跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡孜
研究生(外文):Yi-Tzu Chen
論文名稱:行動應用程式商店的使用行為與創新擴散之研究:服務便利性的觀點
論文名稱(外文):Usage Behavior of APP Store and Innovation Diffusion: The Perspective of Service Convenience
指導教授:黃豪臣黃豪臣引用關係
指導教授(外文):Hao-Chen Huang
口試委員:黃豪臣盧正壽鄭舜仁
口試委員(外文):Hao-Chen HuangCheng-Shou LuShuenn-Ren Cheng
口試日期:2014-02-22
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:財富與稅務管理系
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:102
中文關鍵詞:行動應用程式商店科技接受模式創新擴散理論
外文關鍵詞:App StoreTechnology Acceptable Model(TAM)Innovation Diffusion Theory(IDT)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:782
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:2
近年來,行動應用程式商店(App Store)受到廣大智慧型手機用戶之青睞。影響使用者選擇使用行動應用程式商店的因素以及透過何種傳播管道進行產品擴散的過程,是所有行動應用程式商店所關注的焦點。本研究主要目的在探討消費者選擇行動應用程式商店(App Store)的影響因素、用戶的使用行為,以及探討行動應用程式商店如何造成擴散。本研究結合科技接受模式與創新擴散理論建構一個使用者選擇應用程式商店的決策模式。本研究以智慧型手機用戶與平板電腦使用者為問卷發放對象,共採用222份有效問卷進行分析。本研究以驗證性因素分析(confirmatory factor analysis, CFA)來檢定測量模式的內在品質,以線性結構方程模式(structural equation modeling, SEM)來驗證模型的配適度(goodness-of-fit)與驗證主要研究假說,並以OLS迴歸模式來分析調節效果。實證結果顯示,服務便利性對知覺有用性有正向的影響;而知覺有用性、知覺易用性與知覺價值是使用者選擇這些行動應用程式商店的關鍵重要因素。而產品擴散的過程則有賴使用者透過人與人之間傳播管道的積極投入。透過本研究的實證分析結果,有助於行動應用程式商店經營者瞭解顧客消費行為與產品擴散過程。本論文的貢獻在於藉由APP使用者的實證分析以說明使用行為在創新擴散過程中所扮演的角色。


關鍵字:行動應用程式商店、科技接受模式、創新擴散理論

This study combines technology acceptance model and innovation diffusion theory to construct a user to select an application store decision-making model. In this study, smartphone users and tablet users to a questionnaire distributed objects, using a total of 222 valid questionnaires were analyzed. In this study, confirmatory factor analysis (confirmatory factor analysis, CFA) to test the intrinsic quality of the measurement model, linear structural equation modeling (structural equation modeling, SEM) to verify the fit of the model (goodness-of-fit) and verification of the main research hypotheses, and OLS regression model to analyze the moderating effect. The empirical results show that the“service convenience”has a positive influence on the “perceived usefulness”; while “perceived usefulness”, “perceived ease of use” and “perceived value” of these mobile application user to select the key store important factors. The process of diffusion of the product depends on the user actively involved in the spread between people through the pipeline. Through empirical results of this study will help App Store operators understand consumer behavior and product diffusion process. Contribution of this paper is the empirical analysis of APP by the “useage behavior” to illustrate the use of the process of innovation diffusion's role.


KEYWORDS: App Store, Technology Acceptable Model(TAM), Innovation Diffusion Theory(IDT)
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
一、緒論 1
1.1 研究動機與目的 1
1.2 研究問題 3
1.3 研究流程 4
二、文獻探討 6
2.1 行動電話應用程式商店 6
2.2 科技接受模式 8
2.3 服務便利性 18
2.4 知覺價值 22
2.5 創新擴散理論 27
三、研究方法與設計 33
3.1 概念性架構 33
3.2 研究假說推導 36
3.3 研究變項之操作性定義與衡量 38
3.4 資料蒐集 44
3.5 資料分析方法 49
四、實證分析結果 56
4.1 敘述統計分析 56
4.2 共同方法變異檢測 56
4.3 驗證性因素分析 57
4.4 模式檢定與估計 59
4.5 理論模式之因果路徑分析結果 61
4.6 階層迴歸分析結果 62
4.7 交互作用分析結果 64
4.8 變異數分析結果 65
五、研究結論與建議 74
5.1 研究結論 74
5.2 管理意涵 76
5.3 研究限制與未來研究方向 77
參考文獻 79
附錄:研究問卷 89

[1]Adams, D.A., Nelson, R.R., & Todd, P.A. (1992). Perceived usefulness, ease of use, and usage of information technology: MIS Quarterly, 16(2), 227-247.
