跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宜穎
研究生(外文):Yi-Ying Tsai
論文名稱:以鎳鐵層狀氫氧化物為前驅物製備雙功能氧電極觸媒於可逆式鋅/空氣電池之研究
論文名稱(外文):Nickel iron layered double hydroxide derived bifunctional oxygen electrode catalyst for rechargeable zinc/air batteries
指導教授:黃炳照黃炳照引用關係
指導教授(外文):Bing-Joe Hwang
口試委員:王丞浩蘇威年黃炳照
口試委員(外文):Chen-Hao WangWei-Nien SuBing-Joe Hwang
口試日期:2018-01-05
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:142
中文關鍵詞:鹼性雙功能電觸媒層狀氫氧化物氮摻雜碳可逆式鋅/空氣電池
外文關鍵詞:AlkalineBifunctional electrocatalystLayered double hydroxideN-doped carbonRechargeable zinc-air battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
近年來,可逆式鋅-空氣電池因為具有高能量密度、安全性和經濟性而備受關注。在空氣電極端,需要雙功能觸媒於同一電極上進行充電(氧氣析出反應)和放電(氧氣還原反應),但常用於氧還原之觸媒Pt/C和氧析出之觸媒IrO2皆不具有雙功能特性,且其物理混合觸媒也因材料成本高昂,造成實際應用上的瓶頸。
有鑑於此,本研究提供了一個有潛力的雙功能電催化鎳鐵觸媒,可有效地驅動氧氣轉換反應。值得一提的是鎳與鐵均為地球豐富的元素,透過簡便的水熱法即可合成碳擔載的鎳鐵層狀氫氧化物(NiFe LDH/C),此方法可以很精準地控制觸媒比例。而後,以最適化NiFe LDH/C為前驅物進行氫氣和氨氣燒結,進一步還原成雙功能觸媒。研究結果指出經過氨氣燒結形成NiFe/NiFeN/NC之奈米複合材料,可同時形成雙活性位點來催化氧氣還原和析出反應。根據線性掃描伏安法(LSV)的電化學檢測,與NiFe LDH/C和氫氣燒結觸媒NiFe/C相比,氨氣燒結溫度500 oC時之NiFe/NiFeN/NC奈米複合材料,在氧氣轉化反應中,具有更佳的雙功能活性。於氧還原電流值3 mA/cm2時的電位和氧析出電流值10 mA/cm2時的電位之電位差△E為0.91 (V)。
穩定性測試中,使用計時電流(定電壓)方式於0.1 M KOH下進行。500 oC處理之NiFe/NiFeN/NC觸媒在氧析出和還原中表現出高穩定性,經過6小時測試後,電流分別衰退8.9 %與14.1 %;而參考觸媒 IrO2與Pt/C,則分別衰退29.1 %和7.7 %。此外,於1 M KOH下進行氧還原穩定性測試,活性衰退18.4 %,Pt/C則為23.1 %,代表NiFe/NiFeN/NC奈米複合觸媒更適合在嚴苛環境下操作。
本研究更進一步嘗試建立可逆式鋅-空氣電池測試平台並分析材料效能。NiFe/NiFeN/NC展現良好的穩定性,且效能與Pt/C+IrO2相近,證實其具有雙功能特性。以成本和大量生產為考量,NiFe/NiFeN/NC勢必比貴金屬Pt/C+IrO2更有優勢。

關鍵字: 鹼性、雙功能電觸媒、層狀氫氧化物、氮摻雜碳、可逆式鋅/空氣電池
In recent years, rechargeable zinc-air batteries have attracted much attention owing to its high energy density, promising safety, and economic viability. In air electrode, bi-functional electrocatalysts are desirable since the dual functionality of the oxygen evolution reaction (OER) and oxygen oxygen reduction reaction (ORR) are required on the same electrode under charging and discharging processes, respectively. Unfortunately, both ORR catalyst Pt/C and OER catalyst IrO2 don’t have bifunctional property. The high cost of precious Pt/C and IrO2 catalysts also limit their wide spread application.
In the light of this, this work provides a promising bi-functional electrocatalyst with earth-abundant elements to enable the oxygen conversion reaction efficiently. Carbon supported NiFe layered double hydroxide (NiFe LDH/C) can be synthesized by a facile hydrothermal method which can precisely control the catalyst’s composition. Then, the optimal NiFe LDH/C was used as precursor and further reduced to bi-functional catalyst by hydrogen reduction and thermal ammonolysis. The results show that NiFe/NiFeN/NC nanocomposites, characterized by duel electroactive sites for OER and ORR, can be simultaneously derived by thermal ammonolysis process. According to the electrochemical measurements by linear sweep voltammetry (LSV), NiFe/NiFeN/NC nanocomposite calcined in ammonia at 500 oC demonstrates excellent activities for oxygen conversion reaction, when compared to NiFe LDH and NiFe/C. Its overpotential △E between the ORR current density of 3 mA cm−2 and OER current density of 10 mA cm−2 is 0.91 (V).
