跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/02 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈俞妏
研究生(外文):Yu-Wen Shen
論文名稱:探討Aβ40(L17A/F19A/D23N)之結構與聚集行為
論文名稱(外文):Characterization of the structure and aggregation behavior of Aβ40(L17A/F19A/D23N)
指導教授:林達顯
指導教授(外文):Ta-Hsien Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:95
中文關鍵詞:阿茲海默症
外文關鍵詞:alzheimer’s disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
β-類澱粉胜肽(β-amyloid peptide; Aβ)約含有39-42個殘基,是β-類澱粉前驅蛋白(β-amyloid precursor protein; AβPP)經由水解的代謝產物。β-類澱粉胜肽的聚集(aggregation)被認為是阿茲海默症(Alzheimer's disease)發病機制的早期事件,目前對β-類澱粉胜肽聚集的分子機制尚未完全瞭解。β-類澱粉胜肽聚集成澱粉纖維的過程與其構形改變有關,這暗示β-類澱粉胜肽的構形穩定度在其聚集過程扮演重要角色。最近本實驗室研究發現,L17A/F19A循理式突變可以增加野生型Aβ40及造成家族性阿茲海默症的Aβ40(E22G)突變型(Arctic突變型)之構形的穩定性,並降低其-螺旋/β-摺疊之構形轉變和纖維的生成速率。在本研究中,利用核磁共振光譜、圓二色光譜、Thioflavin-T(ThT)螢光光譜、穿透式電子顯微鏡(TEM)等,觀察L17A/F19A循理式突變對另一個造成家族性阿茲海默症的Aβ40(D23N)突變型(Iowa突變型)之聚集行為與二級結構傾向。從聚集動力學的研究結果,發現L17A/F19A循理式突變能抑制Aβ40(D23N)之結構轉變和纖維的形成。以核磁共振光譜偵測結構之結果,發現L17A/F19A突變主要是增加Aβ40(D23N)的α/β-不穩定構形區段(α/β-discordant segment)之螺旋結構傾向。此研究結果證明α/β-不穩定構形區段之螺旋結構傾向是主導Aβ聚集傾向的關鍵之一。本研究結果所提供的訊息,可幫助我們從結構的觀點對Aβ聚集之分子機制獲得更進一步的了解。
β-amyloid peptide (Aβ), which consists of 39-42 residues, is derived from proteolysis of β-amyloid precursor protein (APP). Aggregation of β-amyloid peptide (Aβ) is thought to be an early event in the pathogenesis of Alzheimer’s disease. The molecular mechanism underlying Aβ aggregation is not entirely understood. The process of Aβ aggregation into amyloid fibril involves conformational changes, suggesting that the conformational stability of Aβ play a key role in the aggregation process. Recently, we reported that L17A/F19A replacements could increase the conformational stability of wild-type Aβ40 and familial Alzheimer's disease-linked E22G variant of Aβ40 (Arctic Aβ40 variant), and reduce their α-helix-to-β-strand conversion and fibril formation rates. In this study, the effects of L17A/F19A replacements on the aggregation behavior and secondary structure propensity of D23N variant of Aβ40 (Iowa Aβ40 variant), which is also a familial Alzheimer's disease-linked variant of Aβ40, were characterized by using Nuclear Magnetic Resonance spectroscopy (NMR spectroscopy), Circular Dichroism spectroscopy (CD spectroscopy), Transmission Electron Microscopy (TEM) and Thioflavin T fluorescence assay. The results of kinetic aggregation studies indicated that L17A/F19A replacements can inhibit conformational changes and fibril formation of Aβ40(D23N). NMR structural studies revealed that L17A/F19A replacements mainly increased the α-helical propensity of the residues located in the α/β-discordant segment of Aβ40(D23N). These findings suggested that the α-helical propensity of the α/β-discordant segment is one key factor in governing the aggregation propensity of Aβ. This result may also provide a structural basis toward understanding the molecular mechanism of Aβ aggregation.
