|
[1] S. Kligerman, L. Cai, C.S. White, “The effect of computer-aided detection on radiologist performance in the detection of lung cancers previously missed on a chest radiograph,” J. Thorac. Imaging 28 (4):244–252, 2013. [2] R.L.F. Cecil, L. Goldman, A.I. Schafer, “Goldman’s Cecil Medicinet,” Saunders Elsevier, Philadelphia, 2012. [3] B.J. Hillman, C.A. Catherine, M.R. Mabry, J.H. Sunshine, S.D. Kennedy, M. Noether, “Frequency and costs of diagnostic imaging in office practice a comparison of self-referring and radiologist-referring physicians,” N. Engl. J. Med, 323(23): 1604-1608, 1990. [4] J. Paul, M. Levine, R. Fraser, and C. Laszlo, “The measurement of total lung capacity based on a computer analysis of anterior and lateral radiographic chest images,” IEEE Trans. Biomed. Eng., vol. 21, no. 6, pp. 444–451, Nov. 1974. [5] F. Carrascal, J. Carreira, M. Souto, P. Tahoces, L. Gomez, and J. Vidal, “Automatic calculation of total lung capacity from automatically traced lung boundaries in postero-anterior and lateral digital chest radiographs,” Med. Phys., vol. 25, no. 7, pp. 1118–1131, 1998. [6] H. Becker, W. Nettleton, P. Meyers, J. Sweeney, and C. Nice, “Digital computer determination of a medical diagnostic index directly from chest X-ray images,” IEEE Trans. Biomed. Eng., vol. 11, pp. 67–72, 1964. [7] P.Meyers, C. Nice, H. Becker, W. Nettleton, J. Sweeney, and G.Meckstroth,“Automated computer analysis of radiographic images,” Radiology, vol. 83, pp. 1029–1034, 1964. [8] G. L. Snider, J. L. Klinerman, W. M. Thurlbeck, and Z. H. Bengali, “The definition of emphysema,” in Rep. Nat. Hearth, Lung, Blood Inst., Div. Lung Disease Workshop, vol. 132, pp. 182–185, 1985. [9] M.Miniati, G. Coppini, S. Monti, M. Bottai, M. Paterni, and E.M. Ferdeghini,“Computer-aided recognition of emphysema on digital chest radiography,” Eur. J. Radiol., 2010. [10] G. Coppini,M.Miniati, S.Monti, M. Paterni, R. Favilla, and E.M. Ferdeghini, “A computer-aided diagnosis approach for emphysema recognition in chest radiography,” Med. Eng. Phys., vol. 35, no. 1, pp. 63–73, 2013. [11] Kampa M, Castanas, “Human health effects of air pollution.” Environ Pollut., 151(2): 362–367, 2008. [12] Aluttis, C., Bishaw, T., and Frank, M. W, “The workforce for health in a globalized context - global shortages and international migration.” Global Health Action, 2014. [13] D.O. Staiger, D.I. Auerbach, P.I. Buerhaus, “Comparison of physician work- force estimates and supply projections,” J. Am. Med. Assoc., 302(15):1674-1680, 2009. [14] P.J. Mazzone, N. Obuchowski, M. Phillips, B. Risius, B. Bazerbashi, M. Meziane, “Lung cancer screening with computer aided detection chest radiography,” Public Libr. Sci., 2013. [15] E.B. Cole, Z. Zhang, H.S. Marques, R.E. Hendrick, M.J. Yaffe, E.D. Pisano, “Impact of computer-aided detection systems on radiologist accuracy with digital mammography,” Am. J. Roentgenol., 203(4):909-916, 2014. [16] S. Candemir, S. Jaeger, K. Palaniappan, J. Musco, R. Singh, Z. Xue, A. Karargyris, S. Antani, G. Thoma, and C. McDonald, “Lung segmentation in chest radiographs using anatomical atlases with non-rigid registration,” IEEE Trans. Med. Imag., 2014. [17] Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V. & Garcia-Rodriguez, J., “A review on deep learning techniques applied to semantic segmentation,” CoRR, 2017. [18] Long, J., Shelhamer, E. & Darrell, T., “Fully convolutional networks for semantic segmentation,” CoRR, 2014. [19] Y.-T. Pai, Y.-F. Chang, S.-J. Ruan, “Adaptive thresholding algorithm: efficient computation technique based on intelligent block detection for degraded document images,” Pattern Recogn, 2010. [20] C.-S. Hung, S.-J. Ruan, “Efficient adaptive thresholding algorithm for in- homogeneous document background removal,” Multim. Tools Appl, 2014. [21] T. Ridler, S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybernet., pp. 630-632, 1978. [22] J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi, K. Komatsu, M. Matsui, H. Fujita, Y. Kodera, and K. Doi, “Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists detection of pulmonary nodules,” Am. J. Roentgenol., vol. 174, pp. 71–74, 2000. [23] N. R. S. Parveen and M. M. Sathik, “Enhancement of bone fracture images by equalization methods,” in 2009 International Conference on Computer Technology and Development, vol. 2, pp. 391–394, 2009. [24] A. Mustapha, A. Hussain, and S. A. Samad, “A new approach for noise reduction in spine radiograph images using a non-linear contrast adjustment scheme based adaptive factor,” Sci. Res. Essays, vol. 6, no. 20, pp. 4246–4258, 2011, [25] Siti Arpah Ahmad, Mohd Nasir Taib, Noor Elaiza Abdul Khalid, and Haslina Taib, “An Analysis of Image Enhancement Techniques for Dental X-ray Image Interpretation,” International