|
[1] Garfinkel, A., Kim, Y. H., Voroshilovsky, O., Qu, Z., Kil, J. R., Lee, M. H., & Chen, P. S. (2000). Preventing ventricular fibrillation by flattening cardiac restitution. Proceedings of the National Academy of Sciences, 97(11), 6061-6066. [2] Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L. H., ... & Garfinkel, A. (2008). A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophysical journal, 94(2), 392-410. [3] de Diego, C., Gonzalez-Torres, L., Núñez, J. M., Inda, R. C., Martin-Langerwerf, D. A., Sangio, A. D., ... & Almendral, J. (2018). Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices. Heart rhythm, 15(3), 395-402. [4] Sarrias, A., & Bayes-Genis, A. (2018). Is Sacubitril/Valsartan (Also) an Antiarrhythmic Drug?. Circulation, 138(6), 551-553. [5] Fleg, J. L., & Kennedy, H. L. (1982). Cardiac arrhythmias in a healthy elderly population: detection by 24-hour ambulatory electrocardiography. Chest, 81(3), 302-307. [6] Padhi, S., Patel, N., Driscoll, D., & Budgell, B. (2014). Prevalence of cardiac arrhythmias in a community based chiropractic practice. The Journal of the Canadian Chiropractic Association, 58(3), 238. [7] Bayly, P. V., KenKnight, B. H., Rogers, J. M., Hillsley, R. E., Ideker, R. E., & Smith, W. M. (1998). Estimation of conduction velocity vector fields from epicardial mapping data. IEEE transactions on biomedical engineering, 45(5), 563-571. [8] Chinese Medical Association. (2007). Guidelines for the diagnosis and treatment of acute and chronic heart failure. Zhonghua Xin Xue Guan Bing Za Zhi, 35, 1076-95. [9] Jessup, M., & Brozena, S. C. (2007). Guidelines for the management of heart failure: differences in guideline perspectives. Cardiology clinics, 25(4), 497-506. [10] Vilela-Martin, J. F. (2016). Spotlight on valsartan–sacubitril fixed-dose combination for heart failure: the evidence to date. Drug design, development and therapy, 10, 1627. [11] Lin, T. T., Sung, Y. L., Wu, C. E., Zhang, H., Liu, Y. B., & Lin, S. F. (2016). Proarrhythmic risk and determinants of cardiac autonomic dysfunction in collagen-induced arthritis rats. BMC musculoskeletal disorders, 17(1), 491. [12] Banville, I., & Gray, R. A. (2002). Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. Journal of cardiovascular electrophysiology, 13(11), 1141-1149. [13] Vicent, L., Juárez, M., Martín, I., García, J., González-Saldívar, H., Bruña, V., Devesa, Sousa-Casasnovas, I. C., Fernández-Avilés, F. & Martínez-Sellés, M. (2018). Ventricular arrhythmic storm after initiating sacubitril/valsartan. Cardiology, 139(2), 119-123. [14] Nielsen, P. M., Grimm, D., Wehland, M., Simonsen, U., & Krüger, M. (2018). The Combination of Valsartan and Sacubitril in the Treatment of Hypertension and Heart Failure–an Update. Basic & clinical pharmacology & toxicology, 122(1), 9-18. [15] Tasaki, I., & Warashina, A. (1976). Dye‐membrane interaction and its changes during nerve excitation. Photochemistry and photobiology, 24(2), 191-207.. [16] Salzberg, B. M., Davila, H. V., & Cohen, L. B. (1973). Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature, 246(5434), 508. [17] Salama, G., & Morad, M. (1976). Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science, 191(4226), 485-487. [18] Sung, Y. L., Wu, C. E., Syu, J. Y., Kuo, T. B., Li, J. Y., Chen, C. W., Weng, C. H., Hsu, W. H., Chen, S. A., Hu, T. F. & Lin, S. F. (2018). Effects of long-term exercise on arrhythmogenesis in aged hypertensive rats. Computers in biology and medicine, 102, 390-395. [19] Kuusela, T. (2013). Methodological aspects of heart rate variability analysis. Heart rate variability (HRV) signal analysis: Clinical applications, 10-42. [20] Gross, D., Loew, L. M., & Webb, W. W. (1986). Optical imaging of cell membrane potential changes induced by applied electric fields. Biophysical journal, 50(2), 339-348. [21] Girouard, S. D., Ph. D, K. R. L., & Rosenbaum, D. S. (1996). Unique properties of cardiac action potentials recorded with voltage‐sensitive dyes. Journal of cardiovascular electrophysiology, 7(11), 1024-1038. [22] Entcheva, E., & Bien, H. (2006). Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution. Progress in biophysics and molecular biology, 92(2), 232-257. [23] Niskanen, J. P., Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. (2004). Software for advanced HRV analysis. Computer methods and programs in biomedicine, 76(1), 73-81. [24] Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer methods and programs in biomedicine, 113(1), 210-220. [25] Patel, V. N., Pierce, B. R., Bodapati, R. K., Brown, D. L., Ives, D. G., & Stein, P. K. (2017). Association of holter-derived heart rate variability parameters with the development of congestive heart failure in the cardiovascular health study. JACC: Heart Failure, 5(6), 423-431. [26] Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. (2002). An advanced detrending method with application to HRV analysis. IEEE Transactions on Biomedical Engineering, 49(2), 172-175. [27] Aysin, B., & Aysin, E. (2006, August). Effect of respiration in heart rate variability (HRV) analysis. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1776-1779). IEEE. [28] Bauer, A., Kantelhardt, J. W., Bunde, A., Barthel, P., Schneider, R., Malik, M., & Schmidt, G. (2006). Phase-rectified signal averaging detects quasi-periodicities in non-stationary data. Physica A: Statistical Mechanics and its Applications, 364, 423-434. [29] Shaw, R. M., & Rudy, Y. (1997). Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovascular research, 35(2), 256-272. [30] Banville, I., & Gray, R. A. (2002). Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. Journal of cardiovascular electrophysiology, 13(11), 1141-1149. [31] Koller, M. L., Riccio, M. L., & Jr, R. F. G. (1998). Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. American Journal of Physiology-Heart and Circulatory Physiology, 275(5), H1635-H1642. [32] Sung, D., Mills, R. W., Schettler, J., Narayan, S. M., Omens, J. H., & McCulloch, A. D. (2003). Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart. Journal of cardiovascular electrophysiology, 14(7), 739-749. [33] Hsieh, Y. C., Lin, J. C., Hung, C. Y., Li, C. H., Lin, S. F., Yeh, H. I., ... & Wu, T. J. (2016). Gap junction modifier rotigaptide decreases the susceptibility to ventricular arrhythmia by enhancing conduction velocity and suppressing discordant alternans during therapeutic hypothermia in isolated rabbit hearts. Heart Rhythm, 13(1), 251-261. [34] Pollnow, S., Arnold, R., Werber, M., Dössel, O., & Seemann, G. (2017, July). Hyperthermia dependence of cardiac conduction velocity in rat myocardium: Optical mapping and cardiac near field measurements. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3688-3691). IEEE. [35] Kirchhoff, S., Nelles, E., Hagendorff, A., Krüger, O., Traub, O., & Willecke, K. (1998). Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Current biology, 8(5), 299-302. [36] Barnette, A. R., Bayly, P. V., Zhang, S., Walcott, G. P., Ideker, R. E., & Smith, W. M. (2000). Estimation of 3-D conduction velocity vector fields from cardiac mapping data. IEEE transactions on biomedical engineering, 47(8), 1027-1035. [37] Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L. H., ... & Garfinkel, A. (2008). A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophysical journal, 94(2), 392-410. [38] Banville, I., & Gray, R. A. (2002). Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. Journal of cardiovascular electrophysiology, 13(11), 1141-1149. [39] Wolk, R., Cobbe, S. M., Hicks, M. N., & Kane, K. A. (1999). Functional, structural, and dynamic basis of electrical heterogeneity in healthy and diseased cardiac muscle: implications for arrhythmogenesis and anti-arrhythmic drug therapy. Pharmacology & therapeutics, 84(2), 207-231. [40] Garfinkel, A., Kim, Y. H., Voroshilovsky, O., Qu, Z., Kil, J. R., Lee, M. H., ... & Chen, P. S. (2000). Preventing ventricular fibrillation by flattening cardiac restitution. Proceedings of the National Academy of Sciences, 97(11), 6061-6066. [41] Sung, D., Omens, J. H., & McCulloch, A. D. (2000). Model-based analysis of optically mapped epicardial activation patterns and conduction velocity. Annals of biomedical engineering, 28(9), 1085-1092. [42] Cantwell, C. D., Roney, C. H., Ng, F. S., Siggers, J. H., Sherwin, S. J., & Peters, N. S. (2015). Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping. Computers in biology and medicine, 65, 229-242. [43] Berenfeld, O., Ennis, S., Hwang, E., Hooven, B., Grzeda, K., Mironov, S., ... & Jalife, J. (2011). Time-and frequency-domain analyses of atrial fibrillation activation rate: the optical mapping reference. Heart Rhythm, 8(11), 1758-1765. [44] Pandit, S. V., & Jalife, J. (2013). Rotors and the dynamics of cardiac fibrillation. Circulation research, 112(5), 849-862. [45] Yamazaki, M., Avula, U. M. R., Berenfeld, O., & Kalifa, J. (2015). Mechanistic comparison of “nearly missed” versus “on-target” rotor ablation. JACC: Clinical Electrophysiology, 1(4), 256-269. [46] Avula, U. M. R., Yamazaki, M., Honjo, H., Berenfeld, O., Jalife, J., Kodama, I., ... & Kalifa, J. (2014). Mechanistic Comparison of “Nearly-Missed” versus “On-Target” Rotor