目錄

中文摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VII
附錄 VIII

第一章 緒論 1
1-1 阿茲海默症(ALZHEIMER'S DISEASE) 2
1-1-1 阿茲海默症的病理特徵 2
1-1-2 類澱粉斑塊(Amyloid plaques) 3
1-1-3 神經纖維糾結物(Neurofibrillary tangles) 3
1-2 阿茲海默症的分類 4
1-2-1 偶發型阿茲海默症(Sporadic Alzheimer’s disease;SAD) 4
1-2-2 家族型阿茲海默症(Familial Alzheimer’s disease;FAD) 5
1-3 類澱粉胜肽連鎖反應假說(AMYLOID CASCADE HYPOTHESIS) 6
1-4 -類澱粉胜肽之聚集 7
1-4-1 野生型A 7
1-4-2 突變型Aβ 8
1-5 以結構的觀點探討AΒ之聚集 9
1-6 阿茲海默症之診斷與治療 11

第二章 實驗材料與方法 15
2-1 實驗藥品 15
2-2 樣品製備 17
2-2-1 質體建構(Plasmid construction)與轉型作用(Transformation) 17
2-2-2 Yeast ubiquitin hydrolase-1(YUH-1)的製備 19
2-2-3 A40(D23N)及A40(L17A/F19A/ D23N)的製備 20
2-3 圓二色光譜分析 23
2-4 TH-T螢光光譜分析 (THIOFLAVIN T FLUORESCENCE SPECTROSCOPY) 24
2-5 穿透式電子顯微鏡 (TRANSMISSION ELECTRON MICROSCOPY, TEM) 26
2-6 核磁共振光譜 (NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY) 26

第三章 結果 29
3-1 樣品的製備 29
3-1-1 YUH-1的製備 29
3-1-2 野生型及突變型β-類澱粉胜肽的製備 32
3-2 循理式突變(L17A/F19A)對IOWA突變型Β-類澱粉胜肽聚集行為之影響 38
3-2-1 A40(D23N)與A40(L17A/F19A/D23N)聚集速率之比較 38
3-2-2 比較A40(D23N)與A40(L17A/F19A/D23N)二級結構轉變之速率 43
3-2-3 比較A40(D23N)與A40(L17A/F19A/D23N)形成纖維之速率 44
3-3 循理式突變(L17A/F19A)對IOWA突變型Β-類澱粉胜肽二級結構之影響 48
3-3-1 比較A40(D23N)與A40(L17A/F19A/D23N)在SDS溶液中之二級結構 48
3-3-2 比較A40(D23N)與A40(L17A/F19A/D23N)在水溶液中之二級結構 61
4-1 L17A/F19A突變去除K16LVFFAED23序列之/-DISCORDANCE 72
4-2 Q15-S26的-螺旋性與聚集速率之關係 73
4-3 在不同環境下之結構特性 74

附圖 75
參考文獻 91

圖目錄
圖 1-1-1 β-類澱粉前驅蛋白(APP)水解途徑及家族性阿茲海默症突變位.………….….5
圖 1-1-2 Aβ在各個環境下的結構。………………………………………………………10
圖 2-2-1 His6-ubiquitin表現載體之建立。………………………………………………18
圖 2-2-2 酵母菌泛素水解酶(YUH-1)之純化流程圖。…………………………………..19
圖 2-2-3 融合蛋白A40(D23N)及A40(L17A/F19A/D23N)純化流程圖。……………21
圖 3-1-1 表達酵母菌泛素水解酶(Yeast Ubiquitin Hydrolase;YUH-1)之SDS-PAGE。...29
圖 3-1-2 YUH-1經鎳親和性管柱層析(Immobilized Metal Affinity Chromatography)純化後以15% SDS-PAGE分析之電泳圖。………………………………………………………30
圖 3-1-3 YUH-1經phenyl-Sepharose 管柱純化後以15% SDS-PAGE分析之電泳圖。..30
圖 3-1-4 YUH-1經Mono Q 管柱純化分析之層析光譜。………………………………31
圖 3-1-5 YUH-1經Mono Q 管柱純化後以15% SDS-PAGE分析之電泳圖。………..31
圖 3-1-6 表達-類澱粉胜肽融合蛋白之SDS-PAGE。………………………………..32
圖 3-1-7 (A) His6-ubiquitin-A40(D23N)融合蛋白經鎳親和性管柱層析純化後以15% SDS-PAGE分析之電泳圖。…………………………………………………………………32
圖 3-1-7 (B) His6-ubiquitin-A40(L17A/F19A/D23N)融合蛋白經鎳親和性管柱層析純化後以15% SDS-PAGE分析之電泳圖。……………………………………………………..33
圖 3-1-8 (A) H6Ub-A40(D23N)水解前後之15% Tricine-SDS-PAGE。………………..34
圖 3-1-8 (B)H6Ub-A40(L17A/F19A/D23N)水解前後之15%Tricine-SDS-PAGE。……34
圖 3-1-9 (A) A40(D23N)經HPLC純化後之15%Tricine-SDS-PAGE。………………..34
圖 3-1-9 (B) A40(L17A/F19A/D23N)經HPLC純化後之15%Tricine-SDS-PAGE。….34
圖 3-1-10 鹼性溶液純化A40(D23N)之HPLC層析圖。…………………………………35
圖 3-1-11 酸性溶液純化A40(D23N)之HPLC層析圖。…………………………………35