Journal of Machine Learning and Computing, vol. 2, no. 3, Jun. 2012. [26] W. Niblack, “An Introduction to Digital Image Processing,” International Conference on Document Analysis and Recognition, 2003. [27] J. Sauvola and M. Pietikäinen, “Adaptive Document Image Binarization,” Pattern Recognition, vol. 33, pp. 225-236, 2000. [28] N. Ostu, “A Threshold Selection Method From Gray-Level Histogram,” IEEE Trans on Systems, Man and Cybernetics, vol. 9, pp. 62-66, 1979. [29] B. van Ginneken, B.M.T.H. Romeny, M.A. Viergever, “Computer-aided diagno- sis in chest radiography: a survey.” IEEE Trans. Med. Imaging, 20(12):1228–1241, 2011. [30] L. Li, Y. Zheng, M. Kallergi, R.A. Clark, “Improved method for automatic identification of lung regions on chest radiographs,” Acad. Radiol., 8(7):629–638, 2001. [31] J. Toriwaki, J. Hasegawa, T. Fukumura, Y. Takagi, “Computer analysis of chest photofluorograms and its applications to automated screening,” Automedica 3, 1980. [32] Z. Yue, A. Goshtasby, L.V. Ackerman, “Automatic detection of rib borders in chest radiographs, IEEE Trans.” Med. Imaging, 14(3):525–536, 1995. [33] P. Annangi, S. Thiruvenkadam, A. Raja, H. Xu, X. Sun, and L. Mao, “A region based active contour method for X-ray lung segmentation using prior shape and low level features,” Proc. Int. Symp. Biomed. Imag.: From Nano to Macro, pp. 892–895, 2010. [34] B. van Ginneken, M.B. Stegmann, M. Loog, “Segmentation of anatomical structures in chest radiographs using supervised method: a comparative study on a public database,” Med. Image Anal., 10(1):19–40, 2006. [35] M. Loog, B. Ginneken, “Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification,” IEEE Trans. Med. Imag., vol. 25, no. 5, pp. 602–611, May 2006. [36] M. Loog, B. Ginneken, “Supervised segmentation by iterated contextual pixel classification,” in Proc. Int. Conf. Pattern Recognit., pp. 925–928, 2002. [37] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in CVPR, 2016. [38] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A.C. Berg, “SSD: Single Shot MultiBox Detector,” in Computer Vision and Pattern Recognition, Cornell University Library, Dec. 2015. [39] O. Ronneberger, P. Fischer, T. Brox, “U- Net: Convolutional Networks for Biomedical Image Segmentation,” Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, pp. 234-241, 2015. [40] K. Suzuki, H. Abe, H. McMahon, K. Doi, “Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN),” IEEE Trans. Med. Imaging, 25(4):406–416, 2006. [41] T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, “Active shape models - their training and application,” Comput. Vis. Image Underst., 61(1):38–59, 1995. [42] T. Yu, J. Luo, N. Ahuja, “Shape regularized active contour using iterative global search and local optimization,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 655–662, 2005. [43] B. Ginneken, A. F. Frangi, J. J. Staal, B. M. Romeny, and M. A. Viergever, “Active shape model segmentation with optimal features,” IEEE Trans. Med. Imag., vol. 21, no. 8, pp. 924–933, Aug. 2002. [44] B. Ginneken, S. Katsuragawa, B. M. Romeny, K. Doi, and M. A. Viergever, “Automatic detection of abnormalities in chest radiographs using local texture analysis,” IEEE Trans. Med. Imag., vol. 21, no. 2, pp. 139–149, Feb. 2002. [45] D. Seghers, D. Loeckx, F. Maes, D. Vandermeulen, P. Suetens, “Minimal shape and intensity cost path segmentation,” IEEE Trans. Med. Imaging, 26(8):1115–1129, 2007. [46] Y. Shi, F. Qi, Z. Xue, L. Chen, K. Ito, “Segmentation lung fields in serial chest radiographs using both population-based and patient-specific shape statistics,” IEEE Trans. Med. Imaging, 27(4):481–494, 2008. [47] A. Dawoud, “Lung segmentation in chest radiographs by fusing shape information in iterative thresholding,” IET Comput., 5(3):185–190, 2008. [48] G. Coppini, M. Miniati, S. Monti, M. Paterni, R. Favilla, E.M. Ferdeghini, “A computer-aided diagnosis approach for emphysema recognition in chest radiography,” Med. Eng. Phys., 35(1):63–73, 2013. [49] V. Badrinarayanan, A. Kendall, R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” Computing Research Repository, Oct. 2015. [50] A. Rosenfeld, “Digital Picture Processing,” New York: Academic, 1976. [51] L. S. Davis, A. Rosenfeld, and J. S. Weszka, “Region extraction by averaging and [52] thresholding,” IEEE Trans. Syst., Man, Cybern., vol. SMC-5, pp. 383-388, May. 1975. [53] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov, “Improving neural networks by preventing coadaptation of feature detectors.” Computing Research Repository, 2012. [54] S. Jaeger, S. Candemir, S. Antani, Y.X.J. Wang, P.X. Lu, G. Thoma, “Two public chest X-ray datasets for computer-aided screening of pulmonary diseases,” Quant. Imag. Med. Surg., 4(6):475-477, 2014.
|