Ablation. Circulation, 130(suppl_2), A19063-A19063. [47] Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., ... & Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. [48] Jhund, P. S., & McMurray, J. J. (2016). The neprilysin pathway in heart failure: a review and guide on the use of sacubitril/valsartan. Heart, 102(17), 1342-1347. [49] Jhund, P. S., Fu, M., Bayram, E., Chen, C. H., Negrusz-Kawecka, M., Rosenthal, A., Desai, S. A., Lefkowitz, M. P., Rizkala, A. R., Rouleau, J. L. & Shi, V. C. (2015). Efficacy and safety of LCZ696 (sacubitril-valsartan) according to age: insights from PARADIGM-HF. European heart journal, 36(38), 2576-2584. [50] Gori, M., & Senni, M. (2016). Sacubitril/valsartan (LCZ696) for the treatment of heart failure. Expert review of cardiovascular therapy, 14(2), 145-153. [51] Sible, A. M., Nawarskas, J. J., Alajajian, D., & Anderson, J. R. (2016). Sacubitril/Valsartan. Cardiology in review, 24(1), 41-47. [52] Mason, J. W., & Winkle, R. A. (1978). Electrode-catheter arrhythmia induction in the selection and assessment of antiarrhythmic drug therapy for recurrent ventricular tachycardia. Circulation, 58(6), 971-985. [53] Brugada, P., Brugada, J., & Brugada, R. (2000). Arrhythmia induction by antiarrhythmic drugs. Pacing and Clinical Electrophysiology, 23(3), 291-292. [54] Jiao, K. L., Li, Y. G., Zhang, P. P., Chen, R. H., & Yu, Y. (2012). Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction. Journal of cellular and molecular medicine, 16(6), 1342-1351. [55] Glukhov, A. V., Kalyanasundaram, A., Lou, Q., Hage, L. T., Hansen, B. J., Belevych, A. E. & Fedorov, V. V. (2013). Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex. European heart journal, 36(11), 686-697. [56] de Baker, J. M., Coronel, R., Tasseron, S., Wilde, A. A., Opthof, T., Janse, M. J., ... & Jambroes, G. (1990). Ventricular tachyrdia in the infarcted, Langendorff-perfused human heart: Role of the arrangement of surviving cardiac fibers. Journal of the American College of Cardiology, 15(7), 1594-1607. [57] Frantz, S., Bauersachs, J., & Ertl, G. (2008). Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovascular research, 81(3), 474-481. [58] John, B. T., Tamarappoo, B. K., Titus, J. L., Edwards, W. D., Shen, W. K., & Chugh, S. S. (2004). Global remodeling of the ventricular interstitium in idiopathic myocardial fibrosis and sudden cardiac death. Heart Rhythm, 1(2), 141-149. [59] Kadish, A. H., Spear, J. F., Levine, J. H., Hanich, R. F., Prood, C., & Moore, E. N. (1986). Vector mapping of myocardial activation. Circulation, 74(3), 603-615. [60] Horner, S. M., Vespalcova, Z., & Lab, M. J. (1997). Electrode for recording direction of activation, conduction velocity, and monophasic action potential of myocardium. American Journal of Physiology-Heart and Circulatory Physiology, 272(4), H1917-H1927. [61] Allessie, M. A. (1995). Reentrant mechanism underlying atrial fibrillation. Cardiac electrophysiology: from cell to bedside. [62] Peters, N. S., Coromilas, J., Hanna, M. S., Josephson, M. E., Costeas, C., & Wit, A. L. (1998). Characteristics of the temporal and spatial excitable gap in anisotropic reentrant circuits causing sustained ventricular tachycardia. Circulation research, 82(2), 279-293. [63] Hanna, M. S., Coromilas, J., Josephson, M. E., Wit, A. L., & Peters, N. S. (2001). Mechanisms of resetting reentrant circuits in canine ventricular tachycardia. Circulation, 103(8), 1148-1156. [64] Zaman, J. A., & Peters, N. S. (2014). The rotor revolution: conduction at the eye of the storm in atrial fibrillation. Circulation: Arrhythmia and Electrophysiology, 7(6), 1230-1236. [65] Jamil-Copley, S., Vergara, P., Carbucicchio, C., Linton, N., Koa-Wing, M., Luther, V., ... & Bella, P. D. (2015). Application of ripple mapping to visualize slow conduction channels within the infarct-related left ventricular scar. Circulation: Arrhythmia and Electrophysiology, 8(1), 76-86. [66] Fry, C. H., Gray, R. P., Dhillon, P. S., Jabr, R. I., Dupont, E., Patel, P. M., & Peters, N. S. (2014). Architectural correlates of myocardial conduction: changes to the topography of cellular coupling, intracellular conductance, and action potential propagation with hypertrophy in Guinea-pig ventricular myocardium. Circulation: Arrhythmia and Electrophysiology, 7(6), 1198-1204. [67] Dhillon, P. S., Chowdhury, R. A., Patel, P. M., Jabr, R., Momin, A. U., Vecht, J., ... & Peters, N. S. (2014). Relationship Between Connexin Expression and Gap–Junction Resistivity in Human Atrial Myocardium. Circulation: Arrhythmia and Electrophysiology, 7(2), 321-329.
|