圖 3-1-12 鹼性溶液純化A40(L17A/F19A/D23N)之HPLC層析圖。……………………36
圖 3-1-13 酸性溶液純化A40(L17A/F19A/D23N)之HPLC層析圖。……………………36
圖 3-1-14 A40(D23N)之質譜圖。…………………………………….…………………..37
圖 3-1-15 A40(L17A/F19A/23N)之質譜圖。…...….……………………………………..37
圖 3-2-1 A40(D23N)及A40(L17A/F19A/D23N)在水溶液環境下凝聚機制動力學Th-T螢光光譜圖。…………………………………………………………………………………39
圖 3-2-2 A40(D23N)Ⅰ之最佳曲線配適(curve fitting)。………………………………40
圖 3-2-3 A40(L17A/F19A/D23N)Ⅰ之最佳曲線配適(curve fitting)。…….…………..40
圖 3-2-4 A40(D23N)Ⅱ之最佳曲線配適(curve fitting)。………………………………41
圖 3-2-5 A40(L17A/F19A/D23N)Ⅱ之最佳曲線配適(curve fitting)。…….…………..41
圖 3-2-6 A40(D23N)Ⅲ之最佳曲線配適(curve fitting)。………………………………42
圖 3-2-7 A40(L17A/F19A/D23N)Ⅲ之最佳曲線配適(curve fitting)。…….…………..42
圖 3-2-8 A40(D23N)及A40(L17A/F19A/D23N)在水溶液環境下的二級結構變化。..43
圖 3-2-9 A40(D23N)及A40(L17A/F19A/D23N)在水溶液環境下的纖維型態比較。..44
圖 3-2-10 A40(D23N)及A40(L17A/F19A/D23N)在水溶液環境下隨著時間對纖維型態及纖維形成速率之比較。重覆一。…..………………………………………………………45
圖 3-2-11 A40(D23N)及A40(L17A/F19A/D23N)在水溶液環境下隨著時間對纖維型態及纖維形成速率之比較。重覆二。…..………………………………………………………46
圖 3-2-12 A40(D23N)及A40(L17A/F19A/D23N)在水溶液環境下隨著時間對纖維型態及纖維形成速率之比較。重覆三。…..………………………………………………………47
圖 3-3-1 A40(D23N)及A40(L17A/F19A/D23N)在SDS環境下的初始二級結構。.....49
圖 3-3-2 A40(D23N)在SDS環境下的1H-HSQC光譜圖。………..……………………..51
圖 3-3-3 A40(L17A/F19A/D23N)在SDS環境下的1H-HSQC光譜圖。……………….52
圖 3-3-4 A40(D23N)及A40(L17A/F19A/D23N)在SDS環境下之1H-HSQC重疊光譜圖
。…………………………………………………………………………………………53
圖 3-3-5 A40(L17A/F19A/D23N)在SDS環境下13C、13C、13C’和1H之化學位移比較圖。…………………………………………………………………………………………54
圖 3-3-6 A40(D23N)及A40(L17A/F19A/D23N)在SDS環境下的13C化學位移比較圖。………………………………………………………………………………………...55
圖 3-3-7 A40(D23N)及A40(L17A/F19A/D23N)在SDS環境下的之CSI比較圖。……56
圖 3-3-8 A40(D23N)在水溶液環境下的1H-HSQC光譜圖。…………………………..62
圖 3-3-9 A40(L17A/F19A/D23N)在水溶液環境下的1H-HSQC光譜圖。…..………..63
圖 3-3-10 A40(D23N)及A40(L17A/F19A/D23N)在水溶液環境下的1H-HSQC重疊光譜
圖。……………………………………………………………………………………………64
圖 3-3-11 A40(D23N)及A40(L17A/F19A/D23N)在水溶液環境下之13C、13C、13C’和1H之化學位移比較圖。……………………………………………………………………..65
圖 3-3-12 A40(D23N)及A40(L17A/F19A/D23N)在水溶液環境下的13C化學位移比較。…………………………………………………………………………………………66
圖 3-3-13 A40(D23N)及A40(L17A/F19A/D23N)在水溶液環境下的之CSI比較圖。67
圖 4-1 -類澱粉胜肽Q15-D23區段之-螺旋螺旋結構傾向。………………….73

表目錄
表 2-2-1 高效液相層析(HPLC)移動相程式。…………………………………….………22
表 2-3-1 遠紫外光圓二色光譜之蛋白質二級結構之波長特徵。………………….……..23
表 2-6-1 二十種胺基酸之H、13C、13C與13C'二級結構傾向化學位移(chemical shift)參考值。………………………………………………………………………………………28
表 3-2-1 三組實驗之A40(D23N)及A40(L17A/F19A/D23N)時間與速率常數之關係。.39
表 3-3-1 A40(D23N)及A40(L17A/F19A/D23N)在100 mM SDS-d25二級結構分析。.49
表 3-3-2 A40(D23N)在100 mM SDS-d25緩衝溶液中骨架原子化學位移。…...………59
表 3-3-3 A40(L17A/F19A/D23N)在100 mM SDS-d25緩衝溶液中骨架原子化學位移。60
