1.M. Mulder, Basic principle of membrane technology, Kluwer Academic Publisher, The Netherlands (1997).
2.R. W. Baker, Membrane Technology and Applications 2nd Edition, McGraw-Hill, Menlo Park, California (2000).
3.T. Matsuura, Synthetic membranes and membrane separation processes, CRC Press, Inc., Canada (1994).
4.M. H. Klopffer, B. Flaconneche, Transport properties of gases in polymers bibliographic review, Oil Gas Sci. Technol., 56 (2001) 223-244.
5.S. Leob, S. Sourirajan, Sea Water Demineralization by Mean of an Osmotic Membrane, Adv. Chem. Ser., 38 (1963) 117-132.
6.P. K. Gantzel, U. Merten, Gas separations with high-flux cellulose acetate membranes, Ind. Eng. Chem. Process Des. Dev., 9 (1970) 331-332.
7.L. M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62 (1991) 165-185.
8.L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320 (2008) 390-400.
9.R. E. Kesting, A. K. Fritzsche, Polymeric gas separation membranes, John Wiley & Sons, Inc., New York (1993).
10.W. R. Vieth, K. J. Sladek, A model for diffusion in a glassy polymer, J. Colloid Interface Sci., 20 (1965) 1014-1033.
11.W. R. Vieth, J. M. Howell, J. H. Hsieh, Dual sorption theory, J. Membr. Sci., 1 (1976) 177-220.
12.M. Kurata, Thermodynamics of Polymer Solutions, Harwood Academic Publishers, New York (1982).
13.P. Vandeweerdt, H. Berghmans, Y. Tervoort, Temperature-concentration behavior of solution polydisperse, atactic poly(methyl methacrylate) and its influence on the formation of amorphous, microporous membranes, Macromolecules, 24 (1991) 3547-3552.
14.R. H. Mehta, D. A. Madsen, D. S. Kalika, Microporous membranes based on poly(ether ether ketone) via thermally-induced phase separation, J. Membr. Sci., 107 (1995) 93-106.
15.L. Zeman, T. Fraser, Formation of air-cast cellulose acetate membranes, Part I. Study the macrovoid formation, J. Membr. Sci., 84 (1993) 93-106.
16.L. Zeman, T. Fraser, Formation of air-cast cellulose acetate membranes, Part II. Kinetic of demixing and macrovoid growth, J. Membr. Sci., 87 (1994) 267-279.
17.F. C. Lin, D. M. Wang, J. Y. Lai, Asymmetric TPX membranes with high gas flux, J. Membr. Sci., 110 (1996) 25-36.
18.H. Yanagishita, T. Nakane, H. Yoshitome, Selection criteria for solvent and gelation medium in the phase inversion process, J. Membr. Sci., 89 (1994) 215-221.
19.J. Y. Lai, M. J. Liu, K. R. Lee, Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air, J. Membr. Sci., 86 (1994) 103-118.
20.H. Strathmann, K. Kock, The formation mechanism of phase inversion membrane, Desalination, 21 (1977) 241-255.
21.Z. Wang, T. Chen, J. Xu, Novel poly(aryl ether ketone)s containing various pendant groups. II. Gas-transport properties, J. Appl. Polym. Sci., 64 (1997) 1725-1732.
22.Z. Wang, T. Chen, J. Xu, Gas Transport Properties of Novel Cardo Poly(aryl ether ketone)s with Pendant Alkyl Groups, Macromolecules, 33 (2000) 5672-5679.
23.A. F. Ismail, R. A. Rahim, W. A. W. A. Rahman, Characterization of polyethersulfone/Matrimid® 5218 miscible blend mixed matrix membranes for O2/N2 gas separation, Sep. Purif. Technol., 63 (2008) 200-206.
24.B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation, J. Membr. Sci., 368 (2011) 100-109.
25.S. R. Reijerkerk, M. H. Knoef, K. Nijmeijer, M. Wessling, Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes, J. Membr. Sci., 352 (2010) 126-135.
26.S. H. Ahn, J. A. Seo, J. H. Kim, Y. Ko, S. U. Hong, Synthesis and gas permeation properties of amphiphilic graft copolymer membranes, J. Membr. Sci., 354 (2009) 128-133.
