|
[1]B. Anothumakkool, A. Torris AT, S.N. Bhange, S.M. Unni, M.V. Badiger, S. Kurungot, 2013, “Design of a High Performance Thin All-Solid-State Supercapacitor Mimicking the Active Interface of Its Liquid-State Counterpart”, ACS applied materials & interfaces, 5, pp. 13397-13404. [2]A. Yu, I. Roes, A. Davies, Z. Chen, 2010, “Ultrathin, transparent, and flexible graphene films for supercapacitor application”, Applied physics letters, 96, pp. 253105. [3]Y. Gao, Y. Zhou, W. Xiong, L. Jiang, M. Mahjouri-samani, P. Thirugnanam, X. Huang, M. Wang, L. Jiang, Y. Lu, 2013, “Transparent, flexible, and solid-state supercapacitors based on graphene electrodes”, APL Materials, 1, pp. 012101. [4]P. Chen, H. Chen, J. Qiu, C. Zhou, 2010, “Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates”, Nano Research, 3, pp. 594-603. [5]T. Sato, G. Masuda, K. Takagi, 2004, “Electrochemical properties of novel ionic liquids for electric double layer capacitor applications”, Electrochimica Acta, 49, pp. 3603-3611. [6]S. Tanaka, H. Nakao, T. Mukai, Y. Katayama, Y. Miyake, 2012, “An experimental investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using monodisperse carbon spheres with microporous structure”, The Journal of Physical Chemistry C, 116, pp. 26791-26799. [7]N. Soin, S.S. Roy, S.K. Mitra, T. Thundat, J.A. McLaughlin, 2012, “Nanocrystalline ruthenium oxide dispersed Few Layered Graphene (FLG) nanoflakes as supercapacitor electrodes”, Journal of Materials Chemistry, 22, pp. 14944-14950. [8]J. Yang, L. Zou, 2014, “Graphene films of controllable thickness as binder-free electrodes for high performance supercapacitors”, Electrochimica Acta, 130, pp. 791-799. [9]M. Lu, Y. Lu, K. Qiu, J. Cheng, H. Yan, Y. Luo, 2016, “One-pot synthesized ultrathin MnO2 nanorods as advanced electrodes for high-performance supercapacitors”, Materials Letters, 166, pp. 255-258. [10]M. Seong, S. Kim, H. Yoo, J. Choi, 2016, “Doping of anodic nanotubular TiO2 electrodes with MnO2 for use as catalysts in water oxidation”, Catalysis Today, 260, pp. 135-139. [11]M.B. Gholivand, H. Heydari, A. Abdolmaleki, H. Hosseini, 2015, “Nanostructured CuO/PANI composite as supercapacitor electrode material”, Materials Science in Semiconductor Processing, 30, pp. 157-161. [12]S. Sarkar, R. Borah, A. Santhosha, R. Dhanya, C. Narayana, A.J. Bhattacharyya, S.C. Peter, 2016, “Heterostructure composites of rGO/GeO2/PANI with enhanced performance for Li ion battery anode material”, Journal of Power Sources, 306, pp. 791-800. [13]M. Ataur Rahman, G.-S. Chung, 2013, “Synthesis of PVDF-graphene nanocomposites and their properties”, Journal of Alloys and Compounds, 581, pp. 724-730. [14]S. Sun, J. Song, Z. Shan, R. Feng, 2012, “Electrochemical properties of a low molecular weight gel electrolyte for supercapacitor”, Journal of Electroanalytical Chemistry, 676, pp. 1-5. [15]J.-A. Choi, J.-H. Yoo, W.Y. Yoon, D.-W. Kim, 2014, “Cycling characteristics of lithium powder polymer cells assembled with cross-linked gel polymer electrolyte”, Electrochimica Acta, 132, pp. 1-6. [16]S. Dai, W. Xu, Y. Xi, M. Wang, X. Gu, D. Guo, C. Hu, 2016, “Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor”, Nano Energy, 19, pp. 363-372. [17]L. Hao, X. Li, L. Zhi, 2013, “Carbonaceous electrode materials for supercapacitors”, Advanced Materials, 25, pp. 3899-3904. [18]L.-F. Chen, Z.-Y. Yu, J.-J. Wang, Q.-X. Li, Z.-Q. Tan, Y.-W. Zhu, S.-H. Yu, 2015, “Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors”, Nano Energy, 11, pp. 119-128. [19]C. An, Y. Wang, Y. Huang, Y. Xu, L. Jiao, H. Yuan, 2014, “Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique”, Nano Energy, 10, pp. 125-134. [20]G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, 2013, “Hybrid nanostructured materials for high-performance electrochemical capacitors”, Nano Energy, 2, pp. 213-234. [21]P. Hiralal, S. Imaizumi, H.E. Unalan, H. Matsumoto, M. Minagawa, M. Rouvala, A. Tanioka, G.A. Amaratunga, 2010, “Nanomaterial-Enhanced All-Solid Flexible Zinc− Carbon Batteries”, ACS nano, 4, pp. 2730-2734. [22]M. Lee, G.