跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡亞歷
研究生(外文):Ya Li Tsai
論文名稱:雙光學系統於肌酸酐與D-乳酸檢測之研究
論文名稱(外文):The Study on Dual Optical Analytical System for Creatinine and D-lactate
指導教授:陳建銘陳建銘引用關係
指導教授(外文):Chien-Ming Chen
口試委員:邱德威黃偉展
口試委員(外文):Te-Wei ChiuWei-Jan Huang
口試日期:2015-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:103
中文關鍵詞:3.5 二硝基苯甲酸螢光D-乳酸肌酸酐
外文關鍵詞:3.5-Dinitrobenzoic acidFluorescenceD-lactateCreatinine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文開發一新型之肌酸酐螢光生物檢測方法,能快速檢測檢品中肌酸酐之濃度且具備低成本等優勢。於高鹼性環境下,肌酸酐會與3,5-二硝基苯甲酸(3,5-Dinitrobenzoic acid )複合後,反應物會吸收波長400 nm紫外光並放出波長491 nm之螢光,並由發出螢光強度可推算出肌酸酐之濃度。因此本論文利用微型光譜儀結合三維平移台及雷射二極體建立一套螢光感測系統,並針對不同濃度之肌酸酐量測。其肌酸酐量測範圍分別為12.5
In this thesis, we have developed a novel fluorescent bioassay for creatinine which has advantages of fast detection and low cost. Creatinine will be reacting with 3,5-Dinitrobenzoic acid under the highly alkaline condition. The complexes have fluorescent characteristic that absorb excitation light at 400 nm and release fluorescence at 491 nm. By detecting the fluorescence, we can find out the concertation of creatinine. Thus we used laser diode (LD), spectrometer and 3-D translation stage to construct this fluorescent bio-system. The results show that this fluorescent bio-system have good linearity from 5 μmol/L to 300 μmol/L (R2 = 0.9934) and the limit of detection (LOD) is 5 μmol/L. The accuracy and precision of intra-day ranged from 81.82 to 99.75 % and 7.33 to 10.11 %, respectively. The accuracy and precision of inter-day ranged from 86.75 to 87.85% and 3.08 to 9.39 %, respectively. Also, compared to National Laboratory Animal Center and our bio-system, the mice serum test results show that the correlations (R) are 0.80.
In addition, we use the fluorescent bioassay for D-lactate that was previously developed by our labs. To construct a fluorescent bio-system for creatinine and D-lactate assaying. The results show that this fluorescent bio-system have good linearity from 5 μmol/L to 125 μmol/L (R2 = 0.998) and the limit of detection (LOD) is 5 μmol/L. The accuracy and precision of intra-day ranged from 96.22 to 108.01 % and 3.94 to 52.67 %, respectively. The accuracy and precision of inter-day ranged from 95.13 to 101.24 % and 7.65 to 23.86 %, respectively. Also, compared to high performance liquid chromatography (HPLC) and our bio-system, the mice serum test results show that the correlations (R) are 0.69. From this, this fluorescent bio-system provides a rapid, accurate, low cost and convenient for creatinine and D-lactate determination in biological sample.
