|
1. Augst, A.D.; Kong, H.J.; Mooney, D.J. Alginate hydrogels as biomaterials. Macromol. Biosci. 2006, 6, 623-633. 2. Mikos, A.G.; Sarakinos, G.; Leite, S.M.; Vacant, J.P.; Langer, R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 1993, 14, 323-330. 3. Shoichet, M.S. Polymer scaffolds for biomaterials applications. Macromolecules 2009, 43, 581-591. 4. Zhao, Z.; Xie, H.; An, S.; Jiang, Y. The relationship between oxygen permeability and phase separation morphology of the multicomponent silicone hydrogels. J. Phys. Chem. B 2014, 118, 14640-14647. 5. Debord, J.D.; Lyon, L.A. Thermoresponsive photonic crystals. J. Phys. Chem. B 2000, 104, 6327-6331. 6. Lee, W.-F.; Lin, W.-J. Effect of Silicon Monomers on the Swelling and Mechanical Properties of (PEGMA-co-HEMA) Hydrogels. J. Polym. Res. 2003, 10, 31-38. 7. Maldonado-Codina, C.; Efron, N. Hydrogel lenses-materials and manufacture. A review. Optometry in Practice 2003, 4, 101-113. 8. Willis, S.L.; Court, J.L.; Redman, R.P.; Wang, J.-H.; Leppard, S.W.; O’Byrne, V.J.; Small, S.A.; Lewis, A.L.; Jones, S.A.; Stratford, P.W. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials 2001, 22, 3261-3272. 9. Wu, J.; He, C.; He, H.; Cheng, C.; Zhu, J.; Xiao, Z.; Zhang, H.; Li, X.; Zheng, J.; Xiao, J. Importance of zwitterionic incorporation into polymethacrylate-based hydrogels for simultaneously improving optical transparency, oxygen permeability, and antifouling properties. J. Mater. Chem. B 2017, 5, 4595-4606. 10. Zhao, Z.-b.; An, S.-s.; Xie, H.-j.; Jiang, Y. Copolymerization and properties of multicomponent crosslinked hydrogels. Chinese J. Polym. Sci. 2015, 33, 173-183. 11. Begley, C.G.; Caffery, B.; Nichols, K.K.; Chalmers, R. Responses of contact lens wearers to a dry eye survey. Optom. Vis. Sci. 2000, 77, 40-46. 12. Richdale, K.; Sinnott, L.T.; Skadahl, E.; Nichols, J.J. Frequency of and factors associated with contact lens dissatisfaction and discontinuation. Cornea 2007, 26, 168-174. 13. Hapnes, R. Soft contact lenses worn at a simulated altitude of 18000 feet. Acta Ophthalmol. 1980, 58, 90-95. 14. Mandell, R.; Farrell, R. Corneal swelling at low atmospheric oxygen pressures. Invest. Ophthalmol. Vis. Sci. 1980, 19, 697-702. 15. Clarke, C. Contact lenses at high altitude: experience on Everest south-west face 1975. Br. J. Ophthalmol. 1976, 60, 479-480. 16. Chen, J.-S.; Liu, T.-Y.; Tsou, H.-M.; Ting, Y.-S.; Tseng, Y.-Q.; Wang, C.-H. Biopolymer brushes grown on PDMS contact lenses by in situ atmospheric plasma-induced polymerization. J. Polym. Res. 2017, 24, 69. 17. Seitz, M.E.; Wiseman, M.E.; Hilker, I.; Loos, J.; Tian, M.; Li, J.; Goswami, M.; Litvinov, V.M.; Curtin, S.; Bulters, M. Influence of silicone distribution and mobility on the oxygen permeability of model silicone hydrogels. Polymer 2017, 118, 150-162. 18. Fonn, D.; Dumbleton, K.; Jalbert, I.; Sivak, A. Benefits of silicone hydrogel lenses. Contact Lens Spectrum 2006, 21, 38. 19. Awasthi, A.; Meng, F.; Künzler, J.; Linhardt, J.; Papagelis, P.; Oltean, G.; Myers, S. Ethylenically unsaturated polycarbosiloxanes for novel silicone hydrogels: synthesis, end‐group analysis, contact lens formulations, and structure–property correlations. Polym. Adv. Technol. 2013, 24, 557-567. 20. Nicolson, P.C. Continuous wear contact lens surface chemistry and wearability. Eye contact lens 2003, 29, S30-S32. 21. Ghoreishi, S.; Abbasi, F.; Jalili, K. Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface. J. Polym. Res. 2016, 23, 115. 22. Jones, L.; Brennan, N.A.; González-Méijome, J.; Lally, J.; Maldonado-Codina, C.; Schmidt, T.A.; Subbaraman, L.; Young, G.; Nichols, J.J. The TFOS International Workshop on Contact Lens Discomfort: report of the contact lens materials, design, and care subcommittee. Invest. Ophthalmol. Vis. Sci. 2013, 54, TFOS37-TFOS70. 23. Lin, C.-H.; Cho, H.-L.; Yeh, Y.-H.; Yang, M.-C. Improvement of the surface wettability of silicone hydrogel contact lenses via layer-by-layer self-assembly technique. Colloids Surf. B Biointerfaces 2015, 136, 735-743. 24. Saini, A.; Rapuano, C.J.; Laibson, P.R.; Cohen, E.J.; Hammersmith, K.M. Episodes of microbial keratitis with therapeutic silicone hydrogel bandage soft contact lenses. Eye contact lens 2013, 39, 324-328. 25. Szczotka-Flynn, L.; Jiang, Y.; Raghupathy, S.; Bielefeld, R.A.; Garvey, M.T.; Jacobs, M.R.; Kern, J.; Debanne, S.M. Corneal inflammatory events with daily silicone hydrogel lens wear. Optom. Vis. Sci. 2014, 91, 3-12. 26. Lai, Y.C. Novel polyurethane–silicone hydrogels. J. Appl. Polym. Sci. 1995, 56, 301-310. 27. Chekina, N.; Pavlyuchenko, V.; Danilichev, V.; Ushakov, N.; Novikov, S.; Ivanchev, S. A new polymeric silicone hydrogel for medical applications: synthesis and properties. Polym. Adv. Technol. 2006, 17, 872-877. 28. Paterson, S.M.; Liu, L.; Brook, M.A.; Sheardown, H. Poly (ethylene glycol)‐or silicone‐modified hyaluronan for contact lens wetting agent applications. J. Biomed. Mater. Res. A 2015, 103, 2602-2610. 29. Young, G.; Keir, N.; Hunt, C.; Woods, C.A. Clinical evaluation of long-term users of two contact lens care preservative systems. Eye contact lens 2009, 35, 50-58. 30. Zhao, Z.-B.; An, S.-S.; Xie, H.-J.; Han, X.-L.; Wang, F.-H.; Jiang, Y. The relationship between the hydrophilicity and surface chemical composition microphase separation structure of multicomponent silicone hydrogels. J. Phys. Chem. B 2015, 119, 9780-9786. 31. Jacob, J.T. Biocompatibility in the development of silicone-hydrogel lenses. Eye contact lens 2013, 39, 13-19. 32. Silva, D.; Fernandes, A.; Nunes, T.; Colaço, R.; Serro, A. The effect of albumin and cholesterol on the biotribological behavior of hydrogels for contact lenses. Acta biomaterialia 2015, 26, 184-194. 33. Lin, C.-H.; Yeh, Y.-H.; Lin, W.-C.; Yang, M.-C. Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids Surf. B Biointerfaces 2014, 123, 986-994. 34. Wang, J.J.; Li, X.S. Improved oxygen permeability and mechanical strength of silicone hydrogels with interpenetrating network structure. Chinese J. Polym. Sci. 2010, 28, 849-857. 35. Nishimura, S. 2014. The investigation of the thermal effect of contact lens wear. Retrieved from https://www.allaboutvision.com/contacts/faq/when-invented.htm 36. Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252-267. 37. Bennett, E.S.; Weissman, B.A. (Eds.). 2005. Clinical contact lens practice. Lippincott Williams & Wilkins 38. Morgan, P.B.; Woods, C.A.; Tranoudis, I.G.; Efron, N.; Jones, L.; etc. International Contact Lens Prescribing In 2018. Contact Lens Spectrum 2019, 34, 26-32. 39. Nichols, J.J.; Fisher, D. Contact Lenses 2018. Contact Lens Spectrum 2019, 34, 18-23. 40. Musgrave, C.S.A.; Fang, F. Contact lens materials: A materials science perspective. Materials 2019, 12, 261. 41. Dabezies, O.H. (Eds.). 