表 3-3-4 A40(D23N)在50 mM phosphate buffer中骨架原子化學位移。……………..70
表 3-3-5 A40(L17A/F19A/D23N)在50 mM phosphate buffer中骨架原子化學位移。..71

附錄
附圖1 A40(D23N)在100 mM SDS-d25之3D HNCA條狀圖譜。………………………..75
附圖2 A40(D23N)在100 mM SDS-d25之3D HNCO條狀圖譜。………………………..76
附圖3 A40(D23N)在100 mM SDS-d25之3D CBCACONH條狀圖譜。………….……..77
附圖4 A40(D23N)在100 mM SDS-d25之3D HBHACONH條狀圖譜。…………….…..78
附圖5 A40(L17A/F19A/D23N)在100 mM SDS-d25之3D HNCA條狀圖譜。………..79
附圖6 A40(L17A/F19A/D23N)在100 mM SDS-d25之3D HNCO條狀圖譜。………..80
附圖7 A40(L17A/F19A/D23N)在100 mM SDS-d25之3D CBCACONH條狀圖譜。…..81
附圖8 A40(L17A/F19A/D23N)在100 mM SDS-d25之3D HBHACONH條狀圖譜。…..82
附圖9 A40(D23N)在10 mM磷酸緩衝溶液之3D HNCA條狀圖譜。………………..83
附圖10 A40(D23N)在10 mM磷酸緩衝溶液之3D HNCO條狀圖譜。……….…….…..84
附圖11 A40(D23N)在10 mM磷酸緩衝溶液之3D CBCACONH條狀圖譜。….……..85
附圖12 A40(D23N)在10 mM磷酸緩衝溶液之3D HBHACONH條狀圖譜。…….…..86
附圖13 A40(L17A/F19A/D23N)在10 mM磷酸緩衝溶液之3D HNCA條狀圖譜。…..87
附圖14 A40(L17A/F19A/D23N)在10 mM磷酸緩衝溶液之3D HNCO條狀圖譜。…..88
附圖15 A40(L17A/F19A/D23N)在10 mM磷酸緩衝溶液之3D CBCACONH條狀圖譜。……………………………………………………………………………………………89
附圖16 A40(L17A/F19A/D23N)在10 mM磷酸緩衝溶液之3D HBHACONH條狀圖譜。……………………………………………………………………………………….…..90

參考文獻
1. Heese, K. (2015) Ageing, dementia and society - an epistemological perspective. SpringerPlus 4, 135
2. Mitchell, S. L. (2015) CLINICAL PRACTICE. Advanced Dementia. N Engl J Med 372, 2533-2540
3. Todd, S., Barr, S., Roberts, M., and Passmore, A. P. (2013) Survival in dementia and predictors of mortality: a review. Int J Geriatr Psychiatry 28, 1109-1124
4. (2015) 2015 Alzheimer's disease facts and figures. Alzheimer's &; Dementia 11, 332-384
5. Anand, R., Gill, K. D., and Mahdi, A. A. (2014) Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 76 Pt A, 27-50
6. (2014) 2014 Alzheimer's disease facts and figures. Alzheimer's &; Dementia 10, e47-e92
7. Ramirez-Bermudez, J. (2012) Alzheimer's disease: critical notes on the history of a medical concept. Archives of medical research 43, 595-599
8. Lee, E. B. (2011) Obesity, leptin, and Alzheimer's disease. Ann N Y Acad Sci 1243, 15-29
9. Glenner GG, W. C. (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 120, 885-890.
10. Zhang, Y. W., Thompson, R., Zhang, H., and Xu, H. (2011) APP processing in Alzheimer's disease. Molecular brain 4, 3
11. Tanaka, S., Nakamura, S., Ueda, K., Kameyama, M., Shiojiri, S., Takahashi, Y., Kitaguchi, N., and Ito, H. (1988) Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer's disease. Biochemical and biophysical research communications 157, 472-479
