跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 07:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄒博堯
研究生(外文):Tsou, Po-Yao
論文名稱:多光譜衛星影像之雲成分移除及水深反演
論文名稱(外文):Cloud Component Removal and Shallow Water Depth Retrieval with Multi-spectral Satellite Image
指導教授:史天元史天元引用關係
指導教授(外文):Shih, Tian-Yuan
口試委員:任玄張智安曾國欣
口試委員(外文):Ren, ShaneTeo, Tee-AnnTseng, Kuo-Hsin
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:76
中文關鍵詞:水深反演雲成分移除類神經網路半解析模型
外文關鍵詞:BathymetryCloud Component RemovalArtificial Neural NetworkSemi-analytical Model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:2
了解水深或海底地形對於人類從事近岸海域活動相當重要,近年來隨著國際情勢發展,海底地形測繪也成為政府關切的重點。光學衛星影像具有在短時間內拍攝範圍廣闊的優點,應用於水深反演有其優勢。
另ㄧ方面,衛星影像容易受到雲或霧霾等大氣因素干擾、遮蔽,進而影響水體像元的光譜,使其無法反演出合理的水深。故本研究將衛星影像中受雲霧干擾的水體像元視為混合像元,以線性光譜分解(LSU)估計受其中雲的含量(abundance),再以線性關係式將其雲成分移除,以萃取像元中的水體資訊,用於水深反演。
本研究使用東沙環礁之WorldView衛星影像,配合空載光達實測資料,進行水深反演及驗證。反演模式包含類神經網路法及模型聯立解法,前者使用實測水深資料樣本訓練網路,後者倚靠實測水深資料歸納出的水體固有光學性質參數(IOPs)輔助。
研究成果顯示,類神經網路法及模型聯立解法皆適用於反演水深,以類神經網路法的精度較高,但會產生少數相對於模型聯立解法的極大誤差。在估計移除雲成分後的雲霧區水深時,誤差隨著原始雲含量的增加而有上升的趨勢。靠環礁外圍之礁臺的混合像元,其所在環境水深較淺(10公尺內),移除雲成分後,反演水深的精度高於靠環礁內部水深較深(約20公尺)之潟湖的混合像元,並且與純水體像元所反演水深的精度相當。
Water depth and the topography under water provide important information for nearshore human activities. With the intensification of international territory concerns, bathymetric mapping is also gaining attention. With its wide coverage, optical satellite imagery provides an efficient tool for estimating shallow water depth as compared to the traditional field surveying.
On the other hand, the existence of cloud and haze contaminates the spectral signatures, which introduces errors to the depth retrieved. In this research, the contaminated pixels are treated as a mixture of water and cloud component. Linear Spectral Unmixing (LSU) procedure is applied for estimating the cloud abundance in mixed pixels. The cloud component is then removed with a linear function. The “purified” water component is then used for depth retrieval.
In this research, water depth is estimated with two methods, namely, artificial neural network (ANN) and physical model. The former demands in-situ bathymetric samples for training, the latter requires site information of inherent optical properties (IOPs).
The experiments reveal that retrieving depth with ANN generates better result than the physical model, but with few extremely large errors. As for mixed pixels, the error of depth estimation becomes higher when cloud abundance increases. The precision of depth retrieval is higher for mixed pixels at reef flat (within 10 meters in depth) than those in the lagoon (about 20 meters in depth), and the precision generally agrees with those retrieved from water pixels without cloud or haze.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 2
1-1 研究動機與目的 2
1-2 文獻回顧 3
1-3 研究方法 4
1-4 論文架構 6
第二章 研究資料說明 7
2-1 研究區域 7
2-2 水深實測資料 8
2-3 衛星影像 8
2-3-1 大氣改正 10
2-3-2 影像重新取樣 12
第三章 雲成分移除 13
3-1 雲霧偵測 14
3-1-1 基於近紅外光波段特性建立遮罩 14
3-1-2 基於優化薄雲霧轉換建立遮罩 16
3-2 雲成分移除 19
3-2-1 線性混合模式 20
3-2-2 材質選取 23
第四章 水深反演模式 28
4-1 類神經網路法 28
4-1-1 倒傳遞類神經網路 30
4-1-2 網路架構 32
4-1-3 訓練樣本選取 33
4-2 模型聯立解法 34
4-2-1 水體光學性質 35
4-2-2 半解析模型 36
4-2-3 模型聯立求解水深 37
4-2-4 水線約制 39
第五章 成果與討論 41
5-1衛星影像雲成分移除成果 41
5-1-1 WorldView-2衛星影像雲霧偵測 41
5-1-1-1 基於近紅外光波段特性建立遮罩 41
5-1-1-2 基於優化薄雲霧轉換建立遮罩 42
5-1-2 WorldView-3衛星影像雲霧偵測 43