摘要 II
ABSTRACT IV
誌 謝 VI
目錄 VII
圖目錄 XI
表目錄 XIII
第一章 緒論 1
1.1 肌酸酐之簡介 1
1.2 肌酸酐與D-乳酸之相關性 2
1.3 肌酸酐之生物感測器介紹 4
1.4 研究動機 10
1.5 研究流程 11
第二章 實驗設計 12
2.1 肌酸酐螢光生物感測系統之設計 12
2.1.1 肌酸酐螢光感測系統之搭設 12
2.1.2 肌酸酐螢光感測原理 14
2.1.3 肌酸酐標準品之調配 14
2.1.4 肌酸酐螢光檢測試劑之調配 15
2.2肌酸酐實驗藥品與儀器設備 15
2.2.1 實驗藥品 15
2.2.2 實驗儀器 15
2.3 肌酸酐螢光感測系統之標準品實驗分析 16
2.3.1 螢光與激發光譜分析 16
2.3.2 肌酸酐標準品之時序分析 16
2.3.3 不同濃度之3,5-二硝基苯甲酸與氫氧化鋰之實驗分析 17
2.3.4 肌酸酐標準品溶液之檢量線分析 17
2.4 肌酸酐螢光感測系統之大鼠血清實驗分析 18
2.4.1 大鼠血清之去蛋白方法 18
2.4.2 大鼠血清之肌酸酐時序分析 19
2.4.3 大鼠血清之肌酸酐檢量線分析 19
2.4.4 大鼠血清之肌酸酐的準確度(Accuracy)與精密度(Precision)試驗分析 19
2.4.5 大鼠血清之肌酸酐測定 20
第三章 肌酸酐與D-乳酸螢光生物感測系統 21
3.1 D-乳酸與肌酸酐螢光生物感測系統之設計 21
3.1.1 肌酸酐與D-乳酸螢光感測系統之搭設 21
3.1.2 D-乳酸螢光感測原理 22
3.1.3 甘胺酸-聯胺緩衝液(Glycine-Hydrazine buffer, G-H buffer)之調配 23
3.1.4 D-乳酸標準品之調配 23
3.2 D-乳酸實驗藥品與儀器設備 23
3.2.1 實驗藥品 23
3.2.2 實驗儀器 24
3.3 D-乳酸螢光感測系統之標準品實驗分析 24
3.3.1 螢光與激發光譜分析 24
3.3.2 D-乳酸標準品之時序分析 25
3.3.3 D-乳酸標準品溶液之檢量線分析 25
3.4 D-乳酸螢光感測系統之大鼠血清實驗分析 26
3.4.1 大鼠血清之去蛋白方法 26
3.4.2 大鼠血清之肌酸酐時序分析 26
3.4.3 大鼠血清之肌酸酐的準確度(Accuracy)與精密度(Precision)試驗分析 27
3.4.4 大鼠血清之D-乳酸測定 27
第四章 肌酸酐與D-乳酸生物感測系統之標準品檢測 28
4.1 肌酸酐標準品之確效性實驗分析 28
4.1.1 螢光與激發光譜分析 28
4.1.2肌酸酐之反應時序分析 29
4.1.3不同濃度之3,5-二硝基苯甲酸與氫氧化鋰之實驗分析 30
4.1.3 肌酸酐標準品溶液之檢量線分析 32
4.2 D-乳酸標準品之確效性實驗分析 35
4.2.1 螢光與激發光譜分析 35
4.2.2 D-乳酸標準品之反應時序分析 36
4.2.3 D-乳酸標準品之檢量線分析 37
第五章 大鼠血清之肌酸酐與D-乳酸檢測結果 39
5.1 大鼠血清檢品之檢測確效性分析–肌酸酐 39
5.1.1 大鼠血清檢品之時序分析 39
5.1.2 大鼠血清之檢量線實驗分析 40
5.1.3 大鼠血清之準確度和精密度實驗分析 41
5.2 大鼠血清檢品之確效性分析–D-乳酸 42
5.2.1 大鼠血清檢品之時序分析 42
5.2.2 大鼠血清之準確度和精密度實驗分析 43
5.3 大鼠血清之肌酸酐與D-乳酸測定分析 44
第六章 結論 46
第七章 未來展望 49
參考文獻 51
附錄 56
[1]Gao B., Li Y., and Zhang Z., “Preparation and Recognition Performance of Creatinine-Imprinted Material Prepared with Novel Surface-Imprinting Technique”, Journal of Chromatography, Vol. 878, PP. 2077-2086, 2010.
[2]Killard A. J., and Smyth M. R., “Creatinine Biosensors Principles and Designs” Trends Biotechnol, Vol. 18, PP. 433-437, 2000.
[3]Magalhães J. M., Machado A. A., “Array of Potentiometric Sensors for the Analysis of Creatinine in Urine Samples” The Analyst, Vol. 127, PP. 1069-1075, 2002.