12. Schlossmacher, M. G., Ostaszewski, B. L., Hecker, L. I., Celi, A., Haass, C., Chin, D., Lieberburg, I., Furie, B. C., Furie, B., and Selkoe, D. J. (1992) Detection of distinct isoform patterns of the beta-amyloid precursor protein in human platelets and lymphocytes. . Neurobiology of aging 13, 421-434
13. Bahmanyar, S., Higgins, G. A., Goldgaber, D., Lewis, D. A., Morrison, J. H., Wilson, M. C., Shankar, S. K., and Gajdusek, D. C. (1987) Localization of amyloid beta protein messenger RNA in brains from patients with Alzheimer's disease. Science 237, 77-80
14. De Strooper, B., Vassar, R., and Golde, T. (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature reviews. Neurology 6, 99-107
15. Brunden, K. R., Trojanowski, J. Q., and Lee, V. M. (2009) Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nat Rev Drug Discov 8, 783-793
16. Mokhtar, S. H., Bakhuraysah, M. M., Cram, D. S., and Petratos, S. (2013) The Beta-amyloid protein of Alzheimer's disease: communication breakdown by modifying the neuronal cytoskeleton. International journal of Alzheimer's disease 2013, 910502
17. Shinohara, M., Fujioka, S., Murray, M. E., Wojtas, A., Baker, M., Rovelet-Lecrux, A., Rademakers, R., Das, P., Parisi, J. E., Graff-Radford, N. R., Petersen, R. C., Dickson, D. W., and Bu, G. (2014) Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease. Brain 137, 1533-1549
18. A. Armstrong, R. (2013) Review article What causes alzheimer’s disease? Folia Neuropathologica 3, 169-188
19. Corder EH, S. A., Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. . (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921-923
20. Bagyinszky, E., Youn, Y. C., An, S. S., and Kim, S. (2014) The genetics of Alzheimer's disease. Clinical interventions in aging 9, 535-551
21. Hardy, J. A., and Higgins, G. A. (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184-185
22. Selkoe, D. J. (2002) Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. Journal of Clinical Investigation 110, 1375-1381
23. Swomley, A. M., Forster, S., Keeney, J. T., Triplett, J., Zhang, Z., Sultana, R., and Butterfield, D. A. (2014) Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim Biophys Acta 1842, 1248-1257
24. Lichtenthaler, S. F. (2012) Alpha-secretase cleavage of the amyloid precursor protein: proteolysis regulated by signaling pathways and protein trafficking. Curr. Alzheimer Res. 9, 165-177
25. Steiner, H., Fluhrer, R., and Haass, C. (2008) Intramembrane proteolysis by gamma-secretase. J Biol Chem 283, 29627-29631
26. Lee, K. F., Soares, C., and Beique, J. C. (2012) Examining form and function of dendritic spines. Neural plasticity 2012, 704103
