跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/04 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡松穎
研究生(外文):Sung-Ying Tsai
論文名稱:多孔陣列電極之製備及其在可撓式超級電容器上之應用
論文名稱(外文):Preparation of the Porous Array Electrodes and Their Applications on Flexible Supercapacitors
指導教授:謝振榆謝振榆引用關係
指導教授(外文):Jen-Yu Shieh
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:25
中文關鍵詞:自組裝聚二甲基矽氧烷(PDMS)石墨烯多孔陣列可撓式超級電容器
外文關鍵詞:Self-assemblyPolydimethylsiloxaneGraphenePorous arraysFlexible supercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,許多電子產品有朝向輕薄可撓發展的趨勢,促使新形態的儲能元件迎應而生。其中,界於傳統電容器與電化學電池之間的超級電容器具備快速充電、功率密度高、循環壽命長等優點,可視為一種理想的儲能元件。超級電容器又稱電雙層電容器,其儲能關鍵主要在於電極材料之表面特性及其與電解質間之接觸面積。因此,製作多孔狀結構電極將有助於超級電容器儲能效應的提升。本研究藉由分散聚合法製備出微米級聚苯乙烯 (Polystyrene, PS) 微球,輔以自組裝方式排列成非緊密陣列結構,再利用微拓印方式製作出聚二甲基矽氧烷 (Polydimethylsiloxane, PDMS) 之多孔陣列基板。以多壁奈米碳管 (Multi-walled carbon nanotube, MWCNT) 與石墨烯 (Graphene, G) 之均質懸浮液塗覆於多孔陣列各孔洞表層做為電極。隨後於兩多孔電極間注入凝膠電解質於插入隔膜後以三明治結構組立成具多孔電極之超級電容器,分析後發現其具有較高的電容值與循環穩定性。未來對於對穿載式電子產品的發展,將具有相當大之應用潛力。

The soft electronic era did come. Many lightweight flexible electronic devices such as the flexible panel display, flexible solar cell and the wearable electronics have been extensively studied. Thus, a highly efficient energy storage device was required for all of soft electronic devices. Supercapacitors are also known as electrical double-layer capacitors or ultracapacitors. The function of the supercapacitors is between the traditional capacitors and electrochemical cell, which also can be regarded as an ideal energy storage element. The advantages of supercapacitors including faster charge/discharge rate, high energy density, long lifetime, and low maintenance cost were the major advantages of supercapacitors which make them ideal candidates for energy storage. However, the energy storage performance of the supercapacitors is mainly affected by the electrode surface characteristics and the contact area between electrodes and electrolyte. Therefore, preparing of porous electrodes is reasonable to increase the storage effect of the supercapacitor. In this study, polystyrene (PS) microspheres were synthesized by dispersion polymerization technique first. Then, porous Polydimethylsiloxane (PDMS) array structure was fabricated by soft-lithography method. Later, a conducting layer was coated on the surface of porous array after the multi-walled carbon nanotube (MWCNT) and Graphene (G) mixture suspension pouring into the porous array. A H3PO4/PVA gel electrolyte was filled between two porous electrodes; a porous PDMS-based supercapacitor was assembled in a sandwich structure after a separator inserting. The specific capacitances, electrochemical analysis, cycle stability of the porous electrode supercapacitors were explored. This porous electrode-based supercapacitor exhibits a high specific capacitance and good cycle stability, which has enormous potential applied in wearable and portable electronic products in the future.

目錄
中文摘要 …………………………………………………………....................... i
英文摘要 …………………………………………………………....................... ii
誌謝 …………………………………………………………....................... iv
目錄 …………………………………………………………....................... v
表目錄 …………………………………………………………....................... vi
圖目錄 …………………………………………………………....................... vii
符號說明 …………………………………………………………....................... viii
第一章 緒論…………………………………………………........................... 1
1.1 前言………………………………………........................................... 1
1.2 研究動機及目的……………………………………........................... 2
1.3 專利檢索…………………………………........................................... 2
第二章 實驗內容………………………………………………....................... 4
2.1 微米級聚苯乙烯微球陣列之製備……………………....................... 4
2.2 微米孔洞陣列聚二甲基矽氧烷基板之製備………………………... 4
2.3 多孔陣列電極之製備………………………………........................... 5
2.4 凝膠電解質之製備……………………………………....................... 5
2.5 超級電容器之組立……………………………………....................... 6
2.6 多孔陣列電極之電化學測試………………………………………... 6
第三章 結果與討論……………………………………………....................... 8
3.1 導電層之表面形貌…………………………………........................... 8
3.2 多孔陣列電極之表面型態分析……………………........................... 8
3.3 電化學分析………………................................................................... 9
第四章 結論………………………………………………………................... 14
第五章 未來展望…………………………………………………………....... 15
參考文獻 ……………………………………………………………................... 16
英文論文大綱 ……………………………………………………………................... 19
簡 歷 ……………………………………………………………................... 25

[1]B. Anothumakkool, A. Torris AT, S.N. Bhange, S.M. Unni, M.V. Badiger, S. Kurungot, 2013, “Design of a High Performance Thin All-Solid-State Supercapacitor Mimicking the Active Interface of Its Liquid-State Counterpart”, ACS applied materials & interfaces, 5, pp. 13397-13404.
