資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(216.73.216.14) 您好!臺灣時間:2025/12/25 06:38
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
黃梓玹
研究生(外文):
Zih-Syuan Huang
論文名稱:
利用邏輯斯特迴歸與ResNet50方法分析腹部超音波影像品質:假體實驗
論文名稱(外文):
Analyzing Image Quality of Abdominal Ultrasound Tomography Using Logistic Regression and ResNet50 Approaches: A Phantom Study
指導教授:
陳泰賓
指導教授(外文):
Tai-Been Chen
學位類別:
碩士
校院名稱:
義守大學
系所名稱:
資訊工程學系
學門:
工程學門
學類:
電資工程學類
論文種類:
學術論文
論文出版年:
2019
畢業學年度:
107
語文別:
中文
論文頁數:
43
中文關鍵詞:
影像品質
、
轉移學習
、
卷積神經網路
、
支持向量機
、
邏輯斯特迴歸
外文關鍵詞:
Image quality
、
Transfer learning
、
Convolutional neural network
、
Support vector machine
、
Logistic Regression
相關次數:
被引用:0
點閱:351
評分:
下載:0
書目收藏:1
臨床超音波影像品質通常為主觀性評估,目前為止超音波影像品質評估標準無明確定義;因此,本研究使用預訓練模型ResNet50以及傳統統計分析方法針對腹部超音波影像品質進行分析。
超音波儀器為SonoSite 180+及扇形探頭頻率為2-5MHz,掃描人體腹部假體(E-130328-368T)進行實驗,掃瞄範圍為肋緣以下前腹部主要於影像中可觀察到肝、膽、胰、脾、腎之位置為主,造影深度共五種深至淺分別為腹部皮下22cm、20cm、17cm、15cm、12cm,共268張影像,其中包含134張高品質影像及134張低品質影像;將影像分為訓練集140張、驗證集70張及測試集70張;計算每張影像訊雜比(Signal-to-noise ratio, SNR)、對比值(Contrast ratio, CR)及總變異量(Total Variation, TV)量化影像品質,進行邏輯斯特迴歸(Logistic Regression)建立分類模型使用;採監督式學習(Supervised learning),參考卷積神經網路之ResNet50架構以轉移學習(Transfer Learning)方式進行訓練,使用循序搜尋法(Linear Search)調整參數,將驗證集準確度最高之參數輸出作為後續ResNet50建模之用;一為直接使用ResNet50分類影像品質;二為利用ResNet50輸出之影像特徵作為預測變量,建立支持向量機(Support vector machine, SVM)影像品質分類器。
經由轉移學習後訓練完成之ResNet50直接進行分類測試集影像,分類準確度為98%、靈敏度為96%、特異度為100%;將相同訓練完成之ResNet50模型萃取出的特徵參數輸入至SVM進行分類相同測試集影像,分類準確度為98%、靈敏度為100%、特異度為96%;將每張影像之SNR及TV值量化後,進行邏輯斯特迴歸建立一分類模型,其分類準確度為97%、靈敏度為99%、特異度為94%。
實驗中將ResNet50與ResNet50+SVM兩種分類方式準確度較高;目前超音波影像品質評估方法有限且無明確定義,本研究提出了三種分類超音波影像品質評估方法。
In clinics, the quality of ultrasound image is usually subjective determination. So far, the quality of ultrasound image is not clearly defined proper criteria. In this study, ResNet50 approach and logistic regression model were used to classify the quality of ultrasound images.