1984. Contact lenses: The CLAO guide to basic science and clinical practice. Grune and Stratton 42. Bruce, A.; Brennan, N.; Lindsay, R. Diagnosis and mangement of ocular changes during contact lens wear, Part II. Clin. Signs Ophthalmol 1995, 17, 2-11. 43. McMahon, T.T.; Zadnik, K. Twenty-five years of contact lenses: the impact on the cornea and ophthalmic practice. Cornea 2000, 19, 730-740. 44. Vincent, S.J.; Alonso-Caneiro, D.; Collins, M.J. Corneal changes following short-term miniscleral contact lens wear. Contact Lens Anterio. 2014, 37, 461-468. 45. Schifrin, L.G.; Rich, W.J. (Eds.). 1984. The contact lens industry: structure, competition, and public policy. DIANE Publishing 46. Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105-121. 47. Dergunov, S.A.; Mun, G.A. γ-irradiated chitosan-polyvinyl pyrrolidone hydrogels as pH-sensitive protein delivery system. Radiat. Phys. Chem. 2009, 78, 65-68. 48. Efron, N.; Morgan, P.B.; Cameron, I.D.; Brennan, N.A.; Goodwin, M. Oxygen permeability and water content of silicone hydrogel contact lens materials. Optom. Vis. Sci. 2007, 84, E328-E337. 49. Nicolson, P.C.; Vogt, J. Soft contact lens polymers: an evolution. Biomaterials 2001, 22, 3273-3283. 50. Lai, Y.-C. The role of bulky polysiloxanylalkyl methacrylates in oxygen permeable hydrogel materials. Polym. Mater. Sci. Eng. 1993, 228-229. 51. González-Méijome, J.M.; González-Pérez, J.; Fernandes, P.R.B.; Ferreira, D.P.L.; Mollá, S.; Compañ-Moreno, V. Silicone hydrogel materials for contact lens applications. Concise Encylopedia of High Performance Silicones 2014, 293-308. 52. Efron, N. (Eds.). 2016. Contact Lens Practice E-Book. Elsevier Health Sciences 53. Kastl, P. (Eds.). 1995. Contact Lenses: The CLAO Guide to Basic Science and Clinical Practice, Dubuque, IA: Kendall. Hunt Publishing Company 54. Efron, N. (Eds.). 2012. Contact lens complications. Elsevier 55. Fatt, I. New physiological paradigms to assess the effect of lens oxygen transmissibility on corneal health. CLAO J. 1996, 22, 25-29. 56. French, K. Contact lens material properties. Part 3–Oxygen performance. Optician 2005, 230, 16-21. 57. Efron, N. (Eds.). 2002. Contact lenses A-Z. Butterworth-Heinemann 58. Morgan, P.B.; Efron, N. The oxygen performance of contemporary hydrogel contact lenses. Contact Lens Anterio. 1998, 21, 2-6. 59. Korogiannaki, M.; Guidi, G.; Jones, L.; Sheardown, H. Timolol maleate release from hyaluronic acid-containing model silicone hydrogel contact lens materials. J. Biomater. Appl. 2015, 30, 361-376. 60. Tighe, B.J. A decade of silicone hydrogel development: surface properties, mechanical properties, and ocular compatibility. Eye contact lens 2013, 39, 4-12. 61. Yuan, Y.; Lee, T.R. (Eds.). 2013. Contact angle and wetting properties. Springer 62. French, K. Contact lens material properties part 1: Wettability. Optician 2005, 230, 20-28. 63. Jones, L.; Senchyna, M.; Glasier, M.-A.; Schickler, J.; Forbes, I.; Louie, D.; May, C. Lysozyme and lipid deposition on silicone hydrogel contact lens materials. Eye contact lens 2003, 29, S75-S79. 64. Luensmann, D.; Jones, L. Albumin adsorption to contact lens materials: a review. Contact Lens Anterio. 2008, 31, 179-187. 65. Garrett, Q.; Garrett, R.W.; Milthorpe, B.K. Lysozyme sorption in hydrogel contact lenses. Invest. Ophthalmol. Vis. Sci. 1999, 40, 897-903. 66. Franklin, V.; Bright, A.; Pearce, E.; Tighe, B. Hydrogel lens spoilation Part 5: Tear proteins and proteinaceous films. Optician 1992, 204, 16-26. 