跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 13:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉佩錡
研究生(外文):Liu Pei Chi
論文名稱:碳觸媒輔助電漿重組產氫之研究
論文名稱(外文):Carbon Catalyst Assisted Plasma Reforming for Hydrogen Production
指導教授:邱國峰邱國峰引用關係呂晃志
口試委員:黃思倫
口試日期:2015-06-11
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:97
中文關鍵詞:甲烷電漿重組系統射頻電源(RF)碳觸媒
外文關鍵詞:methane plasma reforming systemradio frequencycarbon catalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究以甲烷作為低溫電漿重組產氫氣的原料,探討不同射頻電源輸出功率、N2/CH4進氣比例等參數對甲烷轉換率(〖Conv.〗_(〖CH〗_4 ))及氫氣生成體積百分比(V_(H_2 )%)之影響。實驗結果顯示利用氮氣電漿之高能量電子,打斷甲烷之鍵結,當RF輸入功率為125 W、N2/CH4流速比為8/24時為最佳參數且尚未添加觸媒情況下,甲烷轉換率達70%且氫氣產率50%,並針對此電漿環境做溫度量測,當輸入125 W功率且經重組反應一小時後,電漿環境溫度在58oC。為了提高重組反應的效益,選以活性碳布(Activity carbon paper,AC)及導電碳布(Conductive carbon paper,CC)作為觸媒來輔助,實驗結果顯示,碳布觸媒配合重組反應可增加氫氣生成體積百分比及甲烷轉換率。添加導電碳布在低溫電漿甲烷重組反應中氫氣生成所提升效果達20%;甲烷轉換率增加了19%。此外,重組反應過程中所產生的殘碳並不會影響到碳觸媒在電漿重組反應中的表現,相較於傳統高耗能高溫裂解甲烷產氫氣,本系統具高產率高轉換率之優點。
Methane reforming has been carried out by low temperature radio frequency (RF) plasma. The plasma was composed of mixture gas with different N2/CH4 flow ratios. In order to obtain optimal condition, several parameters, including RF powers and ratio of N2/CH4 flow rates were used to achieve the maximal yield of hydrogen and conversion of methane. The results indicate that 125 W of RF power under N2/CH4 flow rate of 8/24 showed 70% methane conversion rate and 50% hydrogen production yield without carbon catalyst. Temperature measuring of radio frequency plasma reactor which indicates 58oC with 125 W for a hour operation. Adding conductive carbon cloth (CC) and active carbon cloth (AC) can be the catalyst to enhance reforming efficiency. Through the analytic results of ICR and Raman, conductive carbon cloth has performance of higher conductivity and degree of graphitization than active carbon cloth. Therefore, hydrogen production yield increased from 50% to 56% and 60% when the AC and CC used. Conversion rate of CH4 increased from 70% to 78% and 84% as AC and CC. In comparison with CC, AC and without catalyst, CC has higher hydrogen production yield and higher conversion rate of CH4 than AC and without catalyst added.
