跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳詮翔
研究生(外文):Chuan-Hsiang Wu
論文名稱:乙基纖維酯複合膜應用於二氧化碳分離與富氧化程序
論文名稱(外文):Ethyl cellulose composite membranes for carbon dioxide separation and oxygen enrichment processes
指導教授:黃書賢
指導教授(外文):Shu-Hsien Huang
口試委員:賴君義李魁然胡蒨傑黃書賢
口試委員(外文):Juin-Yih LaiKueir-Rarn LeeChien-Chieh HuShu-Hsien Huang
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:132
中文關鍵詞:乙基纖維酯聚丙氧基-聚乙氧基甘油醚胺改質中空二氧化矽複合膜氣體分離
外文關鍵詞:ethyl celluloseglycerol propoxylate-block-ethoxylateamino-modified hollow silicacomposite membranegas separation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬以聚丙氧基-聚乙氧基甘油醚(GP-b-E)寡聚物或形狀相異之胺改質中空二氧化矽(NH2-HS)作為添加劑,添加至乙基纖維酯(EC)高分子中,製備一系列EC複合膜,應用於氣體分離程序,探討鑄膜液濃度與寡聚物添加量對薄膜性質與氣體分離效能的影響。亦探討中空二氧化矽之形狀、表面胺改質與添加量對薄膜性質與氣體分離效能的影響。
研究中利用掃描式電子顯微鏡(SEM)觀察薄膜與中空二氧化矽的結構型態,以傅立葉紅外線轉換光譜儀(FTIR)鑑定胺改質中空二氧化矽表面的化學結構,以能量散佈分析儀(EDX)觀察中空二氧化矽於薄膜中的分佈情形,以熱重分析儀(TGA)與熱示差掃瞄卡量計(DSC)檢測薄膜的熱性質,使用萬能拉力機量測薄膜的機械性質,利用微量天平進行氣體吸附實驗,以量測薄膜的氣體吸附量。
於GP-b-E寡聚物的添加系統中,由SEM觀察的結果可知,在EC高分子薄膜中添加GP-b-E寡聚物,會使薄膜型態由較封閉的多孔隙結構,轉變為較連通的多孔隙結構,且隨著GP-b-E添加量增加,薄膜之連通孔洞有增加的趨勢。由DSC與機械性質的測試結果發現,GP-b-E寡聚物的添加,使薄膜的熔點下降,薄膜的楊氏模數與抗張強度下降,而薄膜的伸長率增加。由氣體透過實驗的結果可知,於EC高分子薄膜中添加含醚基團的寡聚物,確實能有效提升二氧化碳與氧氣的透過係數。添加比例為EC:GP-b-E=1:0.5(重量比)的GP-b-E寡聚物,其所製備的EC/GP-b-E複合膜有較理想的氣體分離效能,其二氧化碳與氧氣的透過係數分別為1506.3 barrer與228.5 barrer,二氧化碳/氮氣與氧氣/氮氣選擇性分別為17.5與2.7。由溶解-擴散機制的分析可知,EC/GP-b-E複合膜的氣體透過係數與氣體選擇性分別由氣體擴散係數與氣體擴散選擇性主導。
於HS與NH2-HS的添加系統中,由SEM觀察與FTIR分析的結果可知,本研究確實成功製出形狀相異的中空二氧化矽,並將-NH2基團接枝於其表面。由SEM觀察與EDX分析的結果顯示,球狀NH2-HS可均勻分散於EC高分子薄膜中。由機械性質量測的結果可知,在薄膜中添加球狀NH2-HS,使其楊氏模數、抗張強度與伸長率皆下降。由TGA與DSC的測試結果可知,球狀NH2-HS的添加,僅略提升薄膜的熱穩定性,但薄膜的玻璃轉移溫度(Tg)與熔點(Tm)皆下降。由氣體透過實驗的結果可知,於EC高分子薄膜中添加球狀中空二氧化矽,確實能夠提升二氧化碳與氧氣的透過係數。添加比例為EC:NH2-HS=1:0.1(重量比)之球狀NH2-HS,其所製備的EC/spherical NH2-HS複合膜有較理想的氣體分離效能,其二氧化碳與氧氣的透過係數分別為190.1 barrer與33.7 barrer,二氧化碳/氮氣與氧氣/氮氣選擇性分別為19.7與3.5。

In this study, the oligomer, glycerol propoxylate-block-ethoxylate (GP-b-E) or the amino-modified hollow silica (NH2-HS) with different shaps as the additives were added in the ethyl cellulose (EC) polymer to prepare a series of EC composite membranes. These composite membranes were applied to the gas separation processes. The effects of the concentration of casting solution and the oligomer content on the properties and gas separation performance of membrane were investigated. The effects of the shape, surface amino-modification, and content of hollow silica on the properties and gas separation performance of membrane were also studied in this study.