[4]Kazmierczak S.C., Van Lente F., and Hodges E. D., “Diagnostic and Prognostic Utility of Phospholipase: a Activity in Patients with Acute Pancreatitis: Comparison with Amylase and Lipase”, Clinical Chemistry, PP. 356-360, 1991.
[5]The Rat Fan Club, [Online]. Availble: http://www.ratfanclub.org/values.html.
[6]Sharma A. C., Jana T., Kesavamoorthy R., Shi L., Virji M. A., Finegold D. N., and Asher S. A., “A General Photonic Crystal Sensing Motif: Creatinine in Bodily Fluids”, American Chemical Society, Vol. 126, PP 2971-2977, 2004.
[7]Christoph R., Frebel H., Kroneis H., Krysl F. J., Lang S., Neuhold C., Offenbacher H., Pestitschek G., Schaffar B., Schinnerl M., Schmidt W., and Steiner G., “Multiparameter Miniaturised Sensor Arrays for Multiple Use” Sensors and Actuators B: Chemical, Vol. 76, PP. 220-225, 2001.
[8]王志淳,「利用管柱切換之螢光高效液相層析法偵測大白鼠尿液中之D-乳酸」,台北醫學院,藥學研究所碩士論文,1996年。.
[9]Ratliff D. M., Vander Jagt D. J., Eaton R. P., and Vander Jagt D. L., “Increased Levels of Methylglyoxal-metabolizing Enzymes in Mononuclear and Polymorphonuclear Cells from Insulin-Dependent Diabetic Patients with Diabetic Complications: Aldose Reductase, Glyoxalase I, and Glyoxalase II--a Clinical Research Center Study”, The Journal of Clinical Endocrinology &; Metabolism, Vol. 81, PP. 488-492, 1996.
[10]Diabetes Association of the Republic of China, [Online]. Availble: http://www.diabetes.org.tw/wddt_heduc01.jsp?P_TNO=EDUC990070003&;P_HCTG=G.
[11]吳宗正,「生物技術」,生物感測器,九州出版社,第18章,第24頁至第262頁,1996年。.
[12]張怡南,「生物技術的發展與應用」,生物感測器,九州出版社,第3版,第29頁至第45頁,2000年。
[13]Leland C., Clark Jr., and Champ L., “Electrode System for Continuous Monitoring in Cardiovascular Surgery”, Annals of the New York Academy of Sciences. Vol. 102, PP. 29-33, 1962.
[14]Narayanan S., and Appleton H. D., “Creatinine: a review”, Clinical Chemistry, Vol. 26, PP. 1119-1126, 1980.
[15]Ohira S., Kirk A. B., and Dasgupta P. K., “Automated Measurement of Urinary Creatinine by Multichannel Kinetic Spectrophotometry”, Analytical Biochemistry, Vol. 384, PP. 238-244, 2009.
[16]Raimundo J. I. M., and Pasquini C., “Automated Monosegmented Flow Analyser Determination of Glucose, Creatinine and Urea”, The Analyst, Vol. 122, PP. 1039-1044, 1997.
[17]René D., and Benjamin F. M., “The Production of Bacterial Enzymes Capable of Decomposing Creatinine”, Biological Chemistry, Vol. 121, PP. 429-445, 1937.
[18]Songjaroen T., Maturos T., Sappat A., Tuantranont A., and Laiwattanapaisal W., “Portable Microfluidic System for Determination of Urinary Creatinine”, Analytica Chimica Acta, Vol. 647, PP. 78-83, 2009.
[19]Paul D., “Biosensors in Clinical Chemistry”, Clinica Chimica Acta, Vol. 334, PP. 41-69, 2003.
[20]Elham M. K., Vahid A., Manouchehr B., and Ahmad G., “A review on creatinine measurement techniques”, Talanta, Vol. 97, PP. 1-8, 2012.
[21]Shin J. N., Choi Y. S., Lee H. J., Choi S. H., Ha J., Yoon I. J., Nam H, and Cha G. S., “A Planar Amperometric Creatinine Biosensor Employing an Insoluble Oxidizing Agent for Removing Redox-Active Interferences”, Analytical Chemistry, Vol. 73, PP. 5965-5971, 2001.