誌謝 I
摘要 III
Abstract IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1前言 1
1-2研究動機 3
第二章 文獻回顧 5
2-1 氫能源 5
2-1-1 氫能源簡介 5
2-1-2 氫氣生產技術 6
2-2 電漿技術簡介 12
2-2-1 電漿基本原理 12
2-2-2 應用於重組反應之電漿類型 19
2-3-1電漿裂解甲烷重組產氫 27
2-3-2甲烷電漿輔助觸媒重組產氫 31
2-3-3 碳觸媒 33
第三章 實驗方法 36
3-1實驗設計與方法 36
3-1-1 實驗材料 36
3-1-2 實驗設備 37
3-1-3 實驗流程 38
3-2電漿重組反應 41
3-2-1 甲烷電漿重組反應 41
3-2-2 碳觸媒輔助甲烷電漿重組產氫 42
3-2-3 I-V曲線之電子溫度 43
3-2-4 實驗參數代碼 46
3-3 甲烷電漿重組系統之環境溫度量測 47
3-4分析儀器 48
3-4-1氣相層析儀(GC-TCD) 48
3-4-2冷場發射式掃描電子顯微鏡(FESEM) 50
3-4-3拉曼光譜儀(Raman) 51
3-4-4穿透阻抗量測(ICR) 54
3-4-5高解析比表面積分析儀(BET) 55
第四章 結果與討論 58
4-1 甲烷電漿重組 58
4-1-1 N2/CH4進氣比例 58
4-1-2射頻功率 60
4-1-3 N2/CH4 總進氣量 61
4-1-4甲烷電漿環境溫度量測 63
4-1-5 CH4殘碳之分析 64
4-1-5-1 冷場發射式電子顯微鏡 64
4-1-5-2拉曼光譜儀 66
4-1-5-3殘碳對電漿重組反應的影響 68
4-2 活性碳布與導電碳布之材料分析 70
4-2-1 高解析比表面積分析 70
4-2-2 拉曼光譜 72
4-2-3 穿透阻抗量測 74
4-3 碳觸媒輔助甲烷電漿重組反應 75
4-3-1 氣相組成 75
4-3-2 活化能 78
4-3-2 自偏壓(self-bias) 80
4-3-3 I-V curve 84
4-3-4 重組反應後之碳觸媒分析 86
4-3-4-1 拉曼光譜儀 86
4-3-4-2 穿透阻抗量測 88
4-3-5 碳觸媒產氫穩定性測試 89
第五章 結論 91
參考文獻 93
[1]B. Dudley, "BP-statistical-review-of-world-energy-2014-full-report," 2014.
[2]林網編輯室, "日本的氫能政策及燃料電池車發展近況," 2014.
[3]C. H. Jean-Pierre Barette, "wood," http://en.wikipedia.org/wiki/Wood#cite_note-17, 1996.
[4]E. Lindner, "coal," http://en.wikipedia.org/wiki/Coal#cite_note-16.
[5]J. Zhang, L. Jin, X. He, S. Liu, and H. Hu, "Catalytic methane decomposition over activated carbons prepared from direct coal liquefaction residue by KOH activation with addition of SiO2 or SBA-15," International Journal of Hydrogen Energy, vol. 36, pp. 8978-8984, 2011.
[6]J. L. Pinilla, R. Utrilla, M. J. Lázaro, R. Moliner, I. Suelves, and A. B. García, "Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor," Fuel Processing Technology, vol. 92, pp. 1480-1488, 2011.
[7]S. Damyanova, B. Pawelec, K. Arishtirova, and J. L. G. Fierro, "Ni-based catalysts for reforming of methane with CO2," International Journal of Hydrogen Energy, vol. 37, pp. 15966-15975, 2012.
[8]K. Katayama, S. Fukada, and M. Nishikawa, "Direct decomposition of methane using helium RF plasma," Fusion Engineering and Design, vol. 85, pp. 1381-1385, 2010.
[9]Andi Erwin Eka Putra , Shinfuku Nomura, Shinobu Mukasa, and H. Toyota, "Hydrogen production by radio frequency plasma stimulation in methane hydrate at atmospheric pressure," International Journal of Hydrogen Energy, vol. 37, pp. 16000-16005, 2012.
[10]S. A. Nair, T. Nozaki, and K. Okazaki, "Methane oxidative conversion pathways in a dielectric barrier discharge reactor—Investigation of gas phase mechanism," Chemical Engineering Journal, vol. 132, pp. 85-95, 2007.
[11]Q. Wang, H. Shi, B. Yan, Y. Jin, and Y. Cheng, "Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor," International Journal of Hydrogen Energy, vol. 36, pp. 8301-8306, 2011.
[12]Y. Yang, "Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Experimental Study," Plasma Chemistry and Plasma Processing, vol. 3, pp. 283-296, 2003.
[13]C. Tsai and K. Chen, "Production of hydrogen and nano carbon powders from direct plasmalysis of methane," International Journal of Hydrogen Energy, vol. 34, pp. 833-838, 2009.
[14]M. Jasiński, M. Dors, and J. Mizeraczyk, "Production of hydrogen via methane reforming using atmospheric pressure microwave plasma," Journal of Power Sources, vol. 181, pp. 41-45, 2008.
[15]福島生活科技有限公司, "高壓氧學的基礎," http://www.supermt.com.tw/OXweb/HBOT/HBOT_chapter_02-6.htm, 2010.