27.羅嘉豪,四乙氧基矽烷/聚碳酸酯電漿披覆膜應用於滲透蒸發分離四氟丙醇水溶液,私立中原大學化學工程學系碩士學位論文 (2005).28.C. C. Hu, C. Y. Tu, Y. C. Wang, C. L. Li, K. R. Lee, J. Y. Lai, Effects of plasma treatment on CO2 plasticization of poly(methyl methacrylate) gas-separation membranes, J. Appl. Polym. Sci., 93 (2004) 395-401.
29.L. Kwisnek, S. Heinz, J. S. Wiggins, S. Nazarenko, Multifunctional thiols as additives in UV-cured PEG-diacrylate membranes for CO2 separation, J. Membr. Sci., 369 (2011) 429-436.
30.E. Mathiowitz, J. S. Jacob, Y. S. Jong, G. P. Carino, D. E. Chickering, P. Chaturvedi, C. A. Santos, K. Vijayaraghava, S. Montgomery, M. Bassett, C. Morrell, Biologically erodible microspheres as potential oral drug delivery systems, Nature, 386 (1997) 410-414.
31.S. M. Marinakos, J. P. Novak, L. C. Brousseau III, A. B. House, E. M. Edeki, J. C. Feldhaus, D. L. Feldheim, Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation, J. Am. Chem. Soc., 121 (1999) 8518-8522.
32.S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions, J. Am. Chem. Soc., 124 (2002) 7642-7643.
33.Y. Ono, Y. Kanekiyo, K. Inoue, J. Hojo, M. Nango, S. Shinkai, Preparation of novel hollow fiber silica using collagen fibers as a template, Chem. Lett., 28 (1999) 475-476.
34.A. Khanal, Y. Inoue, M. Yada, K. Nakashima, Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure, J. Am. Chem. Soc., 129 (2007) 1534-1535.
35.M. Fuji, T. Shin, H. Watanabe, T. Takei, Shape-controlled hollow silica nanoparticles synthesized by an inorganic particle template method, Adv. Powder Technol., 23 (2012) 562-565.
36.葉添昇,回應曲面法探討溶膠-凝膠程序配合光譜分析凝膠動力反應,私立中原大學化學工程學系碩士學位論文 (1999).37.B. Jirhennsons, M. E. Straumanis, Colloid Chemistry, McMillan Co., New York (1962).
38.蘇郁蕙,幾丁聚醣混成膜中無機材成分對滲透蒸發效能之影響,私立中原大學化學工程學系碩士學位論文 (2005).39.B. D. Washo, Rheology and modeling of the spin coating process, IBM. J. Res. Dev., 21 (1977) 190-198.
40.林勝平,界面聚合-旋轉塗佈技術製備促進傳輸複合膜應用於二氧化碳捕獲程序,私立中原大學化學工程學系碩士學位論文 (2014).41.G. Sartori, W. S. W Ho, D. W. Savage, G. R. Chludzinski, S. Wlechert, Sterically-hindered amines for acid-gas absorption, Sep. Purif. Rev., 16 (1987) 171-200.
42.Y. Wang, A. J. Easteal, Preparation, characterisation and gas transport properties of trifluoroacetylated ethyl cellulose, J. Membr. Sci., 157 (1999) 53-61.
43.J. J. Shieh, T. S. Chung, Gas permeability, diffusivity, and solubility of poly(4-vinylpyridine) film, J. Polymer Sci. B Polymer Phys., 37 (1999) 2851-2861.
44.X. G. Li, I. Kresse, Z. K. Xu, J. Springer, Effect of temperature and pressure on gas transport in ethyl cellulose membrane, Polymer, 42 (2001) 6801-6810.
45.X. G. Li, I. Kresse, J. Springer, J. Nissen, Y. L. Yang, Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose, Polymer, 42 (2001) 6859-6869.
46.F. Z. Khan, M. Shiotsuki, Y. Nishio, T. Masuda, Synthesis, characterization, and gas permeation properties of t-butylcarbamates of cellulose derivatives, J. Membr. Sci., 312 (2008) 207-216.
47.Z. Mao, X. Jie, Y. Cao, L. Wang, M. Li, Q. Yuan, Preparation of dual-layer cellulose/polysulfone hollow fiber membrane and its performance for isopropanol dehydration and CO2 separation, Sep. Purif. Technol., 77 (2011) 179-184.
48.J. Chen, J. Zhang, Y. Feng, J. Wu, J. He, J. Zhang, Synthesis, characterization, and gas permeabilities of cellulose derivatives containing adamantane groups, J. Membr. Sci., 469 (2014) 507-514.