27. Reitz, C. (2012) Alzheimer's disease and the amyloid cascade hypothesis: a critical review. International journal of Alzheimer's disease 2012, 369808
28. Kanekiyo, T., Cirrito, J. R., Liu, C. C., Shinohara, M., Li, J., Schuler, D. R., Shinohara, M., Holtzman, D. M., and Bu, G. (2013) Neuronal clearance of amyloid-beta by endocytic receptor LRP1. J Neurosci 33, 19276-19283
29. Wang, Y. J., Zhou, H. D., and Zhou, X. F. (2006) Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives. Drug discovery today 11, 931-938
30. Lam FC, L. R., Lu P, et al. (2001) β-Amyloid efflux mediated by P-glycoprotein. 76, 1121-1128
31. Sadigh-Eteghad, S., Sabermarouf, B., Majdi, A., Talebi, M., Farhoudi, M., and Mahmoudi, J. (2015) Amyloid-beta: a crucial factor in Alzheimer's disease. Medical principles and practice : international journal of the Kuwait University, Health Science Centre 24, 1-10
32. Roychaudhuri, R., Yang, M., Deshpande, A., Cole, G. M., Frautschy, S., Lomakin, A., Benedek, G. B., and Teplow, D. B. (2013) C-terminal turn stability determines assembly differences between Abeta40 and Abeta42. J Mol Biol 425, 292-308
33. Weggen S, E. J., Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH. (2001) A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212-216
34. Lomakin A, T. D., Benedek GB. (2005) Quasielastic light scattering for protein assembly studies. Methods Mol Biol. 299, 153-174
35. Campanero-Rhodes, M. A., Menendez, M., Saiz, J. L., Sanz, L., Calvete, J. J., and Solis, D. (2006) Zinc ions induce the unfolding and self-association of boar spermadhesin PSP-I, a protein with a single CUB domain architecture, and promote its binding to heparin. Biochemistry 45, 8227-8235
36. Leissring, M. A. (2008) The AbetaCs of Abeta-cleaving proteases. J Biol Chem 283, 29645-29649
37. Krone, M. G., Baumketner, A., Bernstein, S. L., Wyttenbach, T., Lazo, N. D., Teplow, D. B., Bowers, M. T., and Shea, J. E. (2008) Effects of familial Alzheimer's disease mutations on the folding nucleation of the amyloid beta-protein. J Mol Biol 381, 221-228
38. Rodziewicz-Motowidlo, S., Czaplewska, P., Sikorska, E., Spodzieja, M., and Kolodziejczyk, A. S. (2008) The Arctic mutation alters helix length and type in the 11-28 beta-amyloid peptide monomer-CD, NMR and MD studies in an SDS micelle. J Struct Biol
39. Mortilla, M., Amaducci, L., Bruni, A., Montesi, M. P., Trubnikov, A., De Cataldo, S., Pallanti, S., Pazzagli, A., Grecu, L., Servi, P., and et al. (1994) Absence of APP713 mutation in Italian and Russian families with schizophrenia. Neuroscience letters 165, 45-47