Scanning electron microscope (SEM) was used to observe the morphologies of the membranes and hollow silica. Fourier transform infrared (FTIR) was used to analyze the surface chemical structure of amino-modified hollow silica. Energy Dispersive X-ray spectrometer (EDX) was used to observe the distribution of hollow silica in the membrane. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) were used to analyze the thermal properties of the membranes. Tensile tester (Instron) was used to measure the mechanical properties of the membranes. The gas sorption measurement was carried out by the microbalance to determine the adsorbed amount of gas.
In the addition system of GP-b-E oligomer, from the SEM observation, the addition of the GP-b-E oligomer in the EC membrane causes the membrane morphology converts the more closed porous structure to the more connected porous structure. With an increase in the added amount of GP-b-E, connected porous structure in the membrane increased. From the results of the DSC and mechanical property measurements, the addition of the GP-b-E oligomer causes a decrease in the melting point, Young's modulus, and tensile strength and an increase in the elongation. From the results of the gas permeation experiments, the addition of the oligomer having the ether groups in the EC membrane can effectively promote the permeability coefficients of carbon dioxide and oxygen. The EC/GP-b-E composite membrane prepared by the addition content of EC:GP-b-E=1:0.5 (by weight) has the desirable gas separation performance which is the carbon dioxide and oxygen permeability coefficients of 1506.3 barrer and 228.5 barrer and the carbon dioxide/nitrogen and oxygen/nitrogen selectivities of 17.5 and 2.7, respectively. From the analysis of the solution-diffusion mechanism, the gas permeability coefficient and selectivity of the EC/GP-b-E composite membrane are dominated by it’s the gas diffusivity coefficient and diffusivity selectivity.
In the addition system of HS and NH2-HS, from the results of SEM observation and FTIR analysis, the amino-modified hollow silica with different shaps was prepared successfully. From the SEM observation and EDX analysis, the spherical NH2-HS can be distributed in the EC membrane uniformly. From the result of mechanical property measurement, the addition of the spherical NH2-HS causes a decreases in Young's modulus, tensile strength and elongation. From the TGA and DSC measurements, the addition of the spherical NH2-HS in the EC membrane enhances the thermal stability of the membrane slightly but decreases the glass transition temperature (Tg) and melting point (Tm). From the results of the gas permeation experiments, the addition of the spherical HS in the EC membrane can effectively promote the permeability coefficients of carbon dioxide and oxygen. The EC/spherical NH2-HS composite membrane prepared by the addition content of EC:spherical NH2-HS=1:0.1 (by weight) has the desirable gas separation performance which is the carbon dioxide and oxygen permeability coefficients of 190.1 barrer and 33.7 barrer and the carbon dioxide/nitrogen and oxygen/nitrogen selectivities of 19.7 and 3.5, respectively.