[2]Agarwal R. & Prasad J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361–391.
[3]Aiken, L.S. & West, S.G. (1991). Multiple regression: Testing and interpreting interactions, 24-26. SAGE
[4]Ajzen, I. & Madden, T.J. (1986). Prediction of goal–directed behavior: Attitudes, intention and perceived behavioral control. Journal of Experimental Social Psychology, 22(5), 453-474.
[5]Kuhl, J. & Beckmann, J (1985). From intentions to actions: A theory of planned Behavior, Action control: From cognition to behavior. 11–39. Berlin Heidelberg Springer-Verlag.
[6]Ajzen, I. (1989). Attitude structure and Behavior, Attitude structure and function 241-269. Hillsdale. N.J.: Erlbaum and Associates.
[7]Ajzen, I. & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour. Englewood Cliffs, NJ: Prentice-Hall.
[8]Avolio, B., Yammarino, F.J., & Bass, B.M. (1991). Identifying common methods variance with data collected from a single source: An unresolved sticky issue. Journal of Management, 17(3), 571–587.
[9]Bagozzi, R.P. & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.
[10]Bass, F.M. (1969). A new product growth model for consumer durable. Management Science, 15, 215–227.
[11]Berry, L. L., Seiders, K., & Grewal, D. (2002). Understanding service convenience. Journal of marketing, 66(3), 1-17.
[12]Bentler, P.M. & Wu, E.J.C. (1993). EQS/Windows user’s guide. Los Angeles: BMDP Statistical Software.
[13]Bitner, M.J. & Hubbert, A.R.(1994). Encounter satisfaction versus overall satisfaction versus quality: The customer’s voice. In R.T. Rust & R.L. Oliver(Eds.). Service quality: New directions in theory and practice. Thousand Oaks, CA: Sage.
[14]Bivens, G.E. & Volker, C.B. (1986). A value-added approach to houseold production: The special case of meal preparation. Journal of Consumer Research, 13, 272–279.
[15]Bolton, R.N. & Drew, J.H. (1991). A multistage model of customers assessments of service quality and value. Journal of Consumer Research, 17(3), 375–384.
[16]Brady, M.K. & Cronin, J.J. (2001). Customer orientation: Effects on customer service perceptions and outcome behaviors. Journal of Service Research, 3(3), 241–251.
[17]Brown, L.G. (1989). The strategic and tactical implications of convenience in consumer product marketing. The Journal of Consumer Marketing, 6(3), 13–19.
[18]Brown, L.G. (1990). Convenience in services marketing. Journal of Service Marketing, 4(3), 53–59.
[19]Burke, R.B. (2002). Technology and the customer interface: What consumer want in the physical and virtual store. Journal of the Academy of Marketing Science, 30(4), 411–432.
[20]Byrne, R. W., & Andrew W. (1989). Machiavellian intelligence: social expertise and the evolution of intellect in monkeys, apes, and humans.
[21]Castaeda, J.A., Muoz-Leiva, F., & Luque, T. (2007). Web acceptance model (WAM): Moderating effects of user experience. Information and Management, 44(4), 384–396.
[22]Chen, K.Y. & Chang, M.L. (2013). User acceptance of 'near field communication' mobile phone service: An investigation based on the 'unified theory of acceptance and use of technology' model. Service Industries Journal, 33(6), 609–623.
[23]Chesbrough, H. & Rosenbloom, R.S. (2002). The role of the business model in capturing value from innovation: Evidence from Xerox Corporation’s technology spin-off companies. Industrial and Corporate Change, 11(3), 529-555.
[24]Chesbrough, H. (2010). Business model innovation: Opportunities and barriers. Long Range Planning, 43(2/3), 354–363.
[25]Childers, T.L., Carr, C.L., Peck, J., & Carson, S. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of Retailing, 77(2), 511–536.
[26]Colwell S.R., Aung, M., Kanetkar, V., & Holden, A.L. (2008). Toward a measure of service convenience: multiple-item scale development and empirical test. Journal of Services Marketing, 22(2), 160–169.
[27]Cronin, J.J., Brady, M.K., Brand, R.R., Hightower, J., & Shemwell, D.J. (1997). A cross-section test of the effect and conceptualization of service value. Journal of Service Marketing, 11(5), 375–391.
[28]Cronin, J.J, Brady, M.K, & Hult, G.T.M. (2000). Assessing the effects of quality, value, and customer satisfaction on consumer behavioral intention in service environment. Journal of Retailing, 76(2), 193–218.
[29]Davis Jr, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results (Doctoral dissertation, Massachusetts Institute of Technology).