[2]A. Yu, I. Roes, A. Davies, Z. Chen, 2010, “Ultrathin, transparent, and flexible graphene films for supercapacitor application”, Applied physics letters, 96, pp. 253105.
[3]Y. Gao, Y. Zhou, W. Xiong, L. Jiang, M. Mahjouri-samani, P. Thirugnanam, X. Huang, M. Wang, L. Jiang, Y. Lu, 2013, “Transparent, flexible, and solid-state supercapacitors based on graphene electrodes”, APL Materials, 1, pp. 012101.
[4]P. Chen, H. Chen, J. Qiu, C. Zhou, 2010, “Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates”, Nano Research, 3, pp. 594-603.
[5]T. Sato, G. Masuda, K. Takagi, 2004, “Electrochemical properties of novel ionic liquids for electric double layer capacitor applications”, Electrochimica Acta, 49, pp. 3603-3611.
[6]S. Tanaka, H. Nakao, T. Mukai, Y. Katayama, Y. Miyake, 2012, “An experimental investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using monodisperse carbon spheres with microporous structure”, The Journal of Physical Chemistry C, 116, pp. 26791-26799.
[7]N. Soin, S.S. Roy, S.K. Mitra, T. Thundat, J.A. McLaughlin, 2012, “Nanocrystalline ruthenium oxide dispersed Few Layered Graphene (FLG) nanoflakes as supercapacitor electrodes”, Journal of Materials Chemistry, 22, pp. 14944-14950.
[8]J. Yang, L. Zou, 2014, “Graphene films of controllable thickness as binder-free electrodes for high performance supercapacitors”, Electrochimica Acta, 130, pp. 791-799.
[9]M. Lu, Y. Lu, K. Qiu, J. Cheng, H. Yan, Y. Luo, 2016, “One-pot synthesized ultrathin MnO2 nanorods as advanced electrodes for high-performance supercapacitors”, Materials Letters, 166, pp. 255-258.
[10]M. Seong, S. Kim, H. Yoo, J. Choi, 2016, “Doping of anodic nanotubular TiO2 electrodes with MnO2 for use as catalysts in water oxidation”, Catalysis Today, 260, pp. 135-139.
[11]M.B. Gholivand, H. Heydari, A. Abdolmaleki, H. Hosseini, 2015, “Nanostructured CuO/PANI composite as supercapacitor electrode material”, Materials Science in Semiconductor Processing, 30, pp. 157-161.
[12]S. Sarkar, R. Borah, A. Santhosha, R. Dhanya, C. Narayana, A.J. Bhattacharyya, S.C. Peter, 2016, “Heterostructure composites of rGO/GeO2/PANI with enhanced performance for Li ion battery anode material”, Journal of Power Sources, 306, pp. 791-800.
[13]M. Ataur Rahman, G.-S. Chung, 2013, “Synthesis of PVDF-graphene nanocomposites and their properties”, Journal of Alloys and Compounds, 581, pp. 724-730.
[14]S. Sun, J. Song, Z. Shan, R. Feng, 2012, “Electrochemical properties of a low molecular weight gel electrolyte for supercapacitor”, Journal of Electroanalytical Chemistry, 676, pp. 1-5.
[15]J.-A. Choi, J.-H. Yoo, W.Y. Yoon, D.-W. Kim, 2014, “Cycling characteristics of lithium powder polymer cells assembled with cross-linked gel polymer electrolyte”, Electrochimica Acta, 132, pp. 1-6.
[16]S. Dai, W. Xu, Y. Xi, M. Wang, X. Gu, D. Guo, C. Hu, 2016, “Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor”, Nano Energy, 19, pp. 363-372.
[17]L. Hao, X. Li, L. Zhi, 2013, “Carbonaceous electrode materials for supercapacitors”, Advanced Materials, 25, pp. 3899-3904.
[18]L.-F. Chen, Z.-Y. Yu, J.-J. Wang, Q.-X. Li, Z.-Q. Tan, Y.-W. Zhu, S.-H. Yu, 2015, “Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors”, Nano Energy, 11, pp. 119-128.
[19]C. An, Y. Wang, Y. Huang, Y. Xu, L. Jiao, H. Yuan, 2014, “Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique”, Nano Energy, 10, pp. 125-134.
[20]G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, 2013, “Hybrid nanostructured materials for high-performance electrochemical capacitors”, Nano Energy, 2, pp. 213-234.