摘要 I
ABSTRACT IV
致謝 VII
目錄 IX
圖索引 XIII
表索引 XVII
第一章 緒論 1
1-1 薄膜分離技術 1
1-2 氣體分離薄膜 7
1-3 氣體分離薄膜傳送理論 9
1-3-1 多孔性薄膜之透過理論 11
1-3-2 非多孔性薄膜之透過理論 14
1-3-3雙重吸附理論 17
1-4 高分子薄膜之製備與改質 21
1-4-1 高分子薄膜之製備 21
1-4-2 高分子薄膜之改質 24
1-5 中空二氧化矽(HOLLOW SILICA) 28
1-6 旋轉塗佈技術 31
1-7 文獻與回顧 33
1-8 研究動機與目的 42
第二章 實驗 44
2-1 實驗藥品 44
2-2 實驗儀器 47
2-3 實驗流程圖 49
2-4 實驗步驟 50
2-4-1 EC/GP-b-E複合膜之製備 50
2-4-2 中空二氧化矽(Hollow silica,HS)之製備 51
2-4-3 中空二氧化矽(Hollow silica,HS)之改質 52
2-4-4 EC/HS與EC/NH2-HS複合膜之製備 53
2-4-5 掃描式電子顯微鏡(SEM) 54
2-4-6 穿透式電子顯微鏡(TEM) 55
2-4-7 高分子鑄膜液黏度之量測 56
2-4-7 熱重分析(TGA) 56
2-4-9 熱示差掃瞄卡量計(DSC) 57
2-4-10 溶出測試 57
2-4-11 機械性質測試 58
2-4-12 傅立葉轉換紅外線光譜儀(FTIR) 58
2-4-13 氣體透過測試(Gas Permeability Analyzer) 59
2-4-14 氣體恆溫吸附實驗 61
第三章 結果與討論 63
3-1 EC高分子濃度對EC/GP-B-E複合膜氣體分離效能之影響 63
3-2 寡聚物添加量對EC/GP-B-E複合膜性質與氣體分離效能之影響 71
3-2-1 GP-b-E添加量對薄膜型態之影響 71
3-2-2 GP-b-E添加量對薄膜機械性質之影響 74
3-2-3 GP-b-E添加量對薄膜熱性質之影響 76
3-2-4 GP-b-E添加量對薄膜氣體分離效能之影響 80
3-3 NH2-HS的添加對EC複合膜性質與氣體分離效能之影響 91
3-3-1 HS與NH2-HS顆粒之鑑定 91
3-3-2形狀相異之NH2-HS顆粒的添加對複合膜性質與氣體分離效能之影響 95
3-4 球狀NH2-HS添加量對EC複合膜性質與氣體分離效能之影響 102
3-4-1球狀NH2-HS顆粒添加量對薄膜表面型態與顆粒分散性之影響 102
3-4-2 球狀NH2-HS顆粒添加量對薄膜機械性質之影響 105
3-4-3 球狀NH2-HS顆粒添加量對薄膜熱性質之影響 108
3-4-4 球狀NH2-HS顆粒添加量對薄膜氣體分離效能之影響 113
第五章 參考文獻 120
自述 130
著作 131

1.M. Mulder, Basic principle of membrane technology, Kluwer Academic Publisher, The Netherlands (1997).
2.R. W. Baker, Membrane Technology and Applications 2nd Edition, McGraw-Hill, Menlo Park, California (2000).
3.T. Matsuura, Synthetic membranes and membrane separation processes, CRC Press, Inc., Canada (1994).
4.M. H. Klopffer, B. Flaconneche, Transport properties of gases in polymers bibliographic review, Oil Gas Sci. Technol., 56 (2001) 223-244.
5.S. Leob, S. Sourirajan, Sea Water Demineralization by Mean of an Osmotic Membrane, Adv. Chem. Ser., 38 (1963) 117-132.
6.P. K. Gantzel, U. Merten, Gas separations with high-flux cellulose acetate membranes, Ind. Eng. Chem. Process Des. Dev., 9 (1970) 331-332.
7.L. M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62 (1991) 165-185.
8.L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320 (2008) 390-400.
9.R. E. Kesting, A. K. Fritzsche, Polymeric gas separation membranes, John Wiley & Sons, Inc., New York (1993).
