跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施牧亞
研究生(外文):GISKAMUTHIA
論文名稱:利用X-Ray微斷層掃描研究再生瀝青膠泥在乳化瀝青稀漿系統中之貢獻程度
論文名稱(外文):Investigation of Reclaimed Asphalt Pavement Binder Contribution to the Asphalt Emulsion Slurry System Using X-ray Micro-Computed Tomography
指導教授:楊士賢楊士賢引用關係
指導教授(外文):Yang, Shih-Hsien
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:49
外文關鍵詞:Reclaimed Asphalt PavementRAP binderslurry surfacingmicro-computed tomographyDSR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The state of practice to combining RAP into slurry surfacing usually considered RAP binder as inactive and thus the RAP was used as ‘‘black rock”. This is because that the mixing process of the micro-surfacing was done in the ambient temperature that there is no high temperature can provide energy level to mobilize the RAP binder. However, during the service period of the micro-surfacing, the elevated pavement surface temperature and diffusion mechanism, contribution of RAP binder to the micro-surfacing makes possible. Therefore, the main objective of this study is investigate the level of contribution of the RAP binder to the cold mix asphalt-emulsion slurry system using direct observation and rheological of binder. The study was carried out in two pathways. The concept of using aggregate size to distinguish virgin aggregate and RAP and using the titanium dioxide (TiO2) as tracer. The other pathway was to employ the idea of diffusion zone and the sandwich sample concept to design four diffusion stages. The average thickness of the RAB layer calculated from the single artificial RAP aggregate was 100 μm and was used as a reference distance of RAB layer in the slurry mixture. Thus, the distance of the TiO2 outside the RAB layer to the boundary was calculated using CTAn software. The average distance of TiO2 for UCDN and CDN specimen are 190 μm and 500 μm, respectively. It indicates the diffusion mechanism exist in both conditioning cases. It can also observed that the TiO2 in the CDN specimen moved 2.5 times further than in the UCDN specimen. The relative migration distance of TiO2 in micro-CT respect to half distance between two artificial RAP aggregate was calculated. The percent travel was considered as diffusion depth and converted into three layer diffusion model as used in the DSR test. The ratio between diffusion layer and RAB layer was correspond to the ration between diffusion layer and RAB layer. This value was used in the interpolation to estimate the G* at such diffusion state from the G* at 25ºC and 60ºC spectrum for UCDN and CDN specimen, respectively. The G* of UCDN specimen and CDN specimen was 2.17-E06 Pa and 1.35-E05 Pa, respectively.
ABSTRACT I
DEDICATION II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
1 CHAPTER ONE INTRODUCTION 1
1.1 Background. 1
1.2 Research Objective 4
1.3 Thesis Organization 4
2 CHAPTER TWO LITERATURE REVIEW 6
2.1 Slurry Surfacing 6
2.2 Incorporating Reclaimed Asphalt Concrete into Micro-Surfacing Mixture 7
2.3 Diffusion Theory 7
2.4 Blending Mechanism 9
2.4.1 Mechanical and Interface Detection Approach 11
2.4.2 Direct Observation Approach 12
3 CHAPTER THREE RESEARCH METHODOLOGY 15
3.1 Materials. 16
3.1.1 Virgin Aggregate and RAP 16
3.1.2 Virgin Binder, RAB, and AE Residue 17
3.1.3 Titanium dioxide (TiO2) 20
3.2 Sample Preparation 21
3.2.1 X-Ray Micro-Computed Tomography (CT) 21
3.2.2 Dynamic Shear Rheometer (DSR) 23
3.3 Experimental Method. 25
3.3.1 X-Ray Micro-Computed Tomography (CT) 25
3.3.2 Dynamic Shear Rheometer (DSR) 27
4 CHAPTER FOUR RESULT AND DISCUSSION 29
4.1 X-Ray Micro-Computed Tomography 29
4.1.1 Image for AE residue, RAB and RAB mastic 29
4.1.2 Image for single artificial RAP aggregate sieve #4 and #8 30
4.1.3 Image for micro-CT specimen 31
4.2 Dynamic Shear Rheometer (DSR) 36
4.3 Correlation between Micro-CT image with G* spectrum 38
5 CHAPTER FIVE CONCLUSION AND SUGGESTION 42
5.1 Conclusion. 42
5.2 Recommendation. 43
REFERENCES 44
Abd, D. M. (2017). Characterization of Warm Asphalt Mixtures with Addition of Reclaimed Asphalt Pavement Materials.