[30]Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.
[31]Davis, F.D. & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: three experiments. International Journal of Human-Computer Studies, 45(1), 19–45.
[32]Davis, F.D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475–487
[33]Davis, F.D., Bagozzi, R.P., & Warshaw, P.R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.
[34]Davis, M.M. & Vollmann, E.V. (1990). A Framework for relating waiting time and customer satisfaction in a service operation. Journal of Services Marketing, 4(1), 61–69.
[35]De Guerrero, M.C.M. & Villamil, O.S. (2000). Activating the ZPD: Mutual scaffolding in L2 peer revision. Modern Language Journal, 84(1), 51–68.
[36]Debabrata, T., Sudhir, K., & Andrew, A. (2002). Investigating new product diffusion process product and countries. Marketing Science, 12(1), 97–114
[37]Deighton, J., Romer, D., & McQueen, J. (1989). Using drama to persuade. Journal of Consumer Research, 16(3), 335–343.
[38]Dickson, P. & Sawyer, A. (1985). Point of Purchase Behavior and Price Perceptions of Supermarket Shoppers, Marketing Science Institute Working Paper Series, 5(3), 86–102.
[39]Dishaw, T. & Strong, M., (1999). Extending the technology acceptance model with task-technology fit constructs. Information and Management, 36(1), 9–21.
[40]Dodds, W.B., Monroe, K.B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of Marketing Research (JMR), 28(3), 307–319.
[41]Dumana, T. & Mattilab, A.S. (2005). The role of affective factors on perceived cruise vacation value. Tourism Management, 26(3), 321–323.
[42]Eastin, M. (2002). Diffusion of e-commerce: An analysis of the adoption of four e-commerce activities. Telematics and Informatics, 19(3), 251–267.
[43]Fishbein, M. & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research Reading, MA: Addison-Wesley.
[44]Fourt, L.A. & Woodlock, J.W. (1960). Early prediction of market success for grocery products. Journal of Marketing, 25(2), 31–38.
[45]Grewal, D., Monroe, K.B., & Krishnan, R. (1998). The effects of price comparison advertising on buyers’ perceptions of acquisition value and transation value. Journal of Marketing, 62(2), 46–59.
[46]Gupta, P. & Harris, J. (2010). How e-WOM recommendations influence product consideration and quality of choice: A motivation to process information perspective. Journal of Business Research, 63(9–10), 1041–1049.
[47]Heberlein, T.A & Black, J.S. (1976). Attitudinal specificity and the prediction of behav ior in a field setting. Journal of Personality and Social Psychology, 33(4), 474–479.
[48]Hoffman, D. & Novak, T. (1997). A new marketing paradigm for electronic commerce. Information Society, 13(1), 43–54
[49]Hu, P., Chau, P., Sheng, O.L., & Tam, K.Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2), 91–113.
[50]Huang, H.C., Lai, M.C., Kao, M.C., & Chen, Y.C. (2012). Target costing, business model innovation and firm performance: An empirical analysis of Chinese firms. Canadian Journal of Administrative Sciences, 29(4), 322–335.
[51]Igbaria, M., Guimaraes, T., & Davis, G.B. (1995). Testing the determinants of microcomputer usage via a structural equation model. Journal of Management Information Systems, 11(4), 87–114.
[52]Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A.L. (1997). Personal computing acceptance factors in small firms: a structural equation model. MIS Quarterly, 21(3), 279–302.
[53]Jackson, C.M., Chow, S., & Leitch, R.A. (1997). Toward an understanding of the behavioral intention to use and information system. Decision Sciences, 28(2), 357–389.
[54]Jayawardhena, C. & Wright, L.T. (2009). An empirical investigatin into e-shopping excitement: Antecedents and effects. European Journal of Marketing, 43(9), 1171–1187.
[55]Johnson, M.W., Christensen, C.M., & Kagermann, H. (2008). Reinventing your business model. Harvard Business Review, 86(12), 50–59.
[56]Jones, J.M. & Ritz, C.J. (1991). Incorporating distribution into new product diffusion Models. International Journal of Research in Marketing, 8(2), 91–112
[57]Jöreskog, K. G. & Sörbom, D. (1996). LISREL 8: User's reference guide. Scientific Software International.
[58]Jöreskog, Karl G., & Sörbom, Dag. (1999). LISREL 8.30. Chicago: Scientific Software International.
[59]Kashyap, R. & Bojanic, D.C. (2000). A structural analysis of value, quality, and price perceptions of business and leisure travelers. Journal of Travel Research, 39(1), 45–51.
