跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 10:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許振揚
研究生(外文):Syu, Jhen-Yang
論文名稱:光學造影分析軟體開發---基於心肌動態電性傳導與Sacubitril/Valsartan之心律不整的預防研究
論文名稱(外文):Optical Mapping Analysis Software Development--- Based on Myocardial Dynamic Electrical Conduction and Effects of Prevention of Arrhythmia with Sacubitril/Valsartan
指導教授:林顯豐
指導教授(外文):Lin, Shien-Fong
口試委員:謝育整林廷澤林顯豐
口試委員(外文):Hsieh, Yu-ChengLin, Ting-TseLin, Shien-Fong
口試日期:2019-06-03
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:51
中文關鍵詞:心律不整動態電性傳導光學造影動作電位訊號分析
外文關鍵詞:ArrhythmiaElectrical conductionOptical mappingAction potential signal processing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
心室性心律不整佔心臟突發性停止的80%。雖然心律不整可能發生在所有年齡段,但在老年人中更為常見。在過去的的研究中,心律失常與心臟的動態電性傳導有關。當竇房結發給心肌細胞電信號時,電傳導將導致心房和心室收縮以將血液泵送到整個身體。因此,紊亂動態電傳導可能會影響心肌功能並誘發心律不整。此外,過去的研究中表示,治療心衰竭的藥物: sacubitril / valsartan 有降低心律不整發生的跡象。因此,我們假設心律不整的抑制是通過穩定動作電位週期的恢復和動態電性傳導所代表的電動力學來實現的。因此我們利用正常及高血壓的大鼠進行實驗,我們將Optical mapping用於研究大鼠心律不整的保護,並與valsartan進行比較。此外,進行optical mapping的分析方法過去大多是手動分析的,為了提高分析效率,我們開發了整合性的分析軟體,其中包括心率變異性分析,動作電位持續時間(Action potential duration, APD),舒張間期(Diastolic interval, DI),二維的傳導速度(2-D Conduction velocity, 2-D CV),傳導速度圖(Conduction velocity map)和主要頻率(Dominant frequency, DF)。在我們的結果中,SHR大鼠餵食sacubitril / valsartan後,APD恢復曲線的最大斜率明顯低於餵食纈沙坦和生理鹽水(SHR-CON:1.32±0.12 vs. SHR-DIO:0.29±0.04,p <0.001; SHR-CON:1.32±0.12 vs. SHR-ENT:0.10±0.03,p <0.001)。文獻指出當斜率大於1時,心律不整的風險會增加。在CV圖分析中,我們計算了等時線圖的傳導角度(STDAngle)的標準偏差。用valsartan和sacubitril / valsartan治療後,SHR組的STDAngle有明顯的降低(SHR-CON:0.599±0.017 vs. SHR-DIO:0.521±0.023弧度,p = 0.021; SHR-CON:0.599±0.017 vs. SHR -ENT:0.405±0.031弧度,p <0.001),但WKY有不同的情況,餵食sacubitril / valsartan或valsartan的大鼠的STDAngle反而會增加,其中死亡率也有顯著的增加(WKY-CON:0.507±0.032 vs. WKY-DIO:0.594±0.017弧度,p = 0.037)。因此,我們認為sacubitril / valsartan可以讓心臟電性傳導時更為平坦,也可以讓SHR大鼠的心室有效地收縮,從而將血液泵送到全身。但是,對於正常受試者而言,sacubitril/valsartan提供心律失常保護似乎不是一個好的選擇。
Ventricular arrhythmia accounts for 80% of sudden cardiac arrest. Although arrhythmia may occur in all ages, it is more common in the elderly. And the previous studies have shown that the arrhythmia was associated with the propagation of the electrodynamics. When the SA Node triggers the electrical signal to cardiomyocytes, the electrical conduction will cause the atrium and ventricle contraction to pump the blood to the whole body. Therefore, the disorder electrodynamics may affect the function of the myocardium and induce arrhythmia. Also, there were studies showed that the drugs (sacubitril/valsartan) to treat heart failure could also reduce the incidence rate of arrhythmia. So, we hypothesize that the inhibition of arrhythmogenesis is through the stabilization of electrical dynamics, as represented by electrical restitution and conduction. The animals are aged 8-week-old female spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) Rat are used in these experiments. We applied the optical mapping technique to investigate the protection of arrhythmia for rats and compare them with the valsartan. In addition, the analysis methods were manual in the past, in order to improve the efficiency of analyzing, we developed the integrated analysis software, which was included the heart rate variability analysis, action potential duration (APD), diastolic interval (DI), conduction velocity, conduction velocity map, and dominant frequency (DF). In our results, the SHR rats after feeding the sacubitril/valsartan which maximum slope of the APD restitution curve is significantly lower than feeding the valsartan and the saline (SHR-CON: 1.32±0.12 vs. SHR-DIO: 0.29±0.04, p<0.001; SHR-CON: 1.32±0.12 vs. SHR-ENT: 0.10±0.03, p<0.001). If the slope > 1, the risk of arrhythmia will increase. In the CV map analysis, we calculated the standard deviation of the conduction angles (STDAngle) of the isochrones map. The STDAngle of the SHR groups is decreased after the treatment with valsartan and sacubitril/valsartan (SHR-CON: 0.599±0.017 vs. SHR-DIO: 0.521±0.023 radian, p=0.021; SHR-CON: 0.599±0.017 vs. SHR-ENT: 0.405±0.031 radian, p<0.001), but the WKY had different changes, the STDAngle of rats that fed the sacubitril/valsartan or fed the valsartan was increased, so did the mortality rate (WKY-CON: 0.507±0.032 vs. WKY-DIO: 0.594±0.017 radian, p=0.037). Therefore, we considered that the sacubitril/valsartan could let the electrodynamics more flatten and it could also let the myocardium of SHR rats create effectively contraction to pump the blood to the whole body. But it seems not a good choice to provide the protection of the arrhythmia for normal subjects.