5-1-2-1 基於近紅外光波段特性建立遮罩 43
5-1-2-2 基於優化薄雲霧轉換建立遮罩 44
5-1-3 WorldView-2衛星影像雲含量 45
5-1-4 WorldView-3衛星影像雲含量 45
5-1-5 WorldView-2衛星影像雲成分移除 46
5-1-6 WorldView-3衛星影像雲成分移除 47
5-2 類神經網路法水深反演 48
5-2-1 WorldView-2衛星影像 49
5-2-1-1 WorldView-2衛星影像水體區 50
5-2-1-2 WorldView-2衛星影像雲霧區 51
5-2-2 WorldView-3衛星影像 53
5-2-2-1 WorldView-3衛星影像水體區 54
5-2-2-2 WorldView-3衛星影像雲霧區 55
5-3 模型聯立解法水深反演 58
5-3-1 WorldView-2衛星影像 60
5-3-1-1 WorldView-2衛星影像水體區 61
5-3-1-2 WorldView-2衛星影像雲霧區 62
5-3-2 WorldView-3衛星影像 64
5-3-2-1 WorldView-3衛星影像水體區 65
5-3-2-2 WorldView-3衛星影像雲霧區 66
第六章 結論與建議 70
參考文獻 72
史天元、薛憲文、蕭輔導、陳雅信、徐佳筠、陳杰宗、陳佳勳,2012。澎湖與東沙環礁測深光達作業探討,航測及遙測學刊,16(3): 151-166。
呂黎光,1998。衛星影像應用於波浪能譜分析與近岸水深演算,國立交通大學,博士論文。
海洋國家公園管理處,2015。東沙環礁,http://marine.cpami.gov.tw/chinese/index.php? option=com_content&view=article&id=80&Itemid=47,上次查訪:2017-04-26。
海洋國家公園管理處,2015。東沙環礁國家公園,http://www.marine.gov.tw/%E9%81% 8A%E6%86%A9%E8%B3%87%E8%A8%8A/%E5%85%A5%E5%9C%92%E9%A0%88%E7%9F%A5/%E6%9D%B1%E6%B2%99%E7%92%B0%E7%A4%81%E5%9C%8B%E5%AE%B6%E5%85%AC%E5%9C%92,上次查訪:2017-04-26。
葉怡成,1998。類神經網路模式應用與實作,五版,儒林書局有限公司,臺北市。
薛憲文、史天元、徐佳筠,2012。水域測深方法暨原理探討,航測及遙測學刊,16(3): 203-217。
羅華強,2001。類神經網路—Matlab的應用,六版,清蔚科技股份有限公司,新竹市。
Blyth, K., 1981. Remote Sensing in Hydrology. Report No. 74, Institute of Hydrology, Wallingford.
Eugenio, F., J. Marcello, J Martin, 2015. High-Resolution Maps of Bathymetry and Benthic Habitats in Shallow-Water Environments using Multispectral Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3539-3549.
Cerra, D., R. Müller, and P. Reinartz, 2015. Cloud Removal in Image Time Series through Unmixing. IEEE International Workshop on the Analysis of Multitemporal Remote Sensing Images, 1-4.
Ceyhun, O., and A. Yalcin, 2010. Remote Sensing of Water Depths in Shallow Waters via Artificial Neural Networks. Estuarine Coastal and Shelf Science, 89(1), 89-96.
Gholamalifard, M., T. Kutser, A. Esmaili-Sari, A. A. Abkar, and B. Naimi, 2013. Remotely Sensed Empirical Modeling of Bathymetry in The Southeastern Caspian Sea. Remote Sensing, 5(6), 2746-2762.
Hafner, J. and M. Komac, 1998. Landsat TM Lithological Classification of Koper – Kozina Area, International Conference on GIS for Earth Science Applications, Slovenia, 41-55.
Huguenin, R. L., M. H. Wang, R. Biehl, S. Stoodley, and J. N. Rogers, 2004. Automated Subpixel Photobathymetry and Water Quality Mapping. Photogrammetric Engineering and Remote Sensing, 70(1), 111-123.
IOCCG, 2006. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. Lee, Z.-P. (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada.
Jerlov, N. G., 1951. Optical Studies of Ocean Waters. Reports of The Swedish Deep Sea Expedition, 3(1), 3-57.
Kao, H. M., H. Ren, C. S. Lee, C. P. Chang, J. Y. Yen, and T. H. Lin, 2009. Determination of Shallow Water Depth using Optical Satellite Images. International Journal of Remote Sensing, 30(23), 6241-6260.
Lee, Z. P., K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, 1999. Hyperspectral Remote Sensing for Shallow Waters: 2. Deriving Bottom Depths and Water Properties by Optimization, Applied Optics, 38(18), 3831-3843.
Lee, Z. P., K. L. Carder, R. F. Chen, and T. G. Peacock, 2001. Properties of The Water Column and Bottom Derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Data. Journal of Geophysical Research-Oceans, 106(C6), 11639-11651.