10.W. R. Vieth, K. J. Sladek, A model for diffusion in a glassy polymer, J. Colloid Interface Sci., 20 (1965) 1014-1033.
11.W. R. Vieth, J. M. Howell, J. H. Hsieh, Dual sorption theory, J. Membr. Sci., 1 (1976) 177-220.
12.M. Kurata, Thermodynamics of Polymer Solutions, Harwood Academic Publishers, New York (1982).
13.P. Vandeweerdt, H. Berghmans, Y. Tervoort, Temperature-concentration behavior of solution polydisperse, atactic poly(methyl methacrylate) and its influence on the formation of amorphous, microporous membranes, Macromolecules, 24 (1991) 3547-3552.
14.R. H. Mehta, D. A. Madsen, D. S. Kalika, Microporous membranes based on poly(ether ether ketone) via thermally-induced phase separation, J. Membr. Sci., 107 (1995) 93-106.
15.L. Zeman, T. Fraser, Formation of air-cast cellulose acetate membranes, Part I. Study the macrovoid formation, J. Membr. Sci., 84 (1993) 93-106.
16.L. Zeman, T. Fraser, Formation of air-cast cellulose acetate membranes, Part II. Kinetic of demixing and macrovoid growth, J. Membr. Sci., 87 (1994) 267-279.
17.F. C. Lin, D. M. Wang, J. Y. Lai, Asymmetric TPX membranes with high gas flux, J. Membr. Sci., 110 (1996) 25-36.
18.H. Yanagishita, T. Nakane, H. Yoshitome, Selection criteria for solvent and gelation medium in the phase inversion process, J. Membr. Sci., 89 (1994) 215-221.
19.J. Y. Lai, M. J. Liu, K. R. Lee, Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air, J. Membr. Sci., 86 (1994) 103-118.
20.H. Strathmann, K. Kock, The formation mechanism of phase inversion membrane, Desalination, 21 (1977) 241-255.
21.Z. Wang, T. Chen, J. Xu, Novel poly(aryl ether ketone)s containing various pendant groups. II. Gas-transport properties, J. Appl. Polym. Sci., 64 (1997) 1725-1732.
22.Z. Wang, T. Chen, J. Xu, Gas Transport Properties of Novel Cardo Poly(aryl ether ketone)s with Pendant Alkyl Groups, Macromolecules, 33 (2000) 5672-5679.
23.A. F. Ismail, R. A. Rahim, W. A. W. A. Rahman, Characterization of polyethersulfone/Matrimid® 5218 miscible blend mixed matrix membranes for O2/N2 gas separation, Sep. Purif. Technol., 63 (2008) 200-206.
24.B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation, J. Membr. Sci., 368 (2011) 100-109.
25.S. R. Reijerkerk, M. H. Knoef, K. Nijmeijer, M. Wessling, Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes, J. Membr. Sci., 352 (2010) 126-135.
26.S. H. Ahn, J. A. Seo, J. H. Kim, Y. Ko, S. U. Hong, Synthesis and gas permeation properties of amphiphilic graft copolymer membranes, J. Membr. Sci., 354 (2009) 128-133.
27.羅嘉豪,四乙氧基矽烷/聚碳酸酯電漿披覆膜應用於滲透蒸發分離四氟丙醇水溶液,私立中原大學化學工程學系碩士學位論文 (2005).
28.C. C. Hu, C. Y. Tu, Y. C. Wang, C. L. Li, K. R. Lee, J. Y. Lai, Effects of plasma treatment on CO2 plasticization of poly(methyl methacrylate) gas-separation membranes, J. Appl. Polym. Sci., 93 (2004) 395-401.
29.L. Kwisnek, S. Heinz, J. S. Wiggins, S. Nazarenko, Multifunctional thiols as additives in UV-cured PEG-diacrylate membranes for CO2 separation, J. Membr. Sci., 369 (2011) 429-436.
30.E. Mathiowitz, J. S. Jacob, Y. S. Jong, G. P. Carino, D. E. Chickering, P. Chaturvedi, C. A. Santos, K. Vijayaraghava, S. Montgomery, M. Bassett, C. Morrell, Biologically erodible microspheres as potential oral drug delivery systems, Nature, 386 (1997) 410-414.
