跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/20 12:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林暐智
研究生(外文):Wei-Jhih Lin
論文名稱:磨床結構剛性與實磨動態行為之研究
論文名稱(外文):Study on Structure Stiffness and Process Dynamic Behavior for Grinding Machines
指導教授:林盛勇
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:97
中文關鍵詞:平面磨床結構剛性模態參數動態行為
外文關鍵詞:surface grinding machine-toolstructural stiffnessmodal parameterdynamic behavior
相關次數:
  • 被引用被引用:2
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
為了追求工具機的低經濟成本、高性能及高生產效能,普遍朝向高速化與輕量化的目標發展。然而工具機之加工性能與其結構振動問題息息相關,為了得到較好的研磨品質,須進一步瞭解工具機結構本身的剛性與動態特性,將有助於機台結構設計製造上的補強及避免結構共振的發生。在實際磨削加工過程中,振動的問題可能會帶來加工表面粗糙度不佳、尺寸精度降低等問題,甚至縮短了工具機之加工精度與使用壽命。因此,探討工具機結構剛性以及振動的成因,已成為工具機業者積極努力的目標。
本研究主要以實務性的做法來探討大型龍門平面磨床及小型平面磨床結構特性與研磨過程的動態行為。首先,針對平面磨床結構進行數值與實驗模態分析,獲得磨床結構重要部件及整機系統的結構特性及較脆弱的位置。將數值模態分析結果與實驗模態分析結果做一比對驗證,比較兩者間的差異,據以修正數值模擬分析模型的假設,作為後續結構改善設計之依據。再者,探討不同主軸座對小型平面磨床整機的剛性影響,利用實驗模態分析所求得之模態參數進行比較確認剛性是否得到提升。最後,進行實磨動態量測,藉由加速度規及麥克風線上偵測磨削過程動態響應訊號,以瞭解小型平面磨床於實際磨削過程的動態行為。結果顯示,由實驗模態分析結果得知,大型龍門平面磨床在可能發生共振的頻率範圍內計有兩個模態容易引發結構共振,小型平面磨床計有三個模態容易引發結構共振,由磨削實驗結果得知,當進給速度越快與磨削深度越深時,振動訊號越大,表面粗造度越差。
In order to pursuit low economic cost, high performance and high production efficiency for machine tools, the general trend has been to move towards the goal of high-speed and light-weight developing. However, the cutting performance of a machine-tool is closely related to its structural vibration. In order to obtain better grinding quality, there is a need further to investigate the rigidity and dynamic characteristics of the machine tools, to achieve a better reinforcement of the structural design of the machine tools and avoid structural vibrations. Generally, issues of vibration during the grinding processes may cause problems such as poor surface roughness and dimensional accuracy, even leading to a reduction of the machining accuracy and life of the machine tool. Therefore, the investigations of the structural stiffness and factors causing vibration of the machine-tool are the most important topic at present for machine-tool industry and related manufacturers.
This study investigates the structural characteristics and dynamic behavior of a large gantry-type surface grinding machine and the small general surface grinding machine in a practical approach. First of all, the numerical and experimental modal analyses are performed for these surface grinding machine structures, and the structural characteristics and weaker zones of the important structure parts and whole systems are obtained. Comparisons are made between the results of the numerical and the experimental modal analyses to identify their differences, which form the basis for modifying the assumptions of the analytical model for numerical modal analysis and for subsequent improvement design on structures. Furthermore, the impact of the different geometrical configurations of spindle seat on the entire structure stiffness of the small surface grinding machine was examined. The modal parameters obtained from the experimental modal analysis were compared crossly to identify whether if the stiffness has been increased or not. Finally, in order to investigate the dynamic behavior of the small surface grinding machine during its grinding process, the grinding experiments were carried out through the accelerometer and microphone to detecting the dynamic response during the grinding processes. The results obtained from the experimental modal analysis indicate that there are two modes in which the structural resonance is easily to be excited in the large gantry-type surface grinding machine while there are three modes in which the structural resonance is easily to be excited in the small surface grinding machine within the possibly resonant vibration frequency range. According to the grinding experimental results, the faster feed rate and the larger grinding depth, the higher the vibration signals are and the poorer the surface roughness becomes.
摘要....................................................i
Abstract..............................................ii
誌謝...................................................iv
目錄....................................................v
表目錄................................................vii
圖目錄...............................................viii
第一章 前言..............................................1
1.1 研究背景.............................................1
1.2 研究動機與目的.......................................1
1.3 文獻回顧.............................................2
1.4 論文架構.............................................6
第二章 理論基礎..........................................7
2.1 頻率響應函數.........................................7
2.2 快速傅立葉轉換......................................11
2.3 聲學原理............................................15
2.4 磨削原理............................................16
第三章 大型龍門平面磨床模態分析...........................17
3.1 大型龍門平面磨床....................................17
3.2 模態分析方法........................................17
3.3 數值模態分析........................................19
3.3.1 有限元素軟體......................................19
3.3.2 分析方法與步驟....................................20
3.4 實驗模態分析........................................23
3.4.1 實驗儀器設備與規格................................24
3.4.2 實驗方法與步驟....................................27
3.4.3 結果與討論........................................34
第四章 小型平面磨床結構特性與磨削過程動態行為..............43
4.1 方形平面磨床........................................43
4.1.1數值模態分析.......................................45
4.1.2實驗模態分析.......................................47
4.1.3結果與討論.........................................51
4.2 圓形平面磨床........................................60
4.2.1 不同設計部位......................................60
4.2.2 數值模態分析......................................61
4.2.3 實驗模態分析......................................61
4.2.4 結果與討論........................................65
4.3 不同主軸座之平面磨床實驗結果與討論....................74
4.4 磨削過程之動態行為..................................77
第五章 結論.............................................84
參考文獻................................................85
附錄A..................................................88
Extended Abstract......................................93
簡 歷.................................................97
[1]Mohit Law,Yusuf Altintas, A.Srikantha Phani,2013,Rapid evaluation and optimization of machine tools with position-dependent stability, International Journal of Machine Tools & Manufacture,Vol.68,pp.81-90.
[2]Xiao-Jin Wan, Yan Zhang, Xin-Da Huang,2013,Investigationofinfluence of fixture layoutondynamicresponse of thin-wallmulti-framedwork-pieceinmachining, International Journal of Machine Tools & Manufacture,Vol.75,pp.87-99.
[3]Harshad Sonawanea, T Subramaniana,2017,Improved Dynamic Characteristics for Machine Tools Structure Using Filler Materials, Procedia CIRP,Vol.58,pp.399-404.
[4]R. Farshidi, D. Trieu, S.S. Park, T. Freiheit,2010,Non-contact experimental modal analysis using air excitation and a microphone array,Measurement,Vol.43,pp.755-765.
[5]Walunj Prashant S., V.N.Chougule, Anirban C. Mitra,2015,Investigation on modal parameters of rectangular cantilever beam using Experimental modal analysis, Materials Today: Proceedings,Vol.2,pp.2121-2130.
[6]Hui Cai, Bo Luo, Xinyong Mao, Lin Gui, Bao Song, Bin Li, Fangyu Peng,2015,A Method for Identification of Machine-tool Dynamics underMachining,Procedia CIRP,Vol.31,pp.502-507.
[7]Vincent Gagnol, Thien-PhuLe,PascalRay,2011,Modal identification of spindle-tool unit in high-speed machining,Mechanical Systems and Signal Processing,Vol.25,pp.2388-2398.
[8]Xinyong Mao, Bo Luo, Bin Li, Hui Cai, Hongqi Liu,Fangyu Pen,An approach for measuring the FRF of machine tool structure without knowing any input force, International Journal of Machine Tools & Manufacture,Vol.86,pp.62-67.
[9]Bin Li, Bo Luo, Xinyong Mao, Hui Cai, Fangyu Peng, Hongqi Liu,2013,A new approachto identifying the dynamic behavior of CNC machine tools with respect todifferentworktablefeed speeds,International Journal of Machine Tools &Manufacture,Vol.72,pp.73-84
[10]Tomas Österlind, Lorenzo Daghini, Andreas Archenti,2017, Evaluation of tool steel alloy performance in a milling operation through operational dynamic parameters, International Journal of Machine Tools & Manufacture,Vol.114,pp.54-59.