In the stability test, a chronoamperometry method was used in 0.1 M KOH. After 6 hours, NiFe/NiFeN/NC catalyst calcined at 500 oC showed high stability with a decline of current of 8.9% and 14.1% in OER and ORR, comparable to 29.1% for IrO2 and 7.7% for Pt/C, respectively. In addition, the ORR stability test in 1 M KOH showed that the activity decayed 18.4% for NiFe/NiFeN/NC, whereas 23.1% for Pt/C. This indicates that the composite catalyst is more suitable for operations under harsh environments.
This study further attempts to establish a rechargeable zinc-air battery test platform and analyze material performance. NiFe/NiFeN/NC shows good stability and its performance is comparable to that of Pt/C+IrO2, confirming its bi-functional property. Considering the cost and mass production, NiFe/NiFeN/NC offers more advantages than the combination of noble materials with Pt/C and IrO2.

Keywords:Alkaline, Bifunctional electrocatalyst, Layered double hydroxide, N-doped carbon, Rechargeable zinc-air battery.
摘要
Abstract
致謝
目錄
圖目錄
表目錄
第一章 緒論
1.1 前言
1.2 金屬-空氣電池 (Metal-air battery)
1.2.1 鋅-空氣電池 (Zinc-air battery)
1.2.2 鋅-空氣電池之種類
1.2.3 電化學可逆式鋅-空氣電池 (Chemically rechargeable zinc-air battery)
1.3 研究動機與目的
第二章 文獻回顧
2.1 氧氣電催化反應
2.1.1 氧氣還原反應 (Oxygen reduction reaction,ORR)
2.1.2 氧氣析出反應 (Oxygen evolution reaction,OER)
2.2 層狀複金屬氫氧化物 (Layer double hydroxide, LDH)
2.3 雙功能觸媒(Bi-functional catalysts)應用於氧氣催化反應
第三章 實驗設備與方法
3.1 實驗設備
3.2 實驗藥品
3.3 實驗步驟
3.3.1 碳載體之前處理
3.3.2 以水熱法合成鎳鐵層狀氫氧化物
3.3.3 氫氣與氨氣還原步驟
3.3.4 樣品清單與命名
3.3.5 電化學漿料調配
3.3.6 電池組裝
3.4 儀器原理與材料鑑定
3.4.1 掃描式電子顯微鏡(SEM)
3.4.2 能量分散光譜儀(EDX)
3.4.3 感應偶合電漿光譜儀 (ICP-AES)
3.4.4 X射線繞射儀(XRD)
3.4.5 四點探針導電度量測儀 (Four-Point Probe system)
3.4.6 XPS X-ray 光電子能譜
3.4.7 表面積測定儀 (BET)
3.4.8 X光吸收光譜原理
3.4.9 電化學原理
第四章 結果與討論
4.1 鎳鐵層狀氫氧化物(NiFe LDH/C)
4.1.1 NiFe LDH/C中不同碳比例於結構影響
4.1.2 NiFe LDH/C中不同碳比例之電化學特性
4.1.3 不同鎳鐵比例LDH之結構分析
4.1.4 不同鎳鐵比例LDH之電化學分析
4.1.5 Ni3Fe LDH/C(1:1)之材料分析
4.2 以Ni3Fe LDH/C(1:1)為前驅物進行氫氣燒結
4.2.1 結構分析
4.2.2 氧氣電催化特性分析
4.3 以Ni3Fe LDH/C(1:1)為前驅物進行氨氣燒結
4.3.1 結構分析
4.3.2 氧氣電催化特性分析
4.4 可逆電式鋅空氣電池之應用
4.4.1 充放電測試
4.4.2 穩定性測試
第五章 結論
第六章 未來展望
第七章 參考文獻
1.Lee, J.; Jeong, B.; Ocon, J. D. Oxygen electrocatalysis in chemical energy conversion and storage technologies. Current Applied Physics 2013, 13 (2), 309-321.
2.Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Adv Mater 2017, 29 (7).
3.Li, Y.; Dai, H. Recent advances in zinc-air batteries. Chem Soc Rev 2014, 43(15), 5257-75.