49.J. Li, S. Wang, K. Nagai, T. Nakagawa, A. W. H. Mau, Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes, J. Membr. Sci., 138 (1998) 143-152.
50.N. P. Patel, M. A. Hunt, L. G. Sheng, S. Bencherif, R. J. Spontak, Tunable CO2 transport through mixed polyether membranes, J. Membr. Sci., 251 (2005) 51-57.
51.S. Sridhar, R. Suryamurali, B. Smitha, T. M. Aminabhavi, Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation, Colloid Surf. A-Physicochem. Eng. Asp., 297 (2007) 267-274.
52.A. Car, C. Stropnik, W. Yave, K. V. Peinemann, PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation, J. Membr. Sci., 307 (2008) 88-95.
53.W. Yave, A. Car, K. V. Peinemann, M. Q. Shaikh, K. Ratzke, F. Faupel, Gas permeability and free volume in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes, J. Membr. Sci., 339 (2009) 177-183.
54.W. Yave, A. Car, K. V. Peinemann, Nanostructured membrane material designed for carbon dioxide separation, J. Membr. Sci., 350 (2010) 124-129.
55.M. K. Barillas, R. M. Enick, M. O’Brien, R. Perry, D. R. Luebke, B. D. Morreale, The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers, J. Membr. Sci., 372 (2011) 29-39.
56.P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Kačírková, G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Sep. Purif. Technol., 97 (2012) 73-82.
57.S. Feng, J. Ren, Z. Li, H. Li, K. Hua, X. Li, M. Deng, Poly(amide-12-b-ethylene oxide)/glycerol triacetate blend membranes for CO2 separation, Int. J. Greenh. Gas Con., 19 (2013) 41-48.
58.S. Kim, E. Marand, J. Ida, V. V. Guliants, Polysulfone and Mesoporous Molecular Sieve MCM-48 Mixed Matrix Membranes for Gas Separation, Chem. Mater., 18 (2006) 1149-1155.
59.Y. Li, T. S. Chung, Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal, Int. J. Hydrogen Energ., 35 (2010) 10560-10568.
60.H. H. Tseng, P. T. Shiu, Y. S. Lin, Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation, Int. J. Hydrogen Energ., 36 (2011) 15352-15363.
61.M. F. A. Wahab, A. F. Ismail, S. J. Shilton, Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers, Sep. Purif. Technol., 86 (2012) 41-48.
62.T. Li, Y. Pan, K. V. Peinemann, Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425-426 (2013) 235-242.
63.S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, Z. Jiang, Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties, J. Membr. Sci., 460 (2014) 62-70.
64.S. Hwang, W. S. Chi, S. J. Lee, S. H. Im, J. H. Kim, J. Kim, Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation, J. Membr. Sci., 480 (2015) 11-19.
65.J. S. Lim, S. M. Hong, D. K. Kim, S. S. Im, Effect of isocyanate-modified fumed silica on the properties of poly(butylene succinate) nanocomposites, J. Appl. Polym. Sci., 107 (2008) 3598-3608.
66.林家森,乙基纖維酯複合膜應用於氣體分離程序之研究,國立宜蘭大學化學工程與材料工程學系碩士論文 (2012).67.D. B. Hall, P. Underhill, J. M. Torkelson, Spin coating of thin and ultrathin polymer films, Polym. Eng. Sci., 38 (1998) 2039-2045.
68.Q. Pan, K. I. Winey, H. H. Hu, R. J. Composto, Unstable Polymer Bilayers. 2. The Effect of Film Thickness, Langmuir, 13 (1997) 1758-1766.
69.P. Burmann, B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via spin coating for gas separation, Chem. Eng. Sci., 107 (2014) 66-75.
70.J. Chen, Y. Huang, J. Yuan, S. Yan, H. Ye, Thermotropic liquid crystalline behaviors of ethylcellulose, J. Appl. Polym. Sci., 45 (1992) 2153-2158.
71.C. C. Hu, Y. J. Fu, K. R. Lee, R. C. Ruaan, J. Y. Lai, Effect of sorption behavior on transport properties of gases in polymeric membranes, Polymer, 50 (2009) 5308-5313.
72.S. Basu, A. Cano-Odena, I. Vankelecom, MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separation, Sep. Purif. Technol., 81 (2011) 31-40.