M. W. van der Molen, J. R. Jennings, and C. H. Brunia, “A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm,” Biological psychology, vol. 58, no. 3, pp. 229-262, 2001. [28] H. Tabu, T. Mima, T. Aso, R. Takahashi, and H. Fukuyama, “Common inhibitory prefrontal activation during inhibition of hand and foot responses,” Neuroimage, vol. 59, no. 4, pp. 3373-8, Feb 15, 2012. [29] K. Rubia, A. B. Smith, M. J. Brammer, and E. Taylor, “Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection,” NeuroImage, vol. 20, no. 1, pp. 351-358, 2003. [30] H. C. Leung, and W. Cai, “Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements,” J Neurosci, vol. 27, no. 37, pp. 9893-900, Sep 12, 2007. [31] A. Hampshire, S. R. Chamberlain, M. M. Monti, J. Duncan, and A. M. Owen, “The role of the right inferior frontal gyrus: inhibition and attentional control,” Neuroimage, vol. 50, no. 3, pp. 1313-9, Apr 15, 2010. [32] A. R. Aron, T. W. Robbins, and R. A. Poldrack, “Inhibition and the right inferior frontal cortex,” Trends Cogn Sci, vol. 8, no. 4, pp. 170-7, Apr, 2004. [33] V. Muller, and A. P. Anokhin, “Neural synchrony during response production and inhibition,” PLoS One, vol. 7, no. 6, pp. e38931, 2012. [34] T. Harmony, T. Fernández, J. Silva, J. Bernal, L. Díaz-Comas, A. Reyes, E. Marosi, M. Rodríguez, and M. Rodríguez, “EEG delta activity: an indicator of attention to internal processing during performance of mental tasks,” International journal of psychophysiology, vol. 24, no. 1, pp. 161-171, 1996. [35] G. Pfurtscheller, B. Graimann, J. E. Huggins, S. P. Levine, and L. A. Schuh, “Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement,” Clinical Neurophysiology, vol. 114, no. 7, pp. 1226-1236, 2003. [36] G. Pfurtscheller, A. Stancak Jr, and C. Neuper, “Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review,” International Journal of Psychophysiology, vol. 24, no. 1, pp. 39-46, 1996.
|