|
[1] R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys. 79, 1086–1088 (1983). [2] D. Yu, C. Wang, P. Guyot-Sionnest, “n-Type conducting CdSe nanocrystal solids,” Science 300, 1277–1280 (2003). [3] P. Reiss, M. Protiere, L. Li, “Core/Shell semiconductor nanocrystals,” Small 5, 154–168 (2009). [4] X. Peng, M. C. Scchlamp, A. V. Kadavanich, A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997). [5] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997). [6] R. H. Ritchie, “Plasmon losses by fast electrons in thin films,” Phys. Rev. 106, 874 (1957). [7] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003). [8] J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003). [9] V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996). [10] J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005). [11] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377 (1908). [12] C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949 (2000). [13] B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic Tandem thin-film solar-cells ontaining silver nanoclusters,” J. Appl. Phys. 96, 7519 (2004). [14] M. Cortie, X. Xu, H. Chowdhury, H. Zareie, and G. Smith, “Plasmonic heating of gold nanoparticles and its exploitation,” Proc. SPIE 5649, 565 (2005). [15] K. H. Su, Q. H. Wei, and X. Zhang, “Surface Plasmon Coupling Between Two Nano Au Particles,” IEEE-NANO 2, 279 (2003). [16] P. Raveendran, J. Fu and S.L. Wallen, “A simple and ‘‘green’’ method for the synthesis of Au, Ag, and Au–Ag alloy,” Green Chem. 8, 34 (2006). [17] M. J. Kim, H. J. Na, K.C. Lee, E.A. Yoo, and M.Y. Lee, “Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform,” J. Mater. Chem. 13, 1789 (2003). [18] S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem B. 103, 3529 (1999). [19] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007). [20] G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007). [21] K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93, 231111 (2008). [22] M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008). [23] J. Lin, A. Mohammadizia, A. Neogi, H. Morkoç, and M. Ohtsu, “Surface plasmon enhanced UV emission in AlGaN/GaN quantum well,” Appl. Phys. Lett. 97, 221104 (2010). [24] Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914–A929 (2011). [25] C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles,” Appl. Phys. Lett. 98, 051106 (2011). [26] N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang, “Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Scientific Reports 2, 00816 (2012). [27] H. S. Chen, C. F Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102, 041108 (2013). [28] C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102, 211110 (2013). [29] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93, 041102 (2008). [30] J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,” Appl. Phys. Lett. 93, 121107 (2008). [31] M. Maier, K. Köhler, M. Kunzer, W. Pletschen, and J. Wagner, “Reduced nonthermal rollover of wide-well GaInN light-emitting diodes,” Appl. Phys. Lett. 94, 041103 (2009). [32] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94, 191109 (2009). [33] E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011). [34] J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110, 177406 (2013). [35] C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010). [36] C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842–A856 (2014). [37] C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105, 101106 (2014). [38] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201 (2008). [39] Y. Kuo, H. T. Chen, W. Y. Chang, H. S. Chen, C. C. Yang, and Y. W. Kiang, “Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device,” Opt. Express 22, A155–A166 (2014). [40] G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009). [41] Y. C. Lu, Y. S. Chen, F. J. Tsai, J. Y. Wang, C. H. Lin, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94, 233113 (2009). [42] C. Y. Chen, J. Y. Wang, F. J. Tsai, Y. C. Lu, Y. W. Kiang, and C. C. Yang, “Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors,” Opt. Express 17, 14186–14198 (2009). [43] C. H. Lin, C. G. Tu, Y. F. Yao, S. H. Chen, C. Y.g Su, H. T. Chen, Y. W. Kiang, and C. C. Yang, “High modulation bandwidth of a light-emitting diode with surface plasmon coupling,” IEEE Transact. Electron Dev. 63, 3989–3995 (2016). [44] S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express. 23, 13752–13760, (2015). [45] C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express. 23, 8150–8161(2015). [46] C. Y. Su, M. C. Tsai, K. P. Chou, H. C. Chiang, H. H. Lin, M. Y. Su, Y. R. Wu, Y. W. Kiang, and C. C. Yang, “Method for enhancing the favored transverse-electric-polarized emission of an AlGaN deep-ultraviolet quantum well,” Opt Express, 25, 26365–26377 (2017). [47] Y. Kuo, C. Y. Su, C. Hsieh, W. Y. Chang, C. A. Huang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling for suppressing p-GaN absorption and TM-polarized emission in a deep-UV light-emitting diode,” Opt. Lett. 40, 4229–4232 (2015). [48] K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108, 113101 (2010). [49] Y. Kuo, Y. F. Yao, M. H. Chiu, W. Y. Chang, C. C. Yang, Y. W. Kiang, “Coupling behaviors of a radiating dipole with the surface plasmon induced on a metal protrusion,” Plasmonics, 10, 241–249 (2015). [50] Y. Kuo, W. Y Chang, H. S. Chen, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with a radiating dipole near an Ag nanoparticle embedded in GaN,” Appl. Phys. Lett. 102, 161103 (2013). [51] V. Amendola, O. M. Bakr, F. Stellacci, “ A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly,” Plasmonics, 5, 85–97 (2010). [52] F. Zhou, Z. Y. Li and Y. Liu, Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112, 20233–20240 (2008). [53] B. Niesen, B. P. Rand, P. Van Dorpe, H. Shen, B. Maes, J. Genoe, and P. Heremans, “Excitation of multiple dipole surface plasmon resonances in spherical silver nanoparticles,” Opt Express, 18, 19032–19038 (2010). [54] H. Y. Lin, Y. Kuo, C. Y. Liao, C. C. Yang, and Y. W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt Express, 20, A104–A118 (2012). [55] J. Yu, L. Wang, D. Yang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang and H. Li, “Improving the internal quantum efficiency of green InGaN quantum dots through coupled InGaN/GaN quantum well and quantum dot structure,” Appl. Phys. Express, 8, 094001 (2015).
|