67. Garrett, Q.; Chatelier, R.C.; Griesser, H.J.; Milthorpe, B.K. Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly (HEMA) hydrogels. Biomaterials 1998, 19, 2175-2186. 68. Steffen, R.; Schnider, C. A next-generation silicone hydrogel lens for daily wear. Optician Sutton 2004, 23-25. 69. Zhao, Z.; Carnt, N.A.; Aliwarga, Y.; Wei, X.; Naduvilath, T.; Garrett, Q.; Korth, J.; Willcox, M.D. Care regimen and lens material influence on silicone hydrogel contact lens deposition. Optom. Vis. Sci. 2009, 86, 251-259. 70. Jones, L.; Mann, A.; Evans, K.; Franklin, V.; Tighe, B. An in vivo comparison of the kinetics of protein and lipid deposition on group II and group IV frequent-replacement contact lenses. Optom. Vis. Sci. 2000, 77, 503-510. 71. Jones, L.; Powell, C.H. Uptake and release phenomena in contact lens care by silicone hydrogel lenses. Eye contact lens 2013, 39, 29-36. 72. Senchyna, M.; Jones, L.; Louie, D.; May, C.; Forbes, I.; Glasier, M.-A. Quantitative and conformational characterization of lysozyme deposited on balafilcon and etafilcon contact lens materials. Curr. Eye Res. 2004, 28, 25-36. 73. Carnell, S.; Campbell, D.; Ross, G.; Tighe, B. Dehydration at the lens surface: Surface energy and surfactant persistence. 2011, 74. Bhamra, T.S.; Tighe, B.J. Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development. Contact Lens Anterio. 2017, 40, 70-81. 75. French, K. Contact lens material properties part 2: mechanical behaviour and modulus. Optician 2005, 230, 29-34. 76. Dumbleton, K. Noninflammatory silicone hydrogel contact lens complications. Eye contact lens 2003, 29, S186-S189. 77. Mullarney, M.P.; Seery, T.A.; Weiss, R. Drug diffusion in hydrophobically modified N, N-dimethylacrylamide hydrogels. Polymer 2006, 47, 3845-3855. 78. Valdebenito, A.; Encinas, M.V. Effect of solvent on the free radical polymerization of N, N‐dimethylacrylamide. Polym. Int. 2010, 59, 1246-1251. 79. Parambil, A.M.; Puttaiahgowda, Y.M.; Shankarappa, P. Copolymerization of N-Vinyl pyrrolidone with methyl methacrylate by Ti (III)-DMG redox initiator. Turk. J. Chem. 2012, 36, 397-409. 80. Tranoudis, I.; Efron, N. Tensile properties of soft contact lens materials. Contact Lens Anterio. 2004, 27, 177-191. 81. Abbasi, F.; Mirzadeh, H.; Katbab, A.A. Modification of polysiloxane polymers for biomedical applications: a review. Polym. Int. 2001, 50, 1279-1287. 82. Abbasi, F.; Mirzadeh, H.; Simjoo, M. Hydrophilic interpenetrating polymer networks of poly (dimethyl siloxane)(PDMS) as biomaterial for cochlear implants. J. Biomater. Sci. Polym. Ed. 2006, 17, 341-355. 83. Chen, D.; Chen, F.; Hu, X.; Zhang, H.; Yin, X.; Zhou, Y. Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Compos. Sci. Technol. 2015, 117, 307-314. 84. Mi, H.-Y.; Jing, X.; Huang, H.-X.; Turng, L.-S. Novel polydimethylsiloxane (PDMS) composites reinforced with three-dimensional continuous silica fibers. Mater. Lett. 2018, 210, 173-176. 85. Rudy, A.; Kuliasha, C.; Uruena, J.; Rex, J.; Schulze, K.D.; Stewart, D.; Angelini, T.; Sawyer, W.; Perry, S.S. Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS). Tribol. Lett. 2017, 65, 3. 86. Lin, C.-H.; Lin, W.-C.; Yang, M.-C. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly (dimethyl siloxane-urethane)/Pluronic F127. Colloids Surf. B Biointerfaces 2009, 71, 36-44. 