Lee, Z. P., K. L. Carder and R. A. Arnone, 2002. Deriving Inherent Optical Properties from Water Color: a Multiband Quasi-analytical Algorithm for Optically Deep Waters. Applied Optics, 41(27), 5755-5772.

Liew, S. C., and J. He, 2008. Uplift of a Coral Island in The Andaman Sea Due to the 2004 Sumatra Earthquake Measured using Remote Sensing Reflectance of Water. IEEE Geoscience and Remote Sensing Letters, 5(4), 701-704.
Lillesand, T. M., R. W. Kiefer, and J. W. Chipman, 2004. Remote Sensing and Image Interpretation, Fifth Edition, John Wiley & Sons, Inc.
Lyons, M., S. Phinn, and C. Roelfsema, 2011. Integrating Quickbird Multi-spectral Satellite and Field Data: Mapping Bathymetry, Seagrass Cover, Seagrass Species and Change in Moreton Bay, Australia in 2004 and 2007. Remote Sensing, 3(1), 42-64.
Lyzenga, D. R., 1978. Passive Remote-Sensing Techniques for Mapping Water Depth and Bottom Features. Applied Optics, 17(3), 379-383.
Lyzenga, D. R., 1981. Remote Sensing of Bottom Reflectance and Water Attenuation Parameters in Shallow Water using Aircraft and Landsat Data. International Journal of Remote Sensing, 2(1), 71-82.
Lyzenga, D. R., 1985. Shallow-Water Bathymetry using Combined Lidar and Passive Multispectral Scanner Data. International Journal of Remote Sensing, 6(1), 115-125.
Moses, S. A., L. Janaki, S. Joseph, J. P. Gomathi, and J. Joseph, 2013. Lake Bathymetry from Indian Remote Sensing (P6‐LISS III) Satellite Imagery using Artificial Neural Network Model. Lakes and Reservoirs: Research & Management, 18(2), 145-153.
Mohamed, H., A. Negm, M. Zahran, and O. C. Saavedra, 2015. Assessment of Artificial Neural Network for Bathymetry Estimation using High Resolution Satellite Imagery in Shallow Lakes: Case Study El Burullus Lake. International Water Technology Conference, 12-14.
Newland, D., 1999. Evaluation of Stepwise Spectral Unmixing with HYDICE Data. Centre for Imaging Science, Rochester Institute of Technology, Rochester.


Parker, D.B., 1985. Learning Logic. Technical Report TR-47, Center for Computational Research in Economics and Management Science, Massachusetts Institute of Technology, Cambridge, MA.
Philpot, W. D., 1989. Bathymetric Mapping with Passive Multispectral Imagery. Applied Optics, 28(8), 1569-1578.
Polcyn, F. C., W. I. Brown, and I. J. Sattinger, 1970. The Measurement of Water Depth by Remote Sensing Techniques. Willow Run Laboratories, The University of Michigan, Ann Arbor.
Polcyn, F. C. and D. R. Lyzenga, 1973. Calculation of Water Depth from ERTS-MSS Data. Symposium on Significant Results Obtained from The ERTS-1, Paper M20, Goddard Space Flight Center.
Rumelhart, D. E., G.E. Hinton, and R. J. Williams, 1985. Learning Internal Representations by Error Propagation, Parallel Distributed Processing, Vol. 1, Cambridge, MA, M.I.T. Press, 318-362.
Sandidge, J. C., and R. J. Holyer, 1998. Coastal Bathymetry from Hyperspectral Observations of Water Radiance. Remote Sensing of Environment, 65(3), 341-352.
Schowengerdt, R. A., 2007. Remote Sensing: Models and Methods for Image Processing, Third Edition, Academic Press.
Stumpf, R. P., K. Holderied, and M. Sinclair, 2003. Determination of Water Depth with High-Resolution Satellite Imagery over Variable Bottom Types. Limnology and Oceanography, 48(1), 547-556.
Tanis, F. T. and W. A. Hallada, 1984. Evaluation of Landsat TM Data for Shallow Water Bathymetry. Proceedings of the 18th International Symposium on Remote Sensing of Environment, Paris, France, pp. 629-643.
Tseng, D. C., H. T. Tseng, and C. L. Chien, 2008. Automatic Cloud Removal from Multi-temporal SPOT Images. Applied Mathematics and Computation, 205(2), 584-600.
Werbos, P. J., 1974. Beyond Regression: New Tools for Prediction and Analysis in The Behavioral Science, Ph.D. Thesis, Harvard University, Cambridge, MA.
Zhang, Y., B. Guindon, and J. Cihlar, 2002. An Image Transform to Characterize and Compensate for Spatial Variations in Thin Cloud Contamination of Landsat Images. Remote Sensing of Environment, 82(2), 173-187.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top