Contents I
List of Figures III
List of Tables V
Acknowledgment VI
中文摘要 VII
Abstract VIII
Chapter 1. Introduction 1
1.1 Background 1
1.2 The impact caused by arrhythmia 2
1.3 Relation of arrhythmia and dynamic electricity conduction 2
1.4 Sacubitril/valsartan treatment for heart failure 3
1.5 Review literature about the electrodynamics and arrhythmia 4
1.6 Hypothesis and Research Motivation 4
1.7 Optical mapping for isolated heart 5
Chapter 2. Methods 6
2.1 Graphical user interfaces in MATLAB 6
2.2 The animal experiment design of optical mapping 7
2.3 Optical mapping analysis software front end design 10
2.4 Analysis of heart rate variability 11
2.5 Analysis of action potential duration and diastolic interval 15
2.6 Analysis of 2D conduction velocity 18
2.7 Analysis of conduction velocity map for electrical conduction 20
2.8 Analysis of dominant frequency 24
2.9 The accuracy for the self-made software 26
2.10 Statistical analysis 26
Chapter 3. Results 27
3.1 The reliability of the self-made software 27
3.2 HRV analysis 29
3.3 Effects of valsartan and sacubitril/valsartan on VT/VF induction 32
3.4 Effects of valsartan and sacubitril/valsartan on cardiophysiology 34
Chapter 4. Discussion 41
4.1 High mortality rate for normotensive rats 41
4.2 The effect of sacubitril/Valsartan for anti-arrhythmia 42
4.3 Evaluation of cardiac physiology by Langendorff Isolated Heart Perfusion 42
4.4 The relation between dynamic electrical conduction and antiarrhythmic 43
4.5 Limitation of the analysis software 44
Reference 45
Publication 51
Conference 51
[1] Garfinkel, A., Kim, Y. H., Voroshilovsky, O., Qu, Z., Kil, J. R., Lee, M. H., & Chen, P. S. (2000). Preventing ventricular fibrillation by flattening cardiac restitution. Proceedings of the National Academy of Sciences, 97(11), 6061-6066.
[2] Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L. H., ... & Garfinkel, A. (2008). A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophysical journal, 94(2), 392-410.
[3] de Diego, C., Gonzalez-Torres, L., Núñez, J. M., Inda, R. C., Martin-Langerwerf, D. A., Sangio, A. D., ... & Almendral, J. (2018). Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices. Heart rhythm, 15(3), 395-402.
[4] Sarrias, A., & Bayes-Genis, A. (2018). Is Sacubitril/Valsartan (Also) an Antiarrhythmic Drug?. Circulation, 138(6), 551-553.
[5] Fleg, J. L., & Kennedy, H. L. (1982). Cardiac arrhythmias in a healthy elderly population: detection by 24-hour ambulatory electrocardiography. Chest, 81(3), 302-307.
[6] Padhi, S., Patel, N., Driscoll, D., & Budgell, B. (2014). Prevalence of cardiac arrhythmias in a community based chiropractic practice. The Journal of the Canadian Chiropractic Association, 58(3), 238.
[7] Bayly, P. V., KenKnight, B. H., Rogers, J. M., Hillsley, R. E., Ideker, R. E., & Smith, W. M. (1998). Estimation of conduction velocity vector fields from epicardial mapping data. IEEE transactions on biomedical engineering, 45(5), 563-571.
