[1] 衣寶蓮,燃料電池-原理與應用,五南出版社,高雄,民國九十六年。
[2] EG&G Technical Services, Inc., Fuel Cell Handbook, 7th Edition, U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, 2004.
[3] 唐鵑,「固體氧化物燃料電池1:概述及工作原理」,檢自:http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/list/list.aspx?id=4347 (2 May 2018).
[4] R. Bove, S. Ubertini eds., Modeling Solid Oxide Fuel Cells: Methods, Procedures and Techniques, Springer Science & Business Media, 2008.
[5] 吳建彰,「固態氧化物燃料電池熱電系統之動態模型建構」,國立交通大學,碩士論文,民國一百年。
[6] 吳子成,「固態氧化物燃料電池可靠度分析」,國立交通大學,碩士論文,民國一百零三年。[7] Chih-Kuang Lin, et al., “Thermal stress analysis of a planar SOFC stack”, Journal of Power Sources, vol. 164, iss. 1, pp. 238-251, 2007.
[8] F. Smeacetto, et al., “Performance of a glass-ceramic sealant in a SOFC short stack”, International Journal of Hydrogen Energy, vol. 38, iss. 1, pp. 588-596, 2013.
[9] 林立夫,於國立交通大學之固態氧化物燃料電池導論課程使用之簡報,「第八單元─密封材料」,2017。
[10] Yilin Zhao, “Thermo-Mechanical Properties of Glass-Ceramic Solid Oxide Fuel Cell Sealant Materials”, September 2013.
[11] Y.S. Matt Chou, J.W. Stevenson, Pacific Northwest National Laboratory, “Refractory Glass Seals for SOFC”, July 2011.
[12] J. Milhans, et al., “Modeling of the effective elastic and thermal properties of glass-ceramic solid oxide fuel cell seal materials”, Materials and Design, vol. 30, iss. 5, pp. 1667-1673, 2009.
[13] E. V. Stephens, et al., “Experimental characterization of glass–ceramic seal properties and their constitutive implementation in solid oxide fuel cell stack models”, Journal of Power Sources, vol. 193, iss. 2, 2009.
[14] 國立中央大學機械工程學系,「固態氧化物燃料電池金屬連接板潛變與熱機疲勞性質研究」,行政院國家科學委員會專題研究計畫期末報告,民國一零二年。
[15] 林晁賢等編著,「銀基金屬箔接合固態氧化物燃料電池中氧化鋯與不鏽鋼之介面微觀結構分析」,國立交通大學,碩士論文,民國一百零一年。[16] ThyssenKrupp VDM GmbH, “VDM® Crofer 22 APU”, 2010.
[17] 魏世昕,「平板式固態氧化物燃料電池雙極板流道設計對發電性能的影響分析」,國立交通大學,碩士論文,民國一百零一年。[18] 陳弦,楊杰,「平板式SOFC結構熱應力的有限元分析」,無機材料學報,vol. 2,no. 2,2007。
[19] 黃鎮江,燃料電池,全華圖書股份有限公司,民國九十四年。
[20] 賴冠融,「平板式固態氧化物燃料電池之模擬研究」,交通大學,碩士論文,民國一百年。[21] P. Pianko-Oprych, et al., “Numerical Investigation of the Thermal Stresses of a Planar Solid Oxide Fuel Cell”, Material, vol. 9, iss. 10, 2016.
[22] P. Pianko-Oprych, et al., “Simulation of the steady-state behaviour of a new design of a single planar Solid Oxide Fuel Cell”, Polish Journal of Chemical Technology, vol. 18, iss. 1, pp. 64-71, 2016.
[23] Lin Liu, et al., “Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions”, Journal of Power Sources, vol. 195, iss. 8, pp. 2310-2318, 2010.
[24] D. Herbstritt, A. Krugel, A. Weber, E. Ivers-Tiffee, “Thermocyclic Load: Delamination Defects and Electrical Performance of Single Cells”, Tsukuba, Japan, 2001.
[25] R. Clague, et al., “Stress analysis of solid oxide fuel cell anode microstructure reconstructed from focused ion beam tomography”, Journal of Power Sources, vol. 196, iss. 21, pp. 9018-9021, 2011.
[26] Suvranu De, The slides presented in the course “Introduction to Finite Elements”, “Introduction to 3D Elasticity”.
[27] Josef Stoer, Roland Bulirsch, Introduction to Numerical Analysis, 3rd Edition, Springer, 2002.
[28] John H. Mathews, Kurtis K. Fink, Numerical Methods Using Matlab, 4th Edition, Prentice-Hall Inc., 2004.
[29] J. N. Reddy, Theory and analysis of elastic plates and shells, 2nd Edition, CRC Press, 2006.
[30] O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics, pp. 337-338, 2005.
[31] O. A. Bauchau, J. I. Craig, Structural Analysis, Springer, New York, 2009.
[32] 張博彥,「向量式有限元素法─平板元素之發展與應用」,國立中山大學,博士論文,民國九十八年。[33] R. Clague, et al., “Time independent and time dependent probability of failure of solid oxide fuel cells by stress analysis and the Weibull method”, Journal of Power Sources, vol. 221, pp. 290-299, 2013.
[34] M. Acin, “Stress singularities, stress concentrations and mesh convergence”, Available at: http://www.acin.net/2015/06/02/stress-singularities-stress-concentrations-and-mesh-convergence/ (4 May 2018).