-P. Kim, H.D. Song, S. Park, J. Yi, 2014, “Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode”, Nanotechnology, 25, pp. 345601. [23]Z. Fan, H. Razavi, J.-w. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, 2009, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates”, Nature materials, 8, pp. 648-653. [24]Y. Xu, K. Sheng, C. Li, G. Shi, 2010, “Self-assembled graphene hydrogel via a one-step hydrothermal process”, ACS nano, 4, pp. 4324-4330. [25]C. Pan, H. Gu, L. Dong, 2016, “Synthesis and electrochemical performance of polyaniline@MnO2/graphene ternary composites for electrochemical supercapacitors”, Journal of Power Sources, 303, pp. 175-181. [26]H. Fan, L. Quan, M. Yuan, S. Zhu, K. Wang, Y. Zhong, L. Chang, H. Shao, J. Wang, J. Zhang, 2016, “Thin Co3O4 nanosheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors”, Electrochimica Acta, 188, pp. 222-229. [27]D. Wang, Z. Geng, B. Li, C. Zhang, 2015, “High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons”, Electrochimica Acta, 173, pp. 377-384. [28]J.-Y. Shieh, S.-H. Zhang, C.-H. Wu, H.H. Yu, 2014, “A facile method to prepare a high performance solid-state flexible paper-based supercapacitor”, Applied Surface Science, 313, pp. 704-710. [29]J.-Y. Shieh, C.-H. Wu, S.-Y. Tsai, H. H. Yu, 2016, “Fabrication and Characterization of a Sandpaper-Based Flexible Energy Storage”, Applied Surface Science, 364, pp. 21-28. [30]J.-Y. Shieh, J. Y. Kuo, H.P. Weng, and H. H. Yu, 2013, “Preparation and evaluation of the bioinspired PS/PDMS photochromic films by self-assembly dip-drawing method”, Langmuir, 29, pp. 667-672. [31]W.-M. Chou, L.-L. Wang, and H. H. Yu, 2015, “Electrophoretic ink display prepared by jelly fig pectin/gelatin microspheres”, Smart Science, 3, pp. 74-79. [32]M.S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu, Y. Xi, 2015, “High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres”, Journal of Power Sources, 285, pp. 63-69. [33]Y. Zhao, Z. Zhang, Y. Ren, W. Ran, X. Chen, J. Wu, F. Gao, 2015, “Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode”, Journal of Power Sources, 286, pp. 1-9. [34]H.J. Nam, D.-Y. Jung, G.-R. Yi, H. Choi, 2006, “Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres”, Langmuir, 22, pp. 7358-7363. [35]W.K. Kuo, G.F. Kuo, S.Y. Lin, H. H. Yu, 2015, “Fabrication and characterization of artificial miniaturized insect compound eyes for imaging”, Bioinspiration & Biomimetics, 10, pp. 056010. [36]Y. Zhang, J. Li, F. Kang, F. Gao, X. Wang, 2012, “Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications”, International journal of hydrogen energy, 37, pp. 860-866. [37]M. Wu, P. Ai, M. Tan, B. Jiang, Y. Li, J. Zheng, W. Wu, Z. Li, Q. Zhang, X. He, 2014, “Synthesis of starch-derived mesoporous carbon for electric double layer capacitor”, Chemical Engineering Journal, 245, pp. 166-172. [38]L. Zhang, G. Shi, 2011, “Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability”, The Journal of Physical Chemistry C, 115, pp. 17206-17212. [39]K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, 2001, “Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes”, Advanced functional materials, 11 , pp. 387-392. [40]P. Arora, Z. Zhang, 2004, “Battery separators”, Chemical reviews, 104, pp. 4419-4462. [41]M. Kaempgen, J. Ma, G. Gruner, G. Wee, S. Mhaisalkar, 2007, “Bifunctional carbon nanotube networks for supercapacitors”, Applied physics letters, 90, pp. 264104. [42]M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, 2009, “Printable thin film supercapacitors using single-walled carbon nanotubes”, Nano letters, 9, pp. 1872-1876. [43]A. Ya’akobovitz, A.J. Hart, 2014, “Enhanced surface capacitance of cylindrical micropillar arrays”, Sensors and Actuators A: Physical, 219, pp. 32-37. [44] J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, M. Wu, Nitrogen, 2015, “oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors”, Electrochimica Acta, 176, pp. 982-988. [45] G. Ma, Q. Yang, K. Sun, H. Peng, F. Ran, X. Zhao, Z. Lei, 2015, “Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor”, Bioresource technology, 197, pp. 137-142.
|