Al-Qadi, I. L., Carpenter, S. H., Roberts, G., Ozer, H., Aurangzeb, Q., Elseifi, M. a, & Trepanier, J. (2009). Determination of Usable Residual Asphalt Binder in RAP, (09), 64.
Bennert, T. (2015). Advanced Characterization Testing of RAP Mixtures Designed and Produced Using a “ RAP Binder Contribution Percentage .
Booshehrian, A., Mogawer, W. S., & Bonaquist, R. (2013). How to Construct an Asphalt Binder Master Curve and Assess the Degree of Blending between RAP and Virgin Binders. Journal of Materials in Civil Engineering, 25(12), 1813–1821. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000726
Bowers, B. F., Huang, B., Shu, X., & Miller, B. C. (2014). Investigation of Reclaimed Asphalt Pavement blending efficiency through GPC and FTIR. Construction and Building Materials, 50, 517–523. https://doi.org/10.1016/j.conbuildmat.2013.10.003
Cavalli, M. C., Partl, M. N., & Poulikakos, L. D. (2017). Measuring the binder film residues on black rock in mixtures with high amounts of reclaimed asphalt. Journal of Cleaner Production, 149, 665–672. https://doi.org/10.1016/j.jclepro.2017.02.055
Cerea, P. (2010). Preventive Maintenance Treatments on Road Pavements: Multiapproach Life Cycle Assessment.
Erwin, T. C. (2007). Safety Effects of Preventive Maintenance: Microsurfacing - A Case Study.
Federal Highway Administration. (2001). HMA Pavement Mix Type Selection Guide.
Federal Highway Administration. (2011). Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice. Report No. FHWA-HRT-11-021. https://doi.org/10.1016/j.proeng.2016.06.119
Garfa, A., Dony, A., & Carter, A. (2016). Performance Evaluation and Behavior of Microsurfacing with Recycled Materials Performance Evaluation and Behavior of Microsurfacing with Recycled Materials. In 6th Eurasphalt & Eurobitume Congress. https://doi.org/dx.doi.org/10.14311/EE.2016.234
Huang, B., Li, G., Vukosavljevic, D., Shu, X., & Egan, B. K. (2005). Laboratory Investigation of Mixing Hot-Mix Asphalt with Reclaimed Asphalt Pavement. Transportation Research Record: Journal of the Transportation Research Board, 1929(May 2014), 37–45. https://doi.org/10.3141/1929-05
Hung, S. S., Farshidi, F., Jones, D., Alavi, M. Z., Harvey, J. T., & Sadraie, H. (2014). August 2014 Technical Memorandum : UCPRC-TM-2014-02 Authors : PREPARED FOR : PREPARED BY :, (August).
Hyun Hwan, K., Broughton, B., Moon Sup, L., & Soon Jae, L. (2015). Microsurfacing Successes and Failures. Int. J. Highw. Eng., 17(No.2), 71–78. https://doi.org/http://dx.doi.org/10.7855/IJHE.2015.17.2.071
Jiang, H. (2015). Construction Technology of Recycled Micro-surfacing of Yong wu Highway. Proceedings of the 2015 International Forum on Energy, Environment Science and Materials, 40(Ifeesm), 365–368.
Khosla, N. P., Nair, H., Visintine, B., & Malpass, G. (2012). Effect of Reclaimed Asphalt and Virgin Binder on Rheological Properties of Binder Blends. International Journal of Pavement Research and Technology, 5(5), 317–325.
Liphardt, A., Radziszewski, P., & Król, J. (2015). Binder Blending Estimation Method in Hot Mix Asphalt with Reclaimed Asphalt. Procedia Engineering, 111(TFoCE), 502–509. https://doi.org/10.1016/j.proeng.2015.07.123
Masad, E., Jandhyala, V. K., Dasgupta, N., Somadevan, N., & Shashidhar, N. (2002). Characterization of Air Void Distribution in Asphalt Mixes using X-ray Computed Tomography. Journal of Materials in Civil Engineering, 14(2), 122–129. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(122)
McDaniel, R. S., Shah, A., Huber, G. A., & Copeland, A. (2012). Effects of reclaimed asphalt pavement content and virgin binder grade on properties of plant produced mixtures. Road Materials and Pavement Design, 13(SUPPL. 1), 161–182. https://doi.org/10.1080/14680629.2012.657066
McDaniel, R. S., Soleymani, H., Anderson, R. M., Turner, P., & Peterson, R. (2000). Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method. NCHRP Project D9-12. Transportation Reserach Board 0f National Academics, Washington D.C., 30(October), 280.
