跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃鞍柏
研究生(外文):HUANG, AN-PO
論文名稱:電化學共沉積氧化石墨烯/聚苯胺/氧化鉬三元複合電極應用於超級電容
論文名稱(外文):Electrochemical Codeposition of Graphene Oxide/Polyaniline/Molybdenum Oxide Composite Electrodes Applied to Supercapacitors
指導教授:楊乾信
指導教授(外文):YANG, CHIEN-HSIN
口試委員:王宗櫚楊乾信林文崇
口試委員(外文):WANG, TZONG-LIUYANG, CHIEN-HSINLIN, WEN-CHURNG
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:110
中文關鍵詞:自摻雜聚苯胺氧化鉬電沉積超級電容
外文關鍵詞:Self-doped polyanilinemolybdenum oxideelectrodepositionsupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
第一部分實驗利用電化學共沉積聚苯胺/氧化鉬於奈米碳球上應用在超級電容,利用鄰氨基苯磺酸(OSAN)與苯胺(AN)電聚合自摻雜型聚苯胺(SPANI),並加入鉬酸鈉,進行共沉積聚苯胺/氧化鉬電極,於1 M H2SO4電解液中進行電化學分析,探討其比電容性能。利用定電流充放電(GCD)可以得知放電時間,得到功率密度、能量密度及循環壽命,實驗結果顯示AN/OSAN=1加入80 mM的鉬酸鈉,進行共沉積,製備SPANI/MoO3,具有最佳的比電容325.13 Fg-1。在電流密度5 Ag-1下,循環充放電4000次,電容保存率為65.03 %。
第二部分實驗利用電化學共沉積氧化石墨烯/聚苯胺/氧化鉬於奈米碳球上應用在超級電容,在SPANI/MoO3共沉積過程中添加氧化石墨烯,進行共沉積,製備GO/SPANI/MoO¬¬3,實驗結果顯示添加氧化石墨烯可以增加比電容及循環壽命,比電容為400.9 Fg-1,在電流密度5 Ag-1下,循環充放電4000次,電容保存率為84.79 %
In the first part, electrochemical co-deposition of polyaniline (SPANI)/molybdenum oxide (MoO3) on carbon nanoparticles was applied to supercapacitors. The self-doping polyaniline (SPANI) was carried out by electropolymerization of o-aminobenzenesulfonic acid (OSAN) and aniline (AN). Sodium molybdate was added into the above reaction solution, to co-deposit a polyaniline/molybdenum oxide composite electrode. Electrochemical analysis was employed to investigate the specific capacitance in 1M H2SO4 electrolyte. The discharge time, the power density, energy density, and cycle life can be obtained by using galvanostatic charge and discharge (GCD). Experimental results showed that the prepared SPANI/MoO3 electrode using the composition of AN/OSAN=1 coupled with 80 mM sodium molybdate has the optimal specific capacitance of 325.13 Fg-1 at charge-discharge current density of 1 Ag-1. Under the current density of 5 Ag-1, the capacitance retained 65.03 % of original value after charging and discharging 4000 times.

In the second part, electrochemical co-deposition of graphene oxide (GO)/polyaniline (SPANI)/molybdenum oxide (MoO3) on carbon nanoparticles was applied to supercapacitors. Sodium molybdate and graphene oxide was added into the o-aminobenzenesulfonic acid (OSAN) and aniline (AN) solution to co-deposit a graphene oxide/polyaniline/molybdenum oxide composite electrode. Electrochemical analysis was employed to investigate the specific capacitance in 1 M H2SO4 electrolyte. The discharge time, the power density, energy density, and cycle life can be obtained by using galvanostatic charge and discharge (GCD). Experimental results showed that the addition of GO in the GO/SPANI/MoO3 electrode can increase the specific capacitance and cycle life. It has the optimal specific capacitance of 400.9 Fg-1 at charge-discharge current density of 1 Ag-1.Under the current density of 5 Ag-1, the capacitance retained 84.79 % of original value after charging and discharging 4000 times.
摘要1
Abstract2
第一章 理論及文獻回顧4
1.1電化學原理及分析技術4
1.1.1電化學系統4
1.1.2電雙層原理7
1.1.3法拉第與非法拉第程序9
1.1.4超級電容電化學分析技術9
1.1.4.1循環伏安法11
1.1.4.2計時電位法[6]14
1.1.4.3電化學阻抗分析[7]17
1.2超級電容27
1.2.1超級電容器的結構31
1.2.1.1儲能機制分類31
1.2.1.2電雙層電容器33
1.2.1.3擬電容器35
1.2.2電極材料35
1.3文獻回顧37
1.4研究目的39
第二章 研究方法與步驟42
2.1實驗藥品42
2.2實驗儀器43
2.3實驗流程及製備方法45
2.3.1石墨紙集流器處理45
2.3.2奈米碳球電極製作45
2.3.3 Hummer法製備氧化石墨烯45
2.4 電沉積聚苯胺/氧化鉬超級電容實驗46
2.4.1 聚苯胺電極46
2.4.2 氧化鉬電極46
2.4.3 聚苯胺/氧化鉬電極47
2.5 氧化石墨烯/聚苯胺/氧化鉬超級電容實驗47
2.5.1 氧化石墨烯/聚苯胺電極47
2.5.2 氧化石墨烯/氧化鉬電極48
2.5.3 氧化石墨烯/聚苯胺/氧化鉬電極48
2.6電容元件組裝49
2.7電化學分析50
2.7.1循環伏安法51
2.7.2定電流充放電51
2.7.3交流阻抗測試51
第三章 聚苯胺/氧化鉬超級電容52
3.1 循環伏安法共沉積52
3.2場發射掃描式電子顯微鏡(FE-SEM)54
3.3二次離子質譜儀(SIMS)57
3.4 XPS光譜分析58
3.5 Raman光譜測試61
3.6 電化學分析63
3.6.1循環伏安法(CV)63
3.6.2定電流充放電(GCD)65
3.6.3 交流阻抗測試(EIS)69
3.7 聚苯胺/氧化鉬對稱元件71
3.8結論72
第四章 氧化石墨烯/聚苯胺/氧化鉬超級電容73
4.1 循環伏安法共沉積73
4.2場發射掃描式電子顯微鏡(FE-SEM)75
4.3二次離子質譜儀(SIMS)78
4.4 XPS光譜分析79
4.5 Raman光譜測試82
4.6 電化學分析84
4.6.1循環伏安法(CV)84
4.6.2定電流充放電(GCD)85
4.6.3 交流阻抗測試(EIS)87
4.7氧化石墨烯/聚苯胺/氧化鉬對稱元件89
4.8 結論90
第五章 總結91
第六章 參考文獻92


[1]Bard, A.J., L.R. Faulkner, J. Leddy, and C.G. Zoski, Electrochemical methods: fundamentals and applications. Vol. 2. 1980: wiley New York.