31.S. M. Marinakos, J. P. Novak, L. C. Brousseau III, A. B. House, E. M. Edeki, J. C. Feldhaus, D. L. Feldheim, Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation, J. Am. Chem. Soc., 121 (1999) 8518-8522.
32.S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions, J. Am. Chem. Soc., 124 (2002) 7642-7643.
33.Y. Ono, Y. Kanekiyo, K. Inoue, J. Hojo, M. Nango, S. Shinkai, Preparation of novel hollow fiber silica using collagen fibers as a template, Chem. Lett., 28 (1999) 475-476.
34.A. Khanal, Y. Inoue, M. Yada, K. Nakashima, Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure, J. Am. Chem. Soc., 129 (2007) 1534-1535.
35.M. Fuji, T. Shin, H. Watanabe, T. Takei, Shape-controlled hollow silica nanoparticles synthesized by an inorganic particle template method, Adv. Powder Technol., 23 (2012) 562-565.
36.葉添昇,回應曲面法探討溶膠-凝膠程序配合光譜分析凝膠動力反應,私立中原大學化學工程學系碩士學位論文 (1999).
37.B. Jirhennsons, M. E. Straumanis, Colloid Chemistry, McMillan Co., New York (1962).
38.蘇郁蕙,幾丁聚醣混成膜中無機材成分對滲透蒸發效能之影響,私立中原大學化學工程學系碩士學位論文 (2005).
39.B. D. Washo, Rheology and modeling of the spin coating process, IBM. J. Res. Dev., 21 (1977) 190-198.
40.林勝平,界面聚合-旋轉塗佈技術製備促進傳輸複合膜應用於二氧化碳捕獲程序,私立中原大學化學工程學系碩士學位論文 (2014).
41.G. Sartori, W. S. W Ho, D. W. Savage, G. R. Chludzinski, S. Wlechert, Sterically-hindered amines for acid-gas absorption, Sep. Purif. Rev., 16 (1987) 171-200.
42.Y. Wang, A. J. Easteal, Preparation, characterisation and gas transport properties of trifluoroacetylated ethyl cellulose, J. Membr. Sci., 157 (1999) 53-61.
43.J. J. Shieh, T. S. Chung, Gas permeability, diffusivity, and solubility of poly(4-vinylpyridine) film, J. Polymer Sci. B Polymer Phys., 37 (1999) 2851-2861.
44.X. G. Li, I. Kresse, Z. K. Xu, J. Springer, Effect of temperature and pressure on gas transport in ethyl cellulose membrane, Polymer, 42 (2001) 6801-6810.
45.X. G. Li, I. Kresse, J. Springer, J. Nissen, Y. L. Yang, Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose, Polymer, 42 (2001) 6859-6869.
46.F. Z. Khan, M. Shiotsuki, Y. Nishio, T. Masuda, Synthesis, characterization, and gas permeation properties of t-butylcarbamates of cellulose derivatives, J. Membr. Sci., 312 (2008) 207-216.
47.Z. Mao, X. Jie, Y. Cao, L. Wang, M. Li, Q. Yuan, Preparation of dual-layer cellulose/polysulfone hollow fiber membrane and its performance for isopropanol dehydration and CO2 separation, Sep. Purif. Technol., 77 (2011) 179-184.
48.J. Chen, J. Zhang, Y. Feng, J. Wu, J. He, J. Zhang, Synthesis, characterization, and gas permeabilities of cellulose derivatives containing adamantane groups, J. Membr. Sci., 469 (2014) 507-514.
49.J. Li, S. Wang, K. Nagai, T. Nakagawa, A. W. H. Mau, Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes, J. Membr. Sci., 138 (1998) 143-152.
50.N. P. Patel, M. A. Hunt, L. G. Sheng, S. Bencherif, R. J. Spontak, Tunable CO2 transport through mixed polyether membranes, J. Membr. Sci., 251 (2005) 51-57.