Mohajeri, M., Molenaar, A. A. A., & Van de Ven, M. F. C. (2014). Experimental study into the fundamental understanding of blending between reclaimed asphalt binder and virgin bitumen using nanoindentation and nano-computed tomography. Road Materials and Pavement Design, 15(2), 372–384. https://doi.org/10.1080/14680629.2014.883322
Nahar, S., Mohajeri, M., Schmets, A., Scarpas, A., van de Ven, M., & Schitter, G. (2013). First Observation of Blending-Zone Morphology at Interface of Reclaimed Asphalt Binder and Virgin Bitumen. Transportation Research Record: Journal of the Transportation Research Board, 2370, 1–9. https://doi.org/10.3141/2370-01
Rad, F. (2013). Estimating Blending Level of Fresh and RAP Binders in Recycled Hot Mix Asphalt. Retrieved from http://www.minds.wisconsin.edu/bitstream/handle/1793/66319/MS_Thesis_YousefiRadFarhad.pdf?sequence=3
Rad, F., Sefidmazgi, N., & Bahia, H. (2014). Application of Diffusion Mechanism. Transportation Research Record: Journal of the Transportation Research Board, 2444(December 2014), 71–77. https://doi.org/10.3141/2444-08
Rinaldini, E., Schuetz, P., Partl, M. N., Tebaldi, G., & Poulikakos, L. D. (2014). Investigating the blending of reclaimed asphalt with virgin materials using rheology, electron microscopy and computer tomography. Composites Part B: Engineering, 67, 579–587. https://doi.org/10.1016/j.compositesb.2014.07.025
Robati, M. (2014). Evaluation and Improvement of Micro-Surfacing Mix Design method And Modelling of Asphalt Emulsion Mastic in Terms of Filler-Emulsion Interaction.
Robati, M., Carter, A., & Perraton, D. (2013). Incorporation of Reclaimed Asphalt Pavement and Post-Fabrication Asphalt Shingles in Micro-Surfacing Mixture. In Conference: Canadian Technical Asphalt Association, At St. John’s, Newfoundland, Canada.
Shirodkar, P., Mehta, Y., Nolan, A., Sonpal, K., Norton, A., Tomlinson, C., … Sauber, R. (2011). A study to determine the degree of partial blending of reclaimed asphalt pavement (RAP) binder for high RAP hot mix asphalt. Construction and Building Materials, 25(1), 150–155. https://doi.org/10.1016/j.conbuildmat.2010.06.045
Simões, D., Almeida-Costa, A., & Benta, A. (2017). Preventive Maintenance of Road Pavement with Microsurfacing—an Economic and Sustainable Strategy. International Journal of Sustainable Transportation, 11(9), 670–680. https://doi.org/10.1080/15568318.2017.1302023
Takamura, K., Lok, K. P. K., & Wittlinger, R. (2001). Microsurfacing for Preventive Maintenance: Eco-Efficient Strategy. In International Slurry Seal Association Annual Meeting, Maui, Hawaii (p. 5).
Texas Department of Transportation. (1998). Reclaimed Asphalt Pavement.
Uhlman, B., Andrews, J., Egan, L., & Harrawood, T. (2010). Submission for Verification of Eco-efficiency Analysis Under NSF Protocol P352 , Part B Micro Surfacing Eco-efficiency Analysis.
Zhao, F., Wang, K., & Zhang, S. (2010). Application of Micro-Surfacing in Pavement Preventive Maintenance for Shen-shan Freeway. In IEEE (pp. 5–8).
Zhao, S., Huang, B., Shu, X., & Woods, M. E. (2016). Quantitative evaluation of blending and diffusion in high RAP and RAS mixtures. Materials and Design, 89, 1161–1170. https://doi.org/10.1016/j.matdes.2015.10.086
Labi, S., Lamptey, G., and Kong, S.H. 2007. Effectiveness of Microsurfacing Treatments. Journal of Transportation Engineering, 133(6): 298–307. DOI: 10.1061/(ASCE)0733-947X(2007)133:5(298).
Johnson, E.N., Wood, T.J., and Olson, R.C. 2007. Flexible Slurry-Microsurfacing System for Overlay Preparation. Transportation Research Record: Journal of the Transportation Research Board, No. 1989, Vol. 2, Transportation Research Board of the National Academies, Washington, D.C., 2007, pp. 321–326. DOI: 10.3141/1989-79.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top