87. Gezer, P.G.; Brodsky, S.; Hsiao, A.; Liu, G.L.; Kokini, J.L. Modification of the hydrophilic/hydrophobic characteristic of zein film surfaces by contact with oxygen plasma treated PDMS and oleic acid content. Colloids Surf. B Biointerfaces 2015, 135, 433-440. 88. Lee, D.; Yang, S. Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sens. Actuators B Chem. 2012, 162, 425-434. 89. Sui, G.; Wang, J.; Lee, C.-C.; Lu, W.; Lee, S.P.; Leyton, J.V.; Wu, A.M.; Tseng, H.-R. Solution-phase surface modification in intact poly (dimethylsiloxane) microfluidic channels. Analyt. Chem. 2006, 78, 5543-5551. 90. Bhattacharya, S.; Datta, A.; Berg, J.M.; Gangopadhyay, S. Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. S. 2005, 14, 590-597. 91. Tong, L.; Zhou, W.; Zhao, Y.; Yu, X.; Wang, H.; Chu, P.K. Enhanced cytocompatibility and reduced genotoxicity of polydimethylsiloxane modified by plasma immersion ion implantation. Colloids Surf. B Biointerfaces 2016, 148, 139-146. 92. Yue, Z.; Liu, X.; Molino, P.J.; Wallace, G.G. Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid–collagen conjugate for neural interfacing. Biomaterials 2011, 32, 4714-4724. 93. Vickers, J.A.; Caulum, M.M.; Henry, C.S. Generation of hydrophilic poly (dimethylsiloxane) for high-performance microchip electrophoresis. Analyt. Chem. 2006, 78, 7446-7452. 94. Song, M.; Kwon, Y. Synthesis and Properties of Siloxane-Containing Hybrid Hydrogels with α, ω-Functionalized Macromers. J. Nanosci. Nanotechnol. 2011, 11, 4406-4413. 95. Abbasi, F.; Mirzadeh, H. Properties of poly (dimethylsiloxane)/hydrogel multicomponent systems. J. Polym. Sci. B Polym. Phys. 2003, 41, 2145-2156. 96. Bulla, D.; Morimoto, N. Deposition of thick TEOS PECVD silicon oxide layers for integrated optical waveguide applications. Thin Solid Films 1998, 334, 60-64. 97. Flanigen, E.M.; Broach, R.; Wilson, S. (Eds.). 2010. Zeolites in industrial separation and catalysis. 98. Rösch, L.; John, P.; Reitmeier, R. (Eds.). 2000. Silicon compounds, organic. 99. Das, N. A review on nature and preparation of hydrogel based on starting material. Int. J. Pharm. Pharm. Sci. 2013, 5, 55-58. 100. Maldonado-Codina; Carole; Efron, N. Hydrogel lenses - materials and manufacture. A review. Optometry in Practice 2003, 4, 101 - 115. 101. Lai, Y.C.; Valint, J.; Paul, L. Control of properties in silicone hydrogels by using a pair of hydrophilic monomers. J. Appl. Polym. Sci. 1996, 61, 2051-2058. 102. Wang, Y.; Tan, G.; Zhang, S.; Guang, Y. Influence of water states in hydrogels on the transmissibility and permeability of oxygen in contact lens materials. Appl. Surf. Sci. 2008, 255, 604-606. 103. Pozuelo, J.; Compañ, V.; González-Méijome, J.M.; González, M.; Mollá, S. Oxygen and ionic transport in hydrogel and silicone-hydrogel contact lens materials: An experimental and theoretical study. J. Membr. Sci. 2014, 452, 62-72. 104. Sun, D.; Zhou, J. Effect of water content on microstructures and oxygen permeation in PSiMA–IPN–PMPC hydrogel: a molecular simulation study. Chem. Eng. Sci. 2012, 78, 236-245. 105. Tranoudis, I.; Efron, N. Water properties of soft contact lens materials. Contact Lens Anterio. 2004, 27, 193-208. 106. Song, M.; Shin, Y.H.; Kwon, Y. Synthesis and properties of siloxane-containing hybrid hydrogels: optical transmittance, oxygen permeability and equilibrium water content. J. Nanosci. Nanotechnol. 2010, 10, 6934-6938. 107. Maldonado-Codina, C.; Morgan, P.B.; Efron, N.; Canry, J.C. Characterization of the surface of conventional hydrogel and silicone hydrogel contact lenses by time-of-flight secondary ion mass spectrometry. Optom. Vis. Sci. 2004, 81, 455-460. 