4.See, D. M.; White, R. E. Temperature and Concentration Dependence of the Specific Conductivity of Concentrated Solutions of Potassium Hydroxide. J. Chem. Eng. Data 1997, 42, 1266.
5.劉奎府. 氧化銅催化劑應用於鋅-空氣燃料電池陰極之研究. 國立交通大學材料科學與工程研究所碩士論文 2005.
6.顏振義. 靜電紡絲製備二氧化錳與導電高分子複合纖維於鋅空氣電池陰極之研究. 國立台灣科技大學機械工程系碩士學位論文 2015.
7.Yang, H. B.; Miao, J.; Hung, S. F.; Chen, J.; Tao, H. B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. M.; Dai, L.; Liu, B. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv 2016, 2 (4), e1501122.
8.K.Kinoshita. Electrochemical Oxygen Technology. Interscience,New York 1992.
9.Cheng, F.; Chen, J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 2012, 41 (6), 2172-92.
10.Yao, N.; Li, L.; Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 2015, 44 (8), 2168-201.
11.Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 2017, 46 (2), 337-365.
12.Liu, W.; Zhao, Y.; Zhang, R.; Li, Y.; Lavernia, E. J.; Jiang, Q. Oxidation of CO catalyzed by a Cu cluster: influence of an electric field. Chemphyschem 2009, 10 (18), 3295-302.
13.Zhang, P.; Chen, X. F.; Lian, J. S.; Jiang, Q. Structural Selectivity of CO Oxidation on Fe/N/C Catalysts. The Journal of Physical Chemistry C 2012, 116 (33), 17572-17579.
14.Jia, X.; Zhao, Y.; Chen, G.; Shang, L.; Shi, R.; Kang, X.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. Advanced Energy Materials 2016, 6 (10), 1502585.
15.Yin, H.; Tang, Z. Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem Soc Rev 2016, 45 (18), 4873-91.
16.Yan, K.; Wu, G.; Jin, W. Recent Advances in the Synthesis of Layered, Double-Hydroxide-Based Materials and Their Applications in Hydrogen and Oxygen Evolution. Energy Technology 2016, 4 (3), 354-368.
17.Fan, G.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 2014, 43 (20), 7040-66.
18.Xu, Z. P.; Stevenson, G.; Lu, C. Q.; Lu, G. Q. Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. J. Phys. Chem. B 2006, 110, 16923-16929.
19.Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 2013, 135 (23), 8452-5.
20.Wang, D.; Chen, X.; Evans, D. G.; Yang, W. Well-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions. Nanoscale 2013, 5 (12), 5312-5.
21.Lin, Z.; Waller, G. H.; Liu, Y.; Liu, M.; Wong, C.P. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2013, 2 (2), 241-248.
22.Ci, S.; Mao, S.; Hou, Y.; Cui, S.; Kim, H.; Ren, R.; Wen, Z.; Chen, J. Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. J. Mater. Chem. A 2015, 3 (15), 7986-7993.
23.Chen, S.; Mao, M.; Liu, X.; Hong, S.; Lu, Z.; Sang, S.; Liu, K.; Liu, H. A high-rate cathode material hybridized by in-site grown Ni–Fe layered double hydroxides and carbon black nanoparticles. J. Mater. Chem. A 2016, 4 (13), 4877-4881.
24.Huo, R.; Jiang, W. J.; Xu, S.; Zhang, F.; Hu, J. S. Co/CoO/CoFe2O4/G nanocomposites derived from layered double hydroxides towards mass production of efficient Pt-free electrocatalysts for oxygen reduction reaction. Nanoscale 2014, 6 (1), 203-6.
25.Gong, M.; Dai, H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research 2014, 8 (1), 23-39.
26.Qu, L.; Liu, Y.; Baek, J. B.; Dai, L. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. 2010.
27.Wang, Y.; Fu, J.; Zhang, Y.; Li, M.; Hassan, F. M.; Li, G.; Chen, Z. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries. Nanoscale 2017, 9 (41), 15865-15872.
28.Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc 2013, 135 (33), 12329-37.
29.Liu, Q.; Jin, J.; Zhang, J. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 2013, 5 (11), 5002-8.
30.Gorlin, Y.; Jaramillo, T. F. A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation. J Am Chem Soc 2010, (132), 13612–13614.
31.Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 2015, 10 (5), 444-52.
32.Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co(3)O(4) nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 2011, 10 (10), 780-6.
33.Yu, X.; Zhang, M.; Yuan, W.; Shi, G. A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J. Mater. Chem. A 2015, 3 (13), 6921-6928.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top