[8] Chinese Medical Association. (2007). Guidelines for the diagnosis and treatment of acute and chronic heart failure. Zhonghua Xin Xue Guan Bing Za Zhi, 35, 1076-95.
[9] Jessup, M., & Brozena, S. C. (2007). Guidelines for the management of heart failure: differences in guideline perspectives. Cardiology clinics, 25(4), 497-506.
[10] Vilela-Martin, J. F. (2016). Spotlight on valsartan–sacubitril fixed-dose combination for heart failure: the evidence to date. Drug design, development and therapy, 10, 1627.
[11] Lin, T. T., Sung, Y. L., Wu, C. E., Zhang, H., Liu, Y. B., & Lin, S. F. (2016). Proarrhythmic risk and determinants of cardiac autonomic dysfunction in collagen-induced arthritis rats. BMC musculoskeletal disorders, 17(1), 491.
[12] Banville, I., & Gray, R. A. (2002). Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. Journal of cardiovascular electrophysiology, 13(11), 1141-1149.
[13] Vicent, L., Juárez, M., Martín, I., García, J., González-Saldívar, H., Bruña, V., Devesa, Sousa-Casasnovas, I. C., Fernández-Avilés, F. & Martínez-Sellés, M. (2018). Ventricular arrhythmic storm after initiating sacubitril/valsartan. Cardiology, 139(2), 119-123.
[14] Nielsen, P. M., Grimm, D., Wehland, M., Simonsen, U., & Krüger, M. (2018). The Combination of Valsartan and Sacubitril in the Treatment of Hypertension and Heart Failure–an Update. Basic & clinical pharmacology & toxicology, 122(1), 9-18.
[15] Tasaki, I., & Warashina, A. (1976). Dye‐membrane interaction and its changes during nerve excitation. Photochemistry and photobiology, 24(2), 191-207..
[16] Salzberg, B. M., Davila, H. V., & Cohen, L. B. (1973). Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature, 246(5434), 508.
[17] Salama, G., & Morad, M. (1976). Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science, 191(4226), 485-487.
[18] Sung, Y. L., Wu, C. E., Syu, J. Y., Kuo, T. B., Li, J. Y., Chen, C. W., Weng, C. H., Hsu, W. H., Chen, S. A., Hu, T. F. & Lin, S. F. (2018). Effects of long-term exercise on arrhythmogenesis in aged hypertensive rats. Computers in biology and medicine, 102, 390-395.
[19] Kuusela, T. (2013). Methodological aspects of heart rate variability analysis. Heart rate variability (HRV) signal analysis: Clinical applications, 10-42.
[20] Gross, D., Loew, L. M., & Webb, W. W. (1986). Optical imaging of cell membrane potential changes induced by applied electric fields. Biophysical journal, 50(2), 339-348.
[21] Girouard, S. D., Ph. D, K. R. L., & Rosenbaum, D. S. (1996). Unique properties of cardiac action potentials recorded with voltage‐sensitive dyes. Journal of cardiovascular electrophysiology, 7(11), 1024-1038.
[22] Entcheva, E., & Bien, H. (2006). Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution. Progress in biophysics and molecular biology, 92(2), 232-257.
[23] Niskanen, J. P., Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. (2004). Software for advanced HRV analysis. Computer methods and programs in biomedicine, 76(1), 73-81.
[24] Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer methods and programs in biomedicine, 113(1), 210-220.
[25] Patel, V. N., Pierce, B. R., Bodapati, R. K., Brown, D. L., Ives, D. G., & Stein, P. K. (2017). Association of holter-derived heart rate variability parameters with the development of congestive heart failure in the cardiovascular health study. JACC: Heart Failure, 5(6), 423-431.
[26] Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. (2002). An advanced detrending method with application to HRV analysis. IEEE Transactions on Biomedical Engineering, 49(2), 172-175.
[27] Aysin, B., & Aysin, E. (2006, August). Effect of respiration in heart rate variability (HRV) analysis. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1776-1779). IEEE.
[28] Bauer, A., Kantelhardt, J. W., Bunde, A., Barthel, P., Schneider, R., Malik, M., & Schmidt, G. (2006). Phase-rectified signal averaging detects quasi-periodicities in non-stationary data. Physica A: Statistical Mechanics and its Applications, 364, 423-434.
[29] Shaw, R. M., & Rudy, Y. (1997). Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovascular research, 35(2), 256-272.
[30] Banville, I., & Gray, R. A. (2002). Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. Journal of cardiovascular electrophysiology, 13(11), 1141-1149.