51.S. Sridhar, R. Suryamurali, B. Smitha, T. M. Aminabhavi, Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation, Colloid Surf. A-Physicochem. Eng. Asp., 297 (2007) 267-274.
52.A. Car, C. Stropnik, W. Yave, K. V. Peinemann, PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation, J. Membr. Sci., 307 (2008) 88-95.
53.W. Yave, A. Car, K. V. Peinemann, M. Q. Shaikh, K. Ratzke, F. Faupel, Gas permeability and free volume in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes, J. Membr. Sci., 339 (2009) 177-183.
54.W. Yave, A. Car, K. V. Peinemann, Nanostructured membrane material designed for carbon dioxide separation, J. Membr. Sci., 350 (2010) 124-129.
55.M. K. Barillas, R. M. Enick, M. O’Brien, R. Perry, D. R. Luebke, B. D. Morreale, The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers, J. Membr. Sci., 372 (2011) 29-39.
56.P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Kačírková, G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Sep. Purif. Technol., 97 (2012) 73-82.
57.S. Feng, J. Ren, Z. Li, H. Li, K. Hua, X. Li, M. Deng, Poly(amide-12-b-ethylene oxide)/glycerol triacetate blend membranes for CO2 separation, Int. J. Greenh. Gas Con., 19 (2013) 41-48.
58.S. Kim, E. Marand, J. Ida, V. V. Guliants, Polysulfone and Mesoporous Molecular Sieve MCM-48 Mixed Matrix Membranes for Gas Separation, Chem. Mater., 18 (2006) 1149-1155.
59.Y. Li, T. S. Chung, Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal, Int. J. Hydrogen Energ., 35 (2010) 10560-10568.
60.H. H. Tseng, P. T. Shiu, Y. S. Lin, Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation, Int. J. Hydrogen Energ., 36 (2011) 15352-15363.
61.M. F. A. Wahab, A. F. Ismail, S. J. Shilton, Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers, Sep. Purif. Technol., 86 (2012) 41-48.
62.T. Li, Y. Pan, K. V. Peinemann, Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425-426 (2013) 235-242.
63.S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, Z. Jiang, Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties, J. Membr. Sci., 460 (2014) 62-70.
64.S. Hwang, W. S. Chi, S. J. Lee, S. H. Im, J. H. Kim, J. Kim, Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation, J. Membr. Sci., 480 (2015) 11-19.
65.J. S. Lim, S. M. Hong, D. K. Kim, S. S. Im, Effect of isocyanate-modified fumed silica on the properties of poly(butylene succinate) nanocomposites, J. Appl. Polym. Sci., 107 (2008) 3598-3608.
66.林家森,乙基纖維酯複合膜應用於氣體分離程序之研究,國立宜蘭大學化學工程與材料工程學系碩士論文 (2012).
67.D. B. Hall, P. Underhill, J. M. Torkelson, Spin coating of thin and ultrathin polymer films, Polym. Eng. Sci., 38 (1998) 2039-2045.
68.Q. Pan, K. I. Winey, H. H. Hu, R. J. Composto, Unstable Polymer Bilayers. 2. The Effect of Film Thickness, Langmuir, 13 (1997) 1758-1766.
69.P. Burmann, B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via spin coating for gas separation, Chem. Eng. Sci., 107 (2014) 66-75.
70.J. Chen, Y. Huang, J. Yuan, S. Yan, H. Ye, Thermotropic liquid crystalline behaviors of ethylcellulose, J. Appl. Polym. Sci., 45 (1992) 2153-2158.
71.C. C. Hu, Y. J. Fu, K. R. Lee, R. C. Ruaan, J. Y. Lai, Effect of sorption behavior on transport properties of gases in polymeric membranes, Polymer, 50 (2009) 5308-5313.
72.S. Basu, A. Cano-Odena, I. Vankelecom, MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separation, Sep. Purif. Technol., 81 (2011) 31-40.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