40. Lam, A. R., Teplow, D. B., Stanley, H. E., and Urbanc, B. (2008) Effects of the Arctic (E22-->G) mutation on amyloid beta-protein folding: discrete molecular dynamics study. . Journal of the American Chemical Society 130, 17413-17422
41. Kumar-Singh, S., Julliams, A., Nuydens, R., Ceuterick, C., Labeur, C., Serneels, S., Vennekens, K. l., Van Osta, P., Geerts, H., De Strooper, B., and Van Broeckhoven, C. (2002) In Vitro Studies of Flemish, Dutch, and Wild-Type β-Amyloid Provide Evidence for Two-Staged Neurotoxicity. Neurobiology of Disease 11, 330-340
42. Sandro Sorbi, B. N., Marzia Mortilla, Paolo Forleo, Silvia Piacentini, Luigi Amaducci. (1994) Molecular genetics of Alzheimer's disease in Italian families. . Neurochemistry International 25, 81-84
43. Van Nostrand, W. E., Melchor, J. P., Cho, H. S., Greenberg, S. M., and Rebeck, G. W. (2001) Pathogenic effects of D23N Iowa mutant amyloid beta -protein. J Biol Chem 276, 32860-32866
44. Barrett, P. J., Song, Y., Van Horn, W. D., Hustedt, E. J., Schafer, J. M., Hadziselimovic, A., Beel, A. J., and Sanders, C. R. (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336, 1168-1171
45. Jarvet, J., Danielsson, J., Damberg, P., Oleszczuk, M., and Graslund, A. (2007) Positioning of the Alzheimer Abeta(1-40) peptide in SDS micelles using NMR and paramagnetic probes. J Biomol NMR 39, 63-72
46. Vivekanandan, S., Brender, J. R., Lee, S. Y., and Ramamoorthy, A. (2011) A partially folded structure of amyloid-beta(1-40) in an aqueous environment. Biochem Biophys Res Commun 411, 312-316
47. Hou, L., Shao, H., Zhang, Y., Li, H., Menon, N. K., Neuhaus, E. B., Brewer, J. M., Byeon, I. J., Ray, D. G., Vitek, M. P., Iwashita, T., Makula, R. A., Przybyla, A. B., and Zagorski, M. G. (2004) Solution NMR studies of the A beta(1-40) and A beta(1-42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J Am Chem Soc 126, 1992-2005
48. Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., and Tycko, R. (2002) A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99, 16742-16747
49. Jia, Q., Deng, Y., and Qing, H. (2014) Potential therapeutic strategies for Alzheimer's disease targeting or beyond beta-amyloid: insights from clinical trials. BioMed research international 2014, 837157
50. Heiland B, G. S. (1999) Rat Locomotion and Release of Acetylcholinesterase. Pharmacol Biochem Behav 62, 81-87
51. Revett, T. J., Baker, G. B., Jhamandas, J., and Kar, S. (2013) Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. Journal of psychiatry &; neuroscience : JPN 38, 6-23
52. