跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 07:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠儒
研究生(外文):Guan-Ru Chen
論文名稱:可應用於阻抗式生醫感測器之阻抗估算前端讀取電路與其即時運算之基頻電路
論文名稱(外文):Impedance Estimation Read-out Circuit Frontend and Baseband Circuit for Real-time Calculation Therewith
指導教授:黃義佑王朝欽
指導教授(外文):I-Yu HuangChua-Chin Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:等效模型雜訊運算放大器生醫感測器生物電阻抗分析技術單元增益緩衝器
外文關鍵詞:RC modelunit gain buffernoiseOperational amplifier(OPA)Biomedical sensorBIA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文係配合科技部之「快速定量檢測尿液中CEA/PSA/ALKP 多重腫瘤標幟
非侵入式感測系統」計劃,進行兩項研究主題,分別為可應用於阻抗式生醫感測
器之阻抗估算讀取電路,以及可即時計算阻抗式生醫感測器阻抗值與相位之基頻
電路,皆使用TSMC 0.18 m CMOS Mixed Signal/RF 製程,以驗證設計原理。
本論文之可應用於阻抗式生醫感測器之阻抗估算讀取電路,係利用運算放大
器之反相放大功能,並搭配單元增益緩衝器(unit gain buffer) 建構而成。由於阻抗
式生醫感測器之讀取頻率範圍落在100 Hz 1 MHz,為了增加在讀取時之容錯能
力,因此特意將此電路之操作頻率範圍設計在10 Hz 2 MHz。然而在模擬時並
無BIA-type 生醫感測器之元件可以使用,因此為了確保模擬環境之完整性,利用
電容與電阻建構一個等效模型(RC Model),而等效模型之阻抗值與相位其變化
趨勢皆與阻抗式生醫感測器相同。晶片量測結果為阻抗值最大誤差為7.7 kΩ (at
10 Hz),而相位最大誤差為12 (at 50 kHz)。
另外,本論文之可即時計算阻抗值與相位之基頻電路,係為了自動進行估算
阻抗式生醫感測器之阻抗值與相位而延伸設計之數位電路。此基頻電路實現阻抗
估算自動化並且額外增加了即時更新功能,其即時更新功能代表當輸入訊號頻率
或振幅做改變時,其輸出結果也會隨之改變。採用數位訊號計算之原因為其具有
較好的抗雜訊功能,並且與外部溝通較容易等優點。
This thesis was driven by an MOST project, ”Rapid Quantitative Measurement System
for CEA/PSA/ALKP Tumor Markers in Urine,” to develop two research topics, including
an impedance estimation read-out circuit for BIA-type biomedical sensors and an
impedance and phase calculation baseband circuit. Both designs are realized using TSMC
0.18 m CMOS Mixed Signal/RF Process to justify the proposed theory and method.
The first design is an impedance estimation front-end read-out circuit for BIA-type
biomedical sensors, which is composed of low-frequency operational amplifiers and a
unity gain buffer owing to the signal frequency range of the BIA-type biomedical sensors
is 100 Hz 1 MHz. To increase the design margin, the operating frequency range of
the proposed circuit is deliberately selected to be 10 Hz 2 MHz. However, since it is
impossible to include real of BIA-type biomedical sensors in the simulation, an equivalent
model (RC Model) is constructed by capacitors and resistors to ensure the integrity of the
simulated environment. The equivalent model has impedance and phase behavior very
close to that of the BIA-type biosensors. The measurement results on silicon to show
maximum error of 7.7 kΩ at 10 Hz, and the phase maximum error of 12 at 50 kHz.
The baseband circuit calculating the impedance and phase in real time is proposed
to provide a solution carrying out the estimation of the impedance and phase of the BIAtype
biomedical sensors automatically. The baseband circuit is also added with functions
of the instant update of real-time change of the input signal frequency. The reason is that
the digital solution has a better noise rejection capability and feasibility to be integrated
with other digital signal processing modules.
論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
1 概論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 相關文獻與研究探討. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 阻抗估算讀取技術應用. . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 峰值偵測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 除法器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 可應用於阻抗式生醫感測器之阻抗估算讀取電路. . . . . . . 10
1.3.2 可即時計算阻抗式生醫感測器阻抗值與相位之基頻電路. . . 10
1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 可應用於阻抗式生醫感測器之阻抗估算讀取電路. . . . . . . . . . . . . . . 12
2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 阻抗估算讀取電路架構. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 OPA 電路介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 阻抗式生醫感測器之等效電阻電容模型. . . . . . . . . . . . 14
2.3 晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 電路模擬結果與預計規格. . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 阻抗式生醫感測器之等效電阻電容模型模擬結果. . . . . . . 17
2.4.2 OPA 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 阻抗估算前端讀取電路模擬結果. . . . . . . . . . . . . . . . 20
2.4.4 預計規格與模擬模擬結果比較. . . . . . . . . . . . . . . . . . 23
2.5 晶片量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 量測環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 量測結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 量測結果與模擬結果比較. . . . . . . . . . . . . . . . . . . . 27
2.6 阻抗式生醫感測器量測結果. . . . . . . . . . . . . . . . . . . . . . . 28
2.7 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 可即時計算阻抗式生醫感測器阻抗值與相位之基頻電路. . . . . . . . . . . 36
3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 電路架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 各子電路設計與原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 串列輸入並行輸出電路(SIPO) . . . . . . . . . . . . . . . . . . 39
3.3.2 多工器(MUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 峰值偵測器(Peak_Detector) . . . . . . . . . . . . . . . . . . . 40
3.3.4 振幅計算電路(Calculation_Amplitude) . . . . . . . . . . . . . 43
3.3.5 阻抗計算電路(Calculation_Impedance) . . . . . . . . . . . . . 44
3.3.6 取樣偵測器(Sample_Detector) . . . . . . . . . . . . . . . . . . 46
3.3.7 相位計算電路(Calculation_Phase) . . . . . . . . . . . . . . . . 50
3.3.8 並行輸入串列輸出電路(PISO) . . . . . . . . . . . . . . . . . . 51
3.4 晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 電路模擬結果與預計規格. . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.1 不同正弦波振幅之模擬結果. . . . . . . . . . . . . . . . . . . 53
3.5.2 不同取樣數之模擬結果. . . . . . . . . . . . . . . . . . . . . . 54
3.6 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4 結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1 研究成果與結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 未來研究規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
[1] 衛生福利部統計處, 106 年度死因統計. [Online]. Available: https://dep.mohw.
gov.tw/DOS/lp-3960-113.html.
[2] 衛生福利部, 早期癌症五年存活率可達八成以上罹癌並不可怕, 延誤診治才是
真正殺手. [Online]. Available: https://www.mohw.gov.tw/cp-2646-20426-1.html.
[3] 高雄長庚紀念醫院癌症中心, 腫瘤標誌. [Online]. Available: https://www1.cgmh.
org.tw/shcc/information_category.asp?article_id=4.
[4] 仁愛醫療財團法人, 腫瘤標記篩檢. [Online]. Available: http://www.jahcareu.
com.tw/cancera.html.
[5] R. M. Lequin, “Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay
(ELISA),” Clinical Chemistry, vol. 51, no. 12, pp. 2415–2418, Sep. 2005.
[6] S. X. Leng, J. E. McElhaney, J. D. Walston, D. Xie, N. S. Fedarko, and G. A. Kuchel,
“ELISA and multiplex technologies for cytokine measurement in inflammation and
aging research,” Journal of Gerontology: Biological Sciences and the Jounrnal of
Gerontology: Medical Sciences, vol. 63, no. 8, pp. 879–884, Oct. 2008.
[7] D. Limmathurotsakul, N. Chantratita, N. Teerawattanasook, K. Piriyagitpaiboon,
A. Thanwisai, V. Wuthiekanun, N. P. J. Day, B. Cooper, and S. J. Peacock,
“Enzyme-linked immunosorbent assay for the diagnosis of melioidosis: Better than
we thought,” Clinical Infectious Diseases, vol. 52, no. 8, pp. 1024–1028, Jan. 2011.
[8] X.-X. Jiang, H.-Y. Shi, N. Wu, and M.-H. Wang, “Development of an enzyme-linked
immunosorbent assay for diniconazole in agricultural samples,” Food Chemistry,
vol. 125, no. 4, pp. 1385–1389, Apr. 2011.
[9] S. P. Musial, M. P. Duran, and R. V. Smith, “Analysis of solvent-mediated conformational
changes of insulin by radioimmunoassay (RIA) techniques,” Journal of
Pharmaceutical and Biomedical Analysis, vol. 4, no. 5, pp. 589–600, Jan. 1986.
[10] H. V. Webster, A. J. Bone, K. A. Webster, and T. J. Wilkin, “Comparison of an
enzyme-linked immunosorbent assay (ELISA) with a radioimmunoassay (RIA) for
the measurement of rat insulin,” Journal of Immunological Methods, vol. 134, no. 1,
pp. 95–100, Nov. 1990.
[11] M. E. Goldberg and L. D.-Ohaniance, “Methods for measurement of antibody/antigen
affinity based on ELISA and RIA,” Current Opinion in Immunology, vol. 5, no.
2, pp. 278–281, 1993.
[12] R. F. Kushner and D. A. Schoeller, “Estimation of total body water by bioelectrical
impedance analysis,” American Journal of Clinical Nutrition, vol. 44, no. 3, pp. 417–
424, Sep. 1986.
[13] P. Arpaia, F. Clemente, and C. Romanucci, “An instrument for prosthesis osseointegration
assessment by electrochemical impedance spectrum measurement,” Measurement,
vol. 41, no. 9, pp. 1040–1044, Nov. 2008.
[14] C.-M. Lin, L.-H. Chen, and T.-M. Chen, “The development and application of an
electrical impedance spectroscopy measurement system for plant tissues,” Computers
and Electronics in Agriculture, vol. 82, pp. 96–99, Mar. 2012.
[15] H. Ma, J. Li, X. Cheng, and A. Nathan, “Heterogeneously integrated impedance
measuring system withdisposable thin-film electrodes,” Sensors and Actuators B:
Chemical, vol. 211, pp. 77–82, May 2015.
[16] J. Lin and H. Chou, “A peak detect and hold circuit using ramp sampling approach,”
in Proc. 2009 IEEE Nuclear Science Symposium Conference Record (NSS), pp. 309–
312, Oct. 2009.
[17] T. Lee, W. Hsiao, and C. Wang, “20 MHz accurate peak detector for FPW allergy
biosensor with digital calibration,” in Proc. 2011 International Symposium on Integrated
Circuits, Singapore (ISICAS), pp. 476–479, Dec. 2011.
[18] 黃皓群, A Highly Sensitive Portable Microsystem for Rapid Marijuana Detection
and A Peak Detector with Offset Cancellation. 國立中山大學電機工程學系碩士
論文, July 2018.
[19] “IEEE Standard for Floating-Point Arithmetic,” in IEEE Std 754-2008, pp. 1–70,
Aug. 2008.
[20] X. Chen, F. Xiang, and L. Zhang, “Optimal design of double-precision chaotic signal
generators based on IEEE-754 standard,” in Proc. 2012 IEEE International Conference
on Automation and Logistics (ICAL), pp. 466–469, Aug. 2012.
[21] R. K. Kodali, S. K. Gundabathula, and L. Boppana, “FPGA implementation of IEEE-
754 floating point Karatsuba multiplier,” in Proc. 2014 International Conference on
Control, Instrumentation, Communication and Computational Technologies (ICCICCT),
pp. 300–304, July 2014.
[22] J. E. Stine and M. J. Schulte, “A combined interval and floating-point divider,” in
Proc. Conference Record of Thirty-Second Asilomar Conference on Signals, Systems
and Computers (ACSSC), pp. 218–222, Nov. 1998.
[23] K. S. Hemmert and K. D. Underwood, “Floating-point divider design for FPGAs,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15 no. 1,
pp. 115–118, Jan. 2007.
[24] S. González-Navarro, A. Nannarelli, M. Schulte, and C. Tsen, “A combined decimal
and binary floating-point divider,” in Proc. 2009 Conference Record of the Forty-
Third Asilomar Conference on Signals, Systems and Computers (ACSSC), pp. 930–
934, Nov. 2009.
[25] S. Toro, A. Patil, Y. V. Chavan, S. C. Patil, D. S. Bormane, and S. Wadar, “Division
operation based on Vedic mathematics,” in Proc. 2016 IEEE International
Conference on Advances in Electronics, Communication and Computer Technology
(ICAECCT), pp. 450–454, Dec. 2016.
[26] iT 邦幫忙, 淺入淺出計組之旅(30)除法器的運算過程與實現. [Online]. Available:
https://ithelp.ithome.com.tw/articles/10161144.
[27] Like 669699, 乘法與除法運算. [Online]. Available: https://vinsontech.wordpress.
com/2011/08/05/%E4%B9%98%E6%B3%95%E8%88%87%E9%99%A4%E6%
B3%95%E9%81%8B%E7%AE%97/.
[28] V. Saxena and R. J. Baker, “Indirect feedback compensation of CMOS op-amps,”
in Proc. 2006 IEEE Workshop on Microelectronics and Electron Devices (WMED),
pp. 3–4, Apr. 2006.
[29] G.-R. Chen, T.-Y. Tsai, I.-Y. Huang, Y.-C. Lin, and C.-C. Wang, “Impedance estimation
read-out system for biomedical sensors,” in Proc. 2018 The 3rd International
Conference on Electrical Engineering and Informatics (ICEEI), pp. 206–210, Jun.
2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