The SonoSite 180+ and curve probe with frequency 2-5 MHz were used to be imaging instruments. Experimental ultrasound images were obtained from a human abdominal prosthesis (E-130328-368T). The locations of imaging were along with epigastric region. The organs were including liver, gallbladder, pancreas, spleen and kidney. The depth of imaging were including 22cm, 20cm, 17cm, 15cm and 12cm. A total of 268 images were obtained in which both high-quality and low-quality images were 134 individually. The number of images among training, validation, and testing sets were 140, 70, and 70. Each image was calculated signal-to-noise ratio (SNR), contrast ratio (CR) and total variation (TV). One Logistic Regression (LR) was applied to establish classified model for groups between high-quality and low-quality. Meanwhile, the classifiers between high-quality and low-quality groups were adopted sequence searching schema in order to obtained suitable parameters for ResNet50 via transfer learning procedure on validation set. Next, the ResNet50, a convolutional neural network algorithm, was also utilized to build a classifier for groups. The last approach was combined ResNet50 and support vector machine (SVM) to construct a classifier for groups (ResNet50+SVM). The performance of these classifiers was investigation of accuracy, specificity, and sensitivity on testing set.
The accuracy, sensitivity, and specificity were 97%, 99%, and 94% provided by LR model with predictors SNR and TV on whole sample. The accuracy, sensitivity, and specificity were 98%, 96%, and 100% provided by ResNet50 model on testing sample. The accuracy, sensitivity, and specificity were 98%, 100%, and 96% provided by ResNet50+SVM model on testing sample.
In this work, the presented methods were generated recommendable accuracy. Moreover, the performances of ResNet50 and ResNet50+SVM were simpler and more accurate than those of LR. Meanwhile, these presented methods were approved to provide objective judgment for quality of ultrasonic image.
摘 要 I
Abstract II
誌謝 III
目錄 IV
表目錄 V
圖目錄 VI
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 文獻探討 3
第三章 研究材料與方法 7
3.1研究資料來源 7
3.2造影儀器及條件 7
3.3研究流程 8
3.4定義影像品質及分類 9
3.5影像前處理 13
3.6 ResNet50及支持向量機 13
3.7 ResNet50架構及參數 18
3.8 統計分析方法 25
3.9分類成效評估方法 26
第四章 結果 28
4.1 ResNet50模型訓練結果 28
4.2 ResNet50、ResNet50+SVM及邏輯斯特迴歸模型分類結果 29
第五章 結論與未來研究方向 31
5.1結論 31
5.2未來研究方向 31
第六章 研究限制 32
參考文獻 33
[1]Christian MH. Ultrasound Image Quality Assessment: A framework for evaluation of clinical image quality. Medical Imaging. 2010.7629
[2]Kishor K. Objective Image Quality Metrics for Ultrasound Imaging. 2012.
[3]Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics. 1980. 36(4):193-202.
[4]LeCun Y, Bottou L, Bengio Y, and Haffner P. Gradient-based learning applied to document recognition. IEEE. 1998. 86(11):2278-2324.
[5]LeCun Y, Bengio Y, and Hinton G. Deep learning. Nature. 2015. 521(7553):436–444.
[6]Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, and Rabinovich A. Going deeper with convolutions. IEEE conference on computer vision and pattern recognition. 2015:1-9.
[7]Simonyan K, and Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv:1409.1556.
[8]Zeiler MD, and Fergus R. Visualizing and understanding convolutional networks. In European conference on computer vision. 2014: 818–833.
[9]Eigen D, Rolfe J, Fergus R, and LeCun Y. Understanding deep architectures using a recursive convolutional network. 2013. arXiv:1312.1847.
[10]Krizhevsky A, Sutskever I, and Hinton GE. Imagenet classification with deep convolutional neural networks. Neural informationprocessing systems. 2012: 1097–1105.
[11]Wen TH, Gasic M, Mrksic N, Su PH, Vandyke D, and Young S. Semantically conditioned lstm-based natural language generation for spoken dialogue systems. 2015. arXiv: 1508.01745.
[12]Chorowski JK, Bahdanau D, Serdyuk D, Cho K, and Bengio Y. Attention-based models for speech recognition. Neural Information Processing Systems. 2015: 577–585.
[13]Yang Z, Yang D, Dyer C, He X, Smola AJ, and Hovy EH, Hierarchical Attention Networks for Document Classification. North American Chapter of the Association for Computational Linguistics: Human Language Technologies.2016:1480-1489.