108. Read, M.L.; Morgan, P.B.; Maldonado‐Codina, C. Measurement errors related to contact angle analysis of hydrogel and silicone hydrogel contact lenses. J. Biomed. Mater. Res. B 2009, 91, 662-668. 109. Zhao, Z.B.; An, S.S.; Xie, H.J.; Han, X.L.; Wang, F.H.; Jiang, Y. The relationship between the hydrophilicity and surface chemical composition microphase separation structure of multicomponent silicone hydrogels. J. Phys. Chem. B 2015, 119, 9780-9786. 110. Wang, J.; Li, X. Preparation and characterization of interpenetrating polymer network silicone hydrogels with high oxygen permeability. J. Appl. Polym. Sci. 2010, 116, 2749-2757. 111. Green-Church, K.B.; Nichols, K.K.; Kleinholz, N.M.; Zhang, L.; Nichols, J.J. Investigation of the human tear film proteome using multiple proteomic approaches. Mol. Vis. 2008, 14, 456. 112. Demirel, G.; Özçetin, G.; Turan, E.; Çaykara, T. pH/Temperature–Sensitive Imprinted Ionic Poly (N‐tert‐butylacrylamide‐co‐acrylamide/maleic acid) Hydrogels for Bovine Serum Albumin. Macromol. Biosci. 2005, 5, 1032-1037. 113. Moradi, O.; Modarress, H.; Noroozi, M. Experimental study of albumin and lysozyme adsorption onto acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) surfaces. J. Colloid Interface Sci. 2004, 271, 16-19. 114. Kim, J.; Somorjai, G.A. Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared− visible sum frequency generation and fluorescence microscopy. J. Am. Chem. Soc. 2003, 125, 3150-3158. 115. Garrett, Q.; Laycock, B.; Garrett, R.W. Hydrogel lens monomer constituents modulate protein sorption. Invest. Ophthalmol. Vis. Sci. 2000, 41, 1687-1695. 116. Luensmann, D.; Jones, L. Protein deposition on contact lenses: the past, the present, and the future. Contact Lens Anterio. 2012, 35, 53-64. 117. Subbaraman, L.N.; Glasier, M.-A.; Senchyna, M.; Sheardown, H.; Jones, L. Kinetics of in vitro lysozyme deposition on silicone hydrogel, PMMA, and FDA groups I, II, and IV contact lens materials. Curr. Eye Res. 2006, 31, 787-796. 118. De, G.; Karmakar, B.; Ganguli, D. Hydrolysis–condensation reactions of TEOS in the presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature. J. Mater. Chem. 2000, 10, 2289-2293. 119. Van Beek, M.; Weeks, A.; Jones, L.; Sheardown, H. Immobilized hyaluronic acid containing model silicone hydrogels reduce protein adsorption. J. Biomater. Sci. Polym. Ed. 2008, 19, 1425-1436. 120. Gavara, R.; Compañ, V. Oxygen, water, and sodium chloride transport in soft contact lenses materials. J. Biomed. Mater. Res. B 2017, 105, 2218-2231. 121. Maldonado-Codina, C.; Morgan, P.B.; Efron, N.; Canry, J.-C. Characterization of the surface of conventional hydrogel and silicone hydrogel contact lenses by time-of-flight secondary ion mass spectrometry. Optom. Vis. Sci. 2004, 81, 455-460. 122. Duench, S.; Sorbara, L.; Keir, N.; Simpson, T.; Jones, L. Impact of silicone hydrogel lenses and solutions on corneal epithelial permeability. Optom. Vis. Sci. 2013, 90, 546-556. 123. Lord, M.S.; Stenzel, M.H.; Simmons, A.; Milthorpe, B.K. The effect of charged groups on protein interactions with poly (HEMA) hydrogels. Biomaterials 2006, 27, 567-575. 124. Carney, F.P.; Nash, W.L.; Sentell, K.B. The adsorption of major tear film lipids in vitro to various silicone hydrogels over time. Invest. Ophthalmol. Vis. Sci. 2008, 49, 120-124.
|