[60]Keaveney, S.M. (1995). Customer switching behavior in service industries: An exploratory study. Journal of Marketing, 59(2), 72–82.
[61]Kotler, P. (1999). Marketing Management 10th ed., NJ: Prentice-Hall International Inc.
[62]Kulviwat, S., BrunerⅡ, G.C., Kumar, A., Nasco, S.A., & Clark, T. (2007). Toward a unified theory of consumer acceptance technology. Psychology and Marketing, 24(12), 1059–1084.
[63]Lai, V.S. & Li, H. (2005). Technology acceptance model for internet banking: An invariance analysis. Information and Management, 42(2), 373–386.
[64]Lal, K. (1999). Determinants of the adoption of information technology: a case Study of electrical and electronic goods manufacturing firms in India. Research Policy, 28(7), 667–680
[65]Lederer, A.L., Maupin, D.J., Sena, M.P., & Zhuang, Y. (2000). The technology acceptance model and the World Wide Web. Decision Support Systems, 29(3), 269–282.
[66]Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information and Management, 40(3), 191–204.
[67]Lichtenstein, D.R., Ridgway, N.M., & Netemeyer, R.G. (1993). Price perceptions and consumer shopping behavior: a field study. Journal of Marketing Research, 30(2), 234–245.
[68]Lin, J. & Lu, H. (2000). Towards an understanding of the behavioral intention to use a web site. International Journal of Information Management, 20(3), 197–208.
[69]Lucas, H.C. & Spitler, V.K. (1999). Technology use and performance: A fieldstudy of broker workstations. Decision Sciences, 30(2), 291–311
[70]Martins, A. C.R., Pereira, C., & Vicente, R. (2009). An opinion dynamics model for the diffusion of innovations, Physics A, 388(15), 3225–3232.
[71]McDade, S.R., Oliva, T.A., & Pirsch, J.A. (2002). The organizational adoption of high-technology product “for use” Effects of size, preferences, and radicalness of impact. Industrial Marketing Management, 31(5), 441–456.
[72]Midgley, D.F. & Dowling, G.R. (1993). A Longitudinal Study of Product Form Innovation: The Interaction between Predispositions and Social Messages. Journal of Consumer Research, 19(4), 611–625.
[73]Monroe, K.B. & Krishnan, R. (1985). The Effect of Price on Subjective Product Evaluations., Lexington, MA: Lexington Books.
[74]Moon, J.W. & Kim, Y.G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217–230.
[75]Moore, G.C. & Benbast, I. (1991). Development of and instrument to measure the perceptions of adopting an information technology Innovation. Information Systems Research, 2(3), 192–222.
[76]Mossholder, K. W., Bennett, N., Kemery, E. R., & Wesolowski, M. A. (1998). Relationships between bases of power and work reactions: The mediational role of procedural justice. Journal of Management, 24(4), 533-552.
[77]Murphy, K.R., Philbin, T.A., & Adams, S.R. (1989). Effect of purpose of observation on accuracy of immediate and delayed performance ratings. Organizational Behavior and Human Decision Processes, 43(3), 336–354.
[78]Ndubisi, N.O. & Jantan, M. (2003). Evaluating IS usage in Malaysian small and medium sized firms using the technology acceptance model. Logistics Information Management, 16(6), 440–445.
[79]Neter, J., Kutner, M.A., Nachtsheim, C.J., & Wasserman, W. (1996). Applied Linear Statistical Models. Irwin: Chicago, IL.
[80]Norton J.A. & Bass, F.M. (1987). A diffusion theory model of adoption and substitution for successive generations of high-technology products. Management Science, 33(9), 1068–1086.
[81]Nysveen, H.R., Pedersen, P.E., & Thorbjrnsen, H. (2005). Explaining intention to use mobile chat services: Moderating effects of gender. The Journal of Consumer Marketing, 22(5), 247–256.
[82]O’Shaughnessy, J. (1987). Why People Buy. New York: Oxford University Press.
[83]Osterwalder, A., Pigneur, Y., & Tucci, C.L. (2005). Clarifying business models: Origins, present, and future of the concept. Communications of the Association for Information Systems, 16(1), 1–25.
[84]Parasuraman, A. & Grewal, D. (2000). The impact of technology on the quality-value-loyalty chain A research agenda. Journal of Academy of Marketig Science, 28(1), 168–174.
[85]Pedhazur, E.J. & Schmelkin, L.P. (2013). Measurement, Design, and Analysis: An Integrated Approach. Psychology Press.
[86]Peng, G., Fan, M., & Dey, D. (2011). Impact of network effects and diffusion channels on home computer adoption. Decision Support Systems, 51(3), 384–393.