[2]胡啟章, 電化學原理與方法. 2002: 五南圖書出版股份有限公司.
[3]Lu, M., Supercapacitors: materials, systems, and applications. 2013: John Wiley & Sons.
[4]Liu, W.w., X.b. Yan, J.w. Lang, C. Peng, and Q.j. Xue, Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. Journal of Materials Chemistry, 2012. 22(33): p. 17245-17253.
[5]Wang, J., Analytical Electrochemistry. 2006: John Wiley & Sons.
[6]Peng, H., G. Ma, K. Sun, Z. Zhang, Q. Yang, F. Ran, and Z. Lei, A facile and rapid preparation of highly crumpled nitrogen-doped graphene-like nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 2015. 3(25): p. 13210-13214.
[7]Frackowiak, E. and F. Béguin, Supercapacitors: Materials, Systems and Applications. 2013, Wiley-VCH: Weinheim, Germany.
[8]Wei, Y.Z., B. Fang, S. Iwasa, and M. Kumagai, A novel electrode material for electric double-layer capacitors. Journal of Power Sources, 2005. 141(2): p. 386-391.
[9]Becker, H.I., Low voltage electrolytic capacitor. 1957, Google Patents.
[10Boos, D.L., Electrolytic capacitor having carbon paste electrodes. 1970, Google Patents.
[11]Burke, A., Ultracapacitors: why, how, and where is the technology. Journal of power sources, 2000. 91(1): p. 37-50.
[12]Simon, P., Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin? Science, 2014. 343(6176): p. 1210-1211.
[13]Schneuwly, A. and R. Gallay. Properties and applications of supercapacitors from the state-of-the-art to future trends. in Proceeding PCIM. 2000.
[14]Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica acta, 2000. 45(15-16): p. 2483-2498.
[15]Rauda, I.E., V. Augustyn, B. Dunn, and S.H. Tolbert, Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Accounts of chemical research, 2013. 46(5): p. 1113-1124.
[16]Wang, P.H., T.L. Wang, W.C. Lin, H.Y. Lin, M.H. Lee, and C.H. Yang, Enhanced supercapacitor performance using molecular self-assembling polyaniline onto carbon nanoparticles. Journal of Electroanalytical Chemistry, 2018. 810: p. 145-153.
[17]Wang, P.H., T.L. Wang, W.C. Lin, H.Y. Lin, M.H. Lee, and C.H. Yang, Enhanced supercapacitor performance using electropolymerization of self-doped polyaniline on carbon film. Nanomaterials, 2018. 8(4): p. 214.
[18]Yao, D.D., J.Z. Ou, K. Latham, S. Zhuiykov, A.P. O’Mullane, and K. Kalantar-zadeh, Electrodeposited α-and β-phase MoO3 films and investigation of their gasochromic properties. Crystal Growth & Design, 2012. 12(4): p. 1865-1870.
[19]Alonso, R.M., M.I. San Martín, A. Sotres, and A. Escapa, Graphene oxide electrodeposited electrode enhances start-up and selective enrichment of exoelectrogens in bioelectrochemical systems. Scientific reports, 2017. 7(1): p. 13726.
[20]Zhou, K., W. Zhou, X. Liu, Y. Sang, S. Ji, W. Li, J. Lu, L. Li, W. Niu, and H. Liu, Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy, 2015. 12: p. 510-520.
[21]He, S., L. Xie, M. Che, H.C. Chan, L. Yang, Z. Shi, Y. Tang, and Q. Gao, Chemoselective hydrogenation of α, β-unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles. Journal of Molecular Catalysis A: Chemical, 2016. 425: p. 248-254.
[22]Inguantaa, R., T. Spanòa, S. Piazzaa, C. Sunseri, F. Barrecab, E. Faziob, F. Nerib, and L. Silipignib, Electrodeposition and characterization of Mo oxide nanostructures. CHEMICAL ENGINEERING, 2015. 43.
[23]Camacho-López, M., L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation. Optical Materials, 2011. 33(3): p. 480-484.
[24]Rajagopalan, B., S.H. Hur, and J.S. Chung, Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode. Nanoscale research letters, 2015. 10(1): p. 183.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