[22]Darren A. W., and Eithne D., “Comparison of Electrochemical, Electrophoretic and Spectrophotometric Methods for Creatinine Determination in Biological Fluids”, Analytica Chimica Acta, Vol. 459, PP. 187-198, 2002.
[23]Warsinke A., Benkert A., and Scheller F. W., “Electrochemical Immunoassays”, Fresenius&;#39; Journal of Analytical Chemistry, Vol. 366, PP. 622-634, 2000.
[24]Nicole J. R., and Sergei V. D., “Conductometric Microbiosensors for Environmental Monitoring”, Sensors and Actuators B: Chemical, Vol. 8, PP. 2571-2573, 2008.
[25]Temple B. P., Le G. J., Pourciel G. M. L., Sant W., and Martinez A., “Modelling of EnFETs for the Creatinine Detection”, Sensors and Actuators B: Chemical, Vol, 118, PP. 47-52, 2006.
[26]Basma K., Corinne S., Anne B., Abdelhamid E., and Nicole J. R., “Molecularly Imprinted Polymers (MIP) based Electrochemical Sensor for Detection of Urea and Creatinine”, Procedia Engineering, Vol. 5, PP. 371-374, 2010.
[27]Tatiana P. D., Vladimir M. M., and Otto S. W., “Capacitive Creatinine Sensor Based on a Photografted Molecularly Imprinted Polymer”, Electroanalysis, Vol. 14, PP. 221-224, 2002.
[28]Bergveld P., Technische H. T., Enschede D., and Netherlands, “Development of an Ion Sensitive Solid Device for Neurophysiological Measurement”, IEEE Transactions on Biomedical Engineering BME-17, PP. 70-71, 1970.
[29]Abe H., Esashi M., and Matsuo T., “ISFET&;#39;s Using Inorganic Gate Thin Films”, IEEE Transactions on Electron Devices ED-26, Vol. 1937-1944, 1979.
[30]Soldatkin A. P., Montoriol J., Sant W., Martelet C., and Jaffrezic-Renault N., “Creatinine Sensitive Biosensor Based on ISFETs and Creatinine Deiminase Immobilised in BSA Membrane”, Talanta, Vol. 58, PP. 351–357, 2002.
[31]Soldatkin A. P., Montoriol J., Sant W., Martelet C., and Jaffrezic-Renault N., “Development of Potentiometric Creatinine-Sensitive Biosensor Based on ISFET and Creatinine Deiminase Immobilised in PVA/SbQ Photopolymeric Membrane”, Materials Science and Engineering C, Vol. 21, PP. 75–79, 2002.
[32]BLASS K.G., “Reactivity of Creatinine With Alkaline 3,5-Dinitrobenzoate: A New Fluorescent Kidney Function Test”, Clinical Biochemistry, Vol. 28, PP. 107-111, 1995.
[33]簡伯任,「D-乳酸生物感測器之開發」,台北醫學院,藥學研究所碩士論文,2013年。
[34]李昆龍,「D-乳酸螢光生物感測器薄膜化之相關研究」,國立台北科技大學,光電工程研究所碩士論文,2014年。
[35]Chi H. N., Seiya T., Osamu S., and Kenji K., “Amperometric Biosensor Based on Reductive H2O2 Detection Using Pentacyanoferrate-Bound Polymer for Creatinine Determination” Analytica Chimica Acta, Vol. 767, PP. 128-133, 2013.
[36]Sittiwong J., and Unob F., “Detection of Urinary Creatinine Using Gold Nanoparticles after Solid Phase Extraction”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 138, PP. 381-386, 2015.
[37]Chen J. C., Kumar A. S., Chung H. H., Chien S. H., Kuo M. C., and Zen J. M., “An Enzymeless Electrochemical Sensor for the Selective Determination of Creatinine in Human Urine”, Sensors and Actuators B: Chemical, Vol. 115, PP. 473-480 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top