[31] Koller, M. L., Riccio, M. L., & Jr, R. F. G. (1998). Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. American Journal of Physiology-Heart and Circulatory Physiology, 275(5), H1635-H1642.
[32] Sung, D., Mills, R. W., Schettler, J., Narayan, S. M., Omens, J. H., & McCulloch, A. D. (2003). Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart. Journal of cardiovascular electrophysiology, 14(7), 739-749.
[33] Hsieh, Y. C., Lin, J. C., Hung, C. Y., Li, C. H., Lin, S. F., Yeh, H. I., ... & Wu, T. J. (2016). Gap junction modifier rotigaptide decreases the susceptibility to ventricular arrhythmia by enhancing conduction velocity and suppressing discordant alternans during therapeutic hypothermia in isolated rabbit hearts. Heart Rhythm, 13(1), 251-261.
[34] Pollnow, S., Arnold, R., Werber, M., Dössel, O., & Seemann, G. (2017, July). Hyperthermia dependence of cardiac conduction velocity in rat myocardium: Optical mapping and cardiac near field measurements. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3688-3691). IEEE.
[35] Kirchhoff, S., Nelles, E., Hagendorff, A., Krüger, O., Traub, O., & Willecke, K. (1998). Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Current biology, 8(5), 299-302.
[36] Barnette, A. R., Bayly, P. V., Zhang, S., Walcott, G. P., Ideker, R. E., & Smith, W. M. (2000). Estimation of 3-D conduction velocity vector fields from cardiac mapping data. IEEE transactions on biomedical engineering, 47(8), 1027-1035.
[37] Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L. H., ... & Garfinkel, A. (2008). A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophysical journal, 94(2), 392-410.
[38] Banville, I., & Gray, R. A. (2002). Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. Journal of cardiovascular electrophysiology, 13(11), 1141-1149.
[39] Wolk, R., Cobbe, S. M., Hicks, M. N., & Kane, K. A. (1999). Functional, structural, and dynamic basis of electrical heterogeneity in healthy and diseased cardiac muscle: implications for arrhythmogenesis and anti-arrhythmic drug therapy. Pharmacology & therapeutics, 84(2), 207-231.
[40] Garfinkel, A., Kim, Y. H., Voroshilovsky, O., Qu, Z., Kil, J. R., Lee, M. H., ... & Chen, P. S. (2000). Preventing ventricular fibrillation by flattening cardiac restitution. Proceedings of the National Academy of Sciences, 97(11), 6061-6066.
[41] Sung, D., Omens, J. H., & McCulloch, A. D. (2000). Model-based analysis of optically mapped epicardial activation patterns and conduction velocity. Annals of biomedical engineering, 28(9), 1085-1092.
[42] Cantwell, C. D., Roney, C. H., Ng, F. S., Siggers, J. H., Sherwin, S. J., & Peters, N. S. (2015). Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping. Computers in biology and medicine, 65, 229-242.
[43] Berenfeld, O., Ennis, S., Hwang, E., Hooven, B., Grzeda, K., Mironov, S., ... & Jalife, J. (2011). Time-and frequency-domain analyses of atrial fibrillation activation rate: the optical mapping reference. Heart Rhythm, 8(11), 1758-1765.
[44] Pandit, S. V., & Jalife, J. (2013). Rotors and the dynamics of cardiac fibrillation. Circulation research, 112(5), 849-862.
[45] Yamazaki, M., Avula, U. M. R., Berenfeld, O., & Kalifa, J. (2015). Mechanistic comparison of “nearly missed” versus “on-target” rotor ablation. JACC: Clinical Electrophysiology, 1(4), 256-269.
[46] Avula, U. M. R., Yamazaki, M., Honjo, H., Berenfeld, O., Jalife, J., Kodama, I., ... & Kalifa, J. (2014). Mechanistic Comparison of “Nearly-Missed” versus “On-Target” Rotor Ablation. Circulation, 130(suppl_2), A19063-A19063.
[47] Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., ... & Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40.
[48] Jhund, P. S., & McMurray, J. J. (2016). The neprilysin pathway in heart failure: a review and guide on the use of sacubitril/valsartan. Heart, 102(17), 1342-1347.
[49] Jhund, P. S., Fu, M., Bayram, E., Chen, C. H., Negrusz-Kawecka, M., Rosenthal, A., Desai, S. A., Lefkowitz, M. P., Rizkala, A. R., Rouleau, J. L. & Shi, V. C. (2015). Efficacy and safety of LCZ696 (sacubitril-valsartan) according to age: insights from PARADIGM-HF. European heart journal, 36(38), 2576-2584.