[87]Petrick, J.F. (2003). Measuring cruise passengers’ perceived value. Toruism Analysis, 7(3/4), 251–258.
[88]Podsakoff, P.M., MacKenzie, S.B., Lee, J.Y., & Podsakoff, N.P. (2003) Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903.
[89]Podsakoff, P.M. & Organ, D.W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management 12(4), 531–544.
[90]Reardon, K. & Rogers, E. (2006). Interpersonal versus mass media communication: A false dichotomy. Human Communication Research, 15(2), 284–303.
[91]Reichheld, F.F. & Schefter, P. (2000). E-loyalty: Your secret weapon on the Web. Harvard Business Review, 78(4), 105–113.
[92]Robbins, B. (1993). The phantom public sphere. Minneapolis: University of Minnesota Press.
[93]Rogers, E. M. (2004). A prospective and retrospective look at the diffusion model. Journal of Health Communication, 9(S1), 13–19.
[94]Rogers, E.M. (1962). Diffusion of Innovations. Glencoe: Free Press.
[95]Rogers, E.M. (1983). Diffusion of Innovation. New York: The Free Press.
[96]Rogers, E.M. (1995). Diffusion of Innovations, 4th ed., New York: The Free Press.
[97]Rogers, E.M. (2003). Diffusion of innovations, 5th ed., New York: Free Press.
[98]Schiffman, L.G. & Kanuk, L.L. (2000). Consumer Behavior, 7th, Prentice Hall, Inc.
[99]Seiders, K. & Berry, L.L. (1998). Service fairness: What it is and why it matters. Academy of Management Executive, 12(2), 8–21.
[100] Sha, X.Q. & Chang, K.T. (2012). The role of leadership and contextualization on citizenship behaviors in distributed teams: A relational capital perspective. IEEE Transactions on Professional Communication, 55(4), 310–324.
[101] Sheppard, B., Hartwick, J., & Warshaw, P. (1988). The Theory of Reasoned Action: A Meta-analysis of Past Research with Recommendations for Modifications and Future Research. Journal of Consumer Research, 15(3), 325–344.
[102] Srinivasan, S.S., Anderson, R., & Ponnavolu, K. (2002). Customer loyalty in e-commerce: An exploration of its antecedents and consequences. Journal of Retailing, 78(1), 41–50.
[103] Sweeney, J.C. & Soutar, G.N. (1999). The role of perceived of risk in the quality-value relationship: A study in retail environment. Journal of Retailing, 75(1), 77–105.
[104] Taylor, S. & Todd, P.A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144–176.
[105] Taylor, S.A. & Baker, T.L. (1994). An assessment of relationship between service quality and customer satisfaction in the formation of consumer’s purchase intention. Journal of Retailing, 70(2), 163–17
[106] Taylor, S. & Todd, P.A., (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561–570.
[107] Teas, R.K. & Agarwal, S. (2000). The effects of extrinsic product cues on consumers' perceptions of quality, sacrifice, and value. Journal of the Academy of Marketing Science, 28(2), 278–290.
[108] Thaler, R.H. (1985). Mental accounting and consumer choice. Marketing Science, 4(3), 199–214.
[109] Torkzadeh, C & Dhillon, G. (2002). Measuring factors that influence the success of internet commerce. Information Systems Research, 13(2), 187–204.
[110] Tornatzky, L.G. & Klein, K.J. (1982). Inovaton charctrsis and inovaton adoption-implementation: A meta-analisis of fidigs. IEET rnsctonson Engineering Management, 29(1), 28–45.
[111] Voli, P. (1998). The convenience orientation of services consumers: An empirical examination. doctoral dissertation, VA: Old Dominion University.
[112] Voss, G.B., Parasuraman, A., & Dhruv, G. (1998). The role of price, performance, and expectations in determining satisfaction in service exchanges. Journal of Marketing, 62(4), 46–61.
[113] Wakefield, R.L. & Whitten, D. (2006). Mobile computing: A user study on hedonic/utilitarian mobile device usage. European Journal of Information Systems, 15(3), 292–300.
[114] Wixom, B.H. & Todd, P.A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85–102.
[115] Yale, L. & Venkatesh. A. (1986). Toward the Construct of Convenience in Consumer Research, in Advances in Consumer Research, 13(1), Advances in Consumer Research.
[116] Zeithaml, V.A. (1988). Consumer behavior of price, quality, and value: A means-end model synthesis of evidence. Journal of Marketing, 52(3), 2–22.
[117] Zhang, X. & Prybutok, V.R. (2005). A consumer perspective of e-service quality. IEEE Transactions on Engineering Management, 52(4), 461–477.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