[21]P. Hiralal, S. Imaizumi, H.E. Unalan, H. Matsumoto, M. Minagawa, M. Rouvala, A. Tanioka, G.A. Amaratunga, 2010, “Nanomaterial-Enhanced All-Solid Flexible Zinc− Carbon Batteries”, ACS nano, 4, pp. 2730-2734.
[22]M. Lee, G.-P. Kim, H.D. Song, S. Park, J. Yi, 2014, “Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode”, Nanotechnology, 25, pp. 345601.
[23]Z. Fan, H. Razavi, J.-w. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, 2009, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates”, Nature materials, 8, pp. 648-653.
[24]Y. Xu, K. Sheng, C. Li, G. Shi, 2010, “Self-assembled graphene hydrogel via a one-step hydrothermal process”, ACS nano, 4, pp. 4324-4330.
[25]C. Pan, H. Gu, L. Dong, 2016, “Synthesis and electrochemical performance of polyaniline@MnO2/graphene ternary composites for electrochemical supercapacitors”, Journal of Power Sources, 303, pp. 175-181.
[26]H. Fan, L. Quan, M. Yuan, S. Zhu, K. Wang, Y. Zhong, L. Chang, H. Shao, J. Wang, J. Zhang, 2016, “Thin Co3O4 nanosheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors”, Electrochimica Acta, 188, pp. 222-229.
[27]D. Wang, Z. Geng, B. Li, C. Zhang, 2015, “High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons”, Electrochimica Acta, 173, pp. 377-384.
[28]J.-Y. Shieh, S.-H. Zhang, C.-H. Wu, H.H. Yu, 2014, “A facile method to prepare a high performance solid-state flexible paper-based supercapacitor”, Applied Surface Science, 313, pp. 704-710.
[29]J.-Y. Shieh, C.-H. Wu, S.-Y. Tsai, H. H. Yu, 2016, “Fabrication and Characterization of a Sandpaper-Based Flexible Energy Storage”, Applied Surface Science, 364, pp. 21-28.
[30]J.-Y. Shieh, J. Y. Kuo, H.P. Weng, and H. H. Yu, 2013, “Preparation and evaluation of the bioinspired PS/PDMS photochromic films by self-assembly dip-drawing method”, Langmuir, 29, pp. 667-672.
[31]W.-M. Chou, L.-L. Wang, and H. H. Yu, 2015, “Electrophoretic ink display prepared by jelly fig pectin/gelatin microspheres”, Smart Science, 3, pp. 74-79.
[32]M.S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu, Y. Xi, 2015, “High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres”, Journal of Power Sources, 285, pp. 63-69.
[33]Y. Zhao, Z. Zhang, Y. Ren, W. Ran, X. Chen, J. Wu, F. Gao, 2015, “Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode”, Journal of Power Sources, 286, pp. 1-9.
[34]H.J. Nam, D.-Y. Jung, G.-R. Yi, H. Choi, 2006, “Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres”, Langmuir, 22, pp. 7358-7363.
[35]W.K. Kuo, G.F. Kuo, S.Y. Lin, H. H. Yu, 2015, “Fabrication and characterization of artificial miniaturized insect compound eyes for imaging”, Bioinspiration & Biomimetics, 10, pp. 056010.
[36]Y. Zhang, J. Li, F. Kang, F. Gao, X. Wang, 2012, “Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications”, International journal of hydrogen energy, 37, pp. 860-866.
[37]M. Wu, P. Ai, M. Tan, B. Jiang, Y. Li, J. Zheng, W. Wu, Z. Li, Q. Zhang, X. He, 2014, “Synthesis of starch-derived mesoporous carbon for electric double layer capacitor”, Chemical Engineering Journal, 245, pp. 166-172.
[38]L. Zhang, G. Shi, 2011, “Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability”, The Journal of Physical Chemistry C, 115, pp. 17206-17212.
[39]K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, 2001, “Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes”, Advanced functional materials, 11 , pp. 387-392.
[40]P. Arora, Z. Zhang, 2004, “Battery separators”, Chemical reviews, 104, pp. 4419-4462.
[41]M. Kaempgen, J. Ma, G. Gruner, G. Wee, S. Mhaisalkar, 2007, “Bifunctional carbon nanotube networks for supercapacitors”, Applied physics letters, 90, pp. 264104.
[42]M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, 2009, “Printable thin film supercapacitors using single-walled carbon nanotubes”, Nano letters, 9, pp. 1872-1876.
[43]A. Ya’akobovitz, A.J. Hart, 2014, “Enhanced surface capacitance of cylindrical micropillar arrays”, Sensors and Actuators A: Physical, 219, pp. 32-37.
[44] J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, M. Wu, Nitrogen, 2015, “oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors”, Electrochimica Acta, 176, pp. 982-988.
[45] G. Ma, Q. Yang, K. Sun, H. Peng, F. Ran, X. Zhao, Z. Lei, 2015, “Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor”, Bioresource technology, 197, pp. 137-142.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