[11]Liping Zhao, Hongren Chen, Yiyong Yao, Guangzhou Diao,2016,A new approach to improving the machining precision based on dynamic sensitivity analysis, International Journal of Machine Tools & Manufacture,Vol.102,pp.9-21.
[12]Sung-Kyum Cho, Hyun-Jun Kim, Seung-Hwan Chang,2011,The application of polymer composites to the table-top machine tool components for higher stiffness and reduced weight, Composite Structures,Vol.93,pp.492-501.
[13]Dongju Chen, Jinwei Fan, Feihu Zhang,2012,Dynamic and static characteristics of a hydrostatic spindle for machine tools, Journal of Manufacturing Systems,Vol.31,pp26-33.
[14]Ling Zhao, Wu-yi Chen, Jian-feng Ma, Yong-bin Yang,2008, Structural Bionic Design and Experimental Verification of a Machine Tool Column, Journal of Bionic Engineering Suppl,pp.46-52.
[15]Sergio Junichi Idehara , Milton Dias Junior,2015,Modal analysis of structures under non-stationary excitation, Engineering Structures,Vol.99,pp.56-62.
[16]M. Abo-Elkhier, A.A. Hamada, A. Bahei El-Deen,2014,Prediction of fatigue life of glass fiber reinforced polyester composites using modal testing,International Journal of Fatigue,Vol.69,pp.28-35.
[17]A. S. Delgado, E. Ozturk, N. Sims,2013,Analysis of Non-Linear Machine Tool Dynamic Behavior, Procedia Engineering,Vol.63,pp.761-770.
[18]Chao Sun,, Xin Shen, Wei Wang,2016,Study on the milling stability of titanium alloy thin-walled parts consideringthe stiffness characteristics of tool and workpiece,Procedia CIRP,Vol.56,pp.580-584.
[19]曾亞平、周志雄、何志偉,2011,磨床床身結構分析與優化設計,現在製造工程,第7期,第118-121頁。
[20]許丹、劉強、袁松梅、劉景棉,2008,一種龍門式加工中心橫樑的動力學模擬研究,振動與衝擊,第27卷,第2期,第168-171頁。
[21]劉偉虔、張進生、韓德建、孫芹、郭全傑、孫建剛、亓愛林,2015,大規格鋁材龍門加工中心橫梁靜動態特性分析,組合機床與自動化加工技術,第9期,第38-41頁。
[22]劉穩善、惠記莊、張天明,2004,銑床振動和噪聲測試,長安大學學報,第24卷,第6期,第80-83頁。
[23]原一高、張肖肖、丁健俊、施耀祖,2012,磨削參數對超細硬質合金磨削表面粗糙度的影響,工具技術,第46卷,41-44頁。
[24]王?村、林怡馨,2007,鐵琴片振動特性與聲音關聯性之探討,中華民國音響學會年會暨第二十屆論文發表會。
[25]柯曉龍、黃海濱、劉建春,2013,基於精密磨削的振動監測技術研究與應用,重慶理工大學學報(自然科學),第27卷,第12期,第77-81頁。
[26]盛曉敏、資嘉磊、宓海青、陳濤,2006,工程陶瓷高效平面磨削表面波文度試驗研究,工程設計學報,第13卷,第6期,第421-430頁。
[27]張永鵬、方俊傑、康 淵、張凱明、王俊傑,2015,結合時頻分析及統計製程管制於研磨狀態診斷,技術學刊,第三十卷,第一期,第65-72頁。
[28]周志中、張浮明,2010,磨床振動之研究,修平學報,第二十一期,第267-282頁。
[29]董凱夫、翁澤宇、沈曉慶、盧波、段京虎、揚托,2008,大型數控龍門平面磨床動態特性的有限元分析,數字技術與機械加工工藝裝備,第12期,第54-56頁。
[30]謝飛、殷鳴、譚峰、殷國富,2017,數控龍門平面磨床的動靜態性能分析,第5期,第44卷,第1-5頁。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top