跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇家興
研究生(外文):Su, Chia-Hsing
論文名稱:噪聲誘導逃逸的作用量泛函分析
論文名稱(外文):Action functional analysis for noise induced escape
指導教授:張正宏張正宏引用關係
指導教授(外文):Chang, Cheng-Hung
口試委員:林貴林張正宏寺西慶哲
口試委員(外文):Lin, Guey-LinChang, Cheng-HungTeranishi Yoshiaki
學位類別:碩士
校院名稱:國立交通大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:79
中文關鍵詞:逃逸理論逃逸路徑平衡態非平衡態
外文關鍵詞:escaping theoyescaping pathequilibrium statenon-equilibrium state
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在自然界中,機率最高的狀態是能量最低的狀態,機率最高的過程是作用量最小的過程。利用作用量最小原理,Maier跟Stein建立了非保守力場的近零噪聲逃逸速率理論,其刻畫逃逸困難度的作用量即是種Wentzell-Freidlin理論的作用量泛函。最近Feng、Zhang跟Wang對有限小噪聲系統提出另一更廣義的逃逸理論,造成不少迴響,然而它對逃逸的條件跟Maier的有些不同。本篇論文尋求統一兩理論的可能性,將Wang的Hamiltonian嫁接到Maier的作用量泛函理論,使用相空間Hamiltonian方程、作用量Hessian矩陣方程以及WKB振幅傳輸方程,分析討論Maier理論與嫁接理論的結果,並以實例點出可能的問題,此工作結果提供未來檢視、證明、推廣、以及應用此嫁接理論很豐富的資訊。
In nature, the most probable state is the state with the lowest energy, and the most probable process is the process with the least action. Using the principle of least action, Maier and Stein established a escape rate theory for non-conservative force fields in the zero noise limit. Therein, the quantity to measure the difficulty of escape is the action functional of the Wentzell-Freidlin theory. Recently, Feng, Zhang and Wang proposed another more general rate theory for finite small noises under a different escape condition, causing a lot of attention. This thesis looks for the possibility of unifying both theories. We inplanted Wang’s Hamiltonian into Maier’s action functional theory, used the Hamiltonian equations for the phase space dynamics, the Hessian matrix equations for the action evolution, and the transport equation for the WKB amplitude to analyze the results of Maier’s theory and the implanted theory, and furthermore used examples to point out possible problems. The results of this work provided a wealth of information for inspecting, proving, generalizing, and applying this implanted theory in the future study.
摘  要 I
ABSTRACT II
誌  謝 III
一、緒論 1
二、噪聲誘導逃逸理論 3
2.1 KRAMERS的逃逸理論 3
2.2 MAIER-STEIN的逃逸理論 6
2.3 FENG-ZHANG-WANG的逃逸理論 18
三、最小作用量路徑 24
3.1 一維力場的相空間古典路徑 24
3.2 二維力場的實空間隨機路徑平均與輔助古典路徑投影 29
3.3 二維系統的相空間古典路徑 34
3.4 二維無旋度力場的古典路徑與作用量 37
3.5 二維有旋度力場的古典路徑與作用量變化量 48
四、LANGEVIN動力學逃逸實驗 52
4.1 逃逸機率實驗 53
4.2 平衡態實驗 56
4.3 非平衡態模擬 68
五、結論 73
附錄 75
參考文獻 78
[ 1 ] H. D. Feng, K. Zhang and J. Wang, Non-equilibrium transition state rate theory, Chem. Sci. , 5, 3761–3769 (2014).
[ 2 ] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems (Springer, Berlin, 2012).
[ 3 ] R. S. Maier and D. L. Stein, Transition-rate theory for non-gradient drift fields, Phys. Rev.Lett., 69, 3691-3695 (1992).
[ 4 ] R. S. Maier and D. L. Stein, Limiting exit location distributions in the stochastic exit problem, SIAM J. Appl Math., 57, 752–790 (1997).
[ 5 ] Maier RS, Stein DL., Effect of focusing and caustics on exit phenomena in systems lacking detailed balance. Phys Rev Lett. 71(12), 1783-1786 (1993).
[ 6 ] Robert S. Maier and D. L. Stein, Escape problem for irreversible systems, Phys. Rev. E 48(2), 931 (1993).
[ 7 ] J. Wang, Landscape and flux theory of non-equilibrium dynamical systems with application to biology, Advances in Physics, 64(1), 1-137 (2015).
[ 8 ] M. V. DAY, Some phenomena of the characteristic boundary problem, in Diffusion Processes and Related Problems in Analysis, vol. 1, M. Pinsky, ed., Birkhiiuser, Boston, Basel, 55-71 (1990).
[ 9 ] 胡岡(1994)。隨機力與非線性系統。上海:上海科技教育出版社。
[ 10 ] T. Naeh, M. M. Klosek, B. J. Matkowsky and Z. Schuss, A Direct Approach to the Exit Problem, SIAM J. Appl. Math., 50(2), 595-627 (1990).
[ 11 ] J. Grasman and O. A. van Herwaarden, Asymptotic Methods for Fokker-Planck Equation and Exit Problem in Applications (Springer, Berlin,1999).
[ 12 ] R. S. Maier and D. L. Stein, A Scaling Theory of Bifurcations in the Symmetric Weak-Noise Escape Problem, J. Stat. Phys., 83(3/4), 291-357 (1996).
[ 13 ] M. I. Dykman, Eugenia Mori, John Ross, and P. M. Hunt, Large fluctuations and optimal paths in chemical kinetics, J. Chem. Phys. 100, 5735 (1994).
[ 14 ] P. Zhou and T. Li, Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond, J. Chem. Phys. 144, 094109 (2016).
[ 15 ] K. L. C. Hunt and J. Ross, Path integral solutions of stochastic equations for nonlinear irreversible processes: The uniqueness of the thermodynamic Lagrangian, J. Chem. Phys. 75, 976 (1981).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top