[50] Gori, M., & Senni, M. (2016). Sacubitril/valsartan (LCZ696) for the treatment of heart failure. Expert review of cardiovascular therapy, 14(2), 145-153.
[51] Sible, A. M., Nawarskas, J. J., Alajajian, D., & Anderson, J. R. (2016). Sacubitril/Valsartan. Cardiology in review, 24(1), 41-47.
[52] Mason, J. W., & Winkle, R. A. (1978). Electrode-catheter arrhythmia induction in the selection and assessment of antiarrhythmic drug therapy for recurrent ventricular tachycardia. Circulation, 58(6), 971-985.
[53] Brugada, P., Brugada, J., & Brugada, R. (2000). Arrhythmia induction by antiarrhythmic drugs. Pacing and Clinical Electrophysiology, 23(3), 291-292.
[54] Jiao, K. L., Li, Y. G., Zhang, P. P., Chen, R. H., & Yu, Y. (2012). Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction. Journal of cellular and molecular medicine, 16(6), 1342-1351.
[55] Glukhov, A. V., Kalyanasundaram, A., Lou, Q., Hage, L. T., Hansen, B. J., Belevych, A. E. & Fedorov, V. V. (2013). Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex. European heart journal, 36(11), 686-697.
[56] de Baker, J. M., Coronel, R., Tasseron, S., Wilde, A. A., Opthof, T., Janse, M. J., ... & Jambroes, G. (1990). Ventricular tachyrdia in the infarcted, Langendorff-perfused human heart: Role of the arrangement of surviving cardiac fibers. Journal of the American College of Cardiology, 15(7), 1594-1607.
[57] Frantz, S., Bauersachs, J., & Ertl, G. (2008). Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovascular research, 81(3), 474-481.
[58] John, B. T., Tamarappoo, B. K., Titus, J. L., Edwards, W. D., Shen, W. K., & Chugh, S. S. (2004). Global remodeling of the ventricular interstitium in idiopathic myocardial fibrosis and sudden cardiac death. Heart Rhythm, 1(2), 141-149.
[59] Kadish, A. H., Spear, J. F., Levine, J. H., Hanich, R. F., Prood, C., & Moore, E. N. (1986). Vector mapping of myocardial activation. Circulation, 74(3), 603-615.
[60] Horner, S. M., Vespalcova, Z., & Lab, M. J. (1997). Electrode for recording direction of activation, conduction velocity, and monophasic action potential of myocardium. American Journal of Physiology-Heart and Circulatory Physiology, 272(4), H1917-H1927.
[61] Allessie, M. A. (1995). Reentrant mechanism underlying atrial fibrillation. Cardiac electrophysiology: from cell to bedside.
[62] Peters, N. S., Coromilas, J., Hanna, M. S., Josephson, M. E., Costeas, C., & Wit, A. L. (1998). Characteristics of the temporal and spatial excitable gap in anisotropic reentrant circuits causing sustained ventricular tachycardia. Circulation research, 82(2), 279-293.
[63] Hanna, M. S., Coromilas, J., Josephson, M. E., Wit, A. L., & Peters, N. S. (2001). Mechanisms of resetting reentrant circuits in canine ventricular tachycardia. Circulation, 103(8), 1148-1156.
[64] Zaman, J. A., & Peters, N. S. (2014). The rotor revolution: conduction at the eye of the storm in atrial fibrillation. Circulation: Arrhythmia and Electrophysiology, 7(6), 1230-1236.
[65] Jamil-Copley, S., Vergara, P., Carbucicchio, C., Linton, N., Koa-Wing, M., Luther, V., ... & Bella, P. D. (2015). Application of ripple mapping to visualize slow conduction channels within the infarct-related left ventricular scar. Circulation: Arrhythmia and Electrophysiology, 8(1), 76-86.
[66] Fry, C. H., Gray, R. P., Dhillon, P. S., Jabr, R. I., Dupont, E., Patel, P. M., & Peters, N. S. (2014). Architectural correlates of myocardial conduction: changes to the topography of cellular coupling, intracellular conductance, and action potential propagation with hypertrophy in Guinea-pig ventricular myocardium. Circulation: Arrhythmia and Electrophysiology, 7(6), 1198-1204.
[67] Dhillon, P. S., Chowdhury, R. A., Patel, P. M., Jabr, R., Momin, A. U., Vecht, J., ... & Peters, N. S. (2014). Relationship Between Connexin Expression and Gap–Junction Resistivity in Human Atrial Myocardium. Circulation: Arrhythmia and Electrophysiology, 7(2), 321-329.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top