[14]Agarap AF. A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data. 10th International Conference on Machine Learning and Computing. 2018: 26-30.
[15]Alalshekmubarak A, and Smith LS. A novel approach combining recurrent neural network and support vector machines for time series classification. 9th International Conference on Innovations in Information Technology. 2013: 42–47.
[16]Hassan TM, Elmogy M, Sallam S. Diagnosis of focal liver diseases based on deep learning technique for ultrasound images. Arabian Journal for Science and Engineering August. 2017. 42(8): 3127–3140.
[17]Wu L, Cheng JZ, Li S, Lei B, Wang T, and Ni D. FUIQA: Fetal ultrasound image quality assessment with deep convolutional networks. IEEE transactions on cybernetics. 2017. 47(5):1336-1347.
[18]Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, and Liang J. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE transactions on medical imaging. 2016. 35(5):1299-1312.
[19]Agarap A F. An architecture combining convolutional neural network (CNN) and support vector machine(SVM) for image classification. 2019. arXiv:1712.03541v2.
[20]Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. 2015. arXiv:1502.03167v3.
[21]Tang Y. Deep learning using linear support vector machines.2015. arXiv:1306.0239v4.
[22]He K, Zhang X, Shaoqing, and Sun RJ. Deep residual learning for image recognition. IEEE conference on computer vision and pattern recognition 2016:770-778.
[23]Helou ES, Censor Y, Chen TB, Chern IL, De Pierro AR, Jiang M, Lu HHS. String-averaging expectation-maximization for maximum likelihood estimation in emission tomography. Inverse Problems. 2014. 30(5).
[24]Li X, Zhang S, Zhang Q, Wei X, Pan Y, Zhao J, and Yang F. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. The Lancet Oncology. 2019. 20(2):193-201.
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
支援向量機於財務預測上之應用
2.
資料採礦於職業棒球勝隊預測模式之建構
3.
建構台灣中小企業兩階段風險評估模型
4.
特徵選取為基礎之複合分類預測模式-以信用資料為例
5.
應用SVM特徵選取提升財務危機模型之預測能力
6.
運用支援向量機、邏輯斯迴歸及決策樹於乳癌存活預測模式之建構
7.
以兩階段分類法建構信用卡授信決策模型的實務評估
8.
在國際財務報導準則IFRSs下導入Crisp-DM流程建立財務風險管理平台
9.
應用支援向量機、K個最鄰近法與邏輯斯迴歸於醫療診斷
10.
應用邏輯斯迴歸與支持向量機建構兩階段提前清償模型
11.
機器學習方法在蝴蝶辨識中之比較
12.
應用分類方法於憂鬱量表之研究
13.
利用資料採礦技術於巴金森氏症之微陣列基因篩選
14.
以國土保育觀點探討台灣合理坡地利用之研究
15.
台灣地區MOD使用或潛使用群之預測模型研究
無相關期刊
1.
針對腹部超音波影像利用巢式ResNet方法建立脂肪肝分類模型
2.
探討水腦症MRI影像於人工智慧分類之研究
3.
探討肝臟脂肪變性超音波影像於人工智能與數據挖掘方法之分類表現
4.
利用U-Net卷積網路方法對電腦斷層影像進行肝腫瘤分割之研究
5.
經皮超音波良性甲狀腺結節射頻消融成效評估
6.
ASMZ浸染活性碳壽限研究
7.
基於Resnet50 之行人重識別檢索效率改善
8.
國內企業導入ASPICE 之必要性認知及落實成果
9.
濺鍍功率對WTO薄膜性質的影響
10.
洗腎患者血管通路的血流聲音之熵值分析及其應用
11.
年金改革制度對志願役士官留營意願之影響-以某飛機維修單位為例
12.
全民國防教育臉書粉絲專頁之成效探討
13.
警察人員常年教育射擊訓練成效分析-以保五總隊為例
14.
保五總隊仁武營區環境綠美化之分析
15.
保安警察違紀個案探討與對策之研究
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室