[16]J. Wang and W. Wan, "Kinetic models for fermentative hydrogen production: A review," International Journal of Hydrogen Energy, vol. 34, pp. 3313-3323, 2009.
[17]毛宗強, 氫能-21世紀的綠色能源, 2008.
[18]何無忌, 2014年能源產業技術白皮書. 經濟部能源局: 經濟部能源局, 2014.
[19]Ross and J. R. H., "Heterogeneous Catalysis Chemistry in Two Dimensions," pp. 1-15, 2012.
[20]Z. C. Yang Qi, Zhiming Zhou, "Steam reforming of methane over Ni catalysts prepared from hydrotalcite-type precursors: Catalytic activity and reaction kinetics," Chinese Journal of Chemical Engineering, vol. 23, pp. 76-85, 2015.
[21]H. Ma, R. Zhang, S. Huang, W. Chen, and Q. Shi, "Ni/Y2O3-Al2O3 catalysts for hydrogen production from steam reforming of ethanol at low temperature," Journal of Rare Earths, vol. 30, pp. 683-690, 2012.
[22]曲新生、陳發林, 氫能技術 The Hydrogen Technology, 2006.
[23]H. Liander, "The utilisation of natural gases for the ammonia process.," Trans. Faraday Soc, vol. 25, pp. 462-472, 1929.
[24]葉哲良, "真空技術與應用," 國家實驗研究院儀器科技研究中心, 2001.
[25]簡淑梅、何主亮、陳克昌, "電漿診斷法之原理及其在薄膜與表面工程的應用," 金屬熱處理, vol. 61, pp. 39-53, 1999.
[26]Ulrich Kogelschatz, Baldur Eliasson, and W. Egli, "From ozone generators to flat television screens : history and future potential of dielectric-barrier discharge," Pure Appl. Chem, vol. 71, pp. 1819-1829, 1999.
[27]M. J. Gallagher and A. Fridman, "Plasma Reforming for H2-Rich Synthesis Gas," pp. 223-259, 2011.
[28]J. H. Lunsford, "Catalytic conversion of methane to more useful chemicals and fuels : a challenge for the 21st century " Catalysis Today, vol. 63, pp. 165-174, 2000.
[29]R. Snoeckx, M. Setareh, R. Aerts, P. Simon, A. Maghari, and A. Bogaerts, "Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2," International Journal of Hydrogen Energy, vol. 38, pp. 16098-16120, 2013.
[30]O. Koeta, N. Blin-Simiand, W. Faider, S. Pasquiers, A. Bary, and F. Jorand, "Decomposition of Acetaldehyde in Atmospheric Pressure Filamentary Nitrogen Plasma," Plasma Chemistry and Plasma Processing, vol. 32, pp. 991-1023, 2012.
[31]S. Ravasio and C. Cavallotti, "Analysis of reactivity and energy efficiency of methane conversion through non thermal plasmas," Chemical Engineering Science, vol. 84, pp. 580-590, 2012.
[32]J. Yuan, X. Zhong, and S. Tan, "Methane conversion in the presence of oxygen under low-temperature radio frequency plasma," Journal of Natural Gas Chemistry, vol. 19, pp. 605-610, 2010.
[33]I. Aleknaviciute, T. G. Karayiannis, M. W. Collins, and C. Xanthos, "Methane decomposition under a corona discharge to generate COx-free hydrogen," Energy, vol. 59, pp. 432-439, 2013.
[34]A. Indarto, J. Choi, H. Lee, and H. Song, "Effect of additive gases on methane conversion using gliding arc discharge," Energy, vol. 31, pp. 2986-2995, 2006.
[35]N. Rueangjitt, T. Sreethawong, S. Chavadej, and H. Sekiguchi, "Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effects of input power, reactor thickness, and catalyst existence," Chemical Engineering Journal, vol. 155, pp. 874-880, 2009.
[36]Q. Wang, B.-H. Yan, Y. Jin, and Y. Cheng, "Investigation of Dry Reforming of Methane in a Dielectric Barrier Discharge Reactor," Plasma Chemistry and Plasma Processing, vol. 29, pp. 217-228, 2009.
[37]H. Taghvaei, A. Jahanmiri, M. R. Rahimpour, M. M. Shirazi, and N. Hooshmand, "Hydrogen production through plasma cracking of hydrocarbons: Effect of carrier gas and hydrocarbon type," Chemical Engineering Journal, vol. 226, pp. 384-392, 2013.
[38]X. Zheng, S. Tan, L. Dong, S. Li, and H. Chen, "Silica-coated LaNiO3 nanoparticles for non-thermal plasma assisted dry reforming of methane: Experimental and kinetic studies," Chemical Engineering Journal, vol. 265, pp. 147-156, 2015.
[39]H. Lee, D.-H. Lee, Y.-H. Song, W. C. Choi, Y.-K. Park, and D. H. Kim, "Synergistic effect of non-thermal plasma–catalysis hybrid system on methane complete oxidation over Pd-based catalysts," Chemical Engineering Journal, vol. 259, pp. 761-770, 2015.
[40]D. Shekhawat, "Nonconventional Reforming Methods," pp. 261-283, 2011.
[41]G. Dieckmann, "Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming," Office of fossil Energy Fuel Cell Program, pp. 1-32, 2006.
[42]W. J. Ovenston A, "Generation of Heat in a Single Catalyst Pellet Placed in an Electromagnetic Field for Endothermic Reforming of Hydrocarbons," J Chem Soc-Faraday Trans I, vol. 79, pp. 1073-1084, 1983.
[43]N. H. Elsayed, N. R. M. Roberts, B. Joseph, and J. N. Kuhn, "Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts," Applied Catalysis B: Environmental, vol. 179, pp. 213-219, 2015.
[44]B. Fidalgo and J. Á. MenÉNdez, "Carbon Materials as Catalysts for Decomposition and CO2 Reforming of Methane: A Review," Chinese Journal of Catalysis, vol. 32, pp. 207-216, 2011.
[45]D.P. Serrano, J.A. Botas, J.L. G.Fierro, R. Guil-López, P. Pizarro, and G. Gómez, "Hydrogen production by methane decomposition: Origin of the catalytic activity of carbon materials," Fuel, vol. 89, pp. 1241-1248, 2010.
[46]陳建元, "PAN系導電性碳薄膜與碳粉粒製造碳電極材料之研究," 材料工程與科學學系, 逢甲大學, 1996.
[47]賴耿陽, "碳材料化學與工學," 2001.
[48]吳峰賓, "自組ICP電漿及蘭牟爾探針量測系統," 龍華科技大學, 2008.
[49]F. F. Chen, "Langmuir Probe Diagnostics," Electrical Engineering Department University of California, Los Angeles, 2003.
[50]林東穎,柯明賢,陳輝達,張均豪, "Inductively Coupled plasma with large area and patent analysis " 機械工業, pp. 33-35, 2008.
[51]Douglas A. Skoog, F. James Holler, and T. A. Nieman, "Principles of instrumental analysis," 2003.
[52]蔡蘊明. (1999). 氣象層析儀簡介.
[53]A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
[54]L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, vol. 473, pp. 51-87, 2009.
[55]陳冠廷, "常壓微波電漿裂解與蒸汽重組甲烷產氫之研究," 國立高雄應用科技大學, 2006.
[56]J. Robertson., "Diamond-like amorphous carbon," Materials Science and Engineering, vol. 37, pp. 129-281, 2002.
[57]A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," PHYSICAL REVIEW B, vol. 61, pp. 14095-14107, 2000.
[58]J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S. R. P. Silva, "Raman spectroscopy on amorphous carbon films," Journal of Applied Physics, vol. 80, p. 440, 1996.
[59]R. E. Shroder, R. J. Nemanich, and J. T. Glass, "Analysis of the composite structures in diamond thin films by Raman spectroscopy," Physical Review B, vol. 41, pp. 3738-3745, 1990.
[60]陳宇堂, "以KOH化學活化法製備PAN系活性碳纖維及其在超級電容碳電極之應用," 逢甲大學, 2006.
[61]H. Zea, K. Lester, A. K. Datye, E. Rightor, R. Gulotty, W. Waterman, et al., "The influence of Pd–Ag catalyst restructuring on the activation energy for ethylene hydrogenation in ethylene–acetylene mixtures," Applied Catalysis A: General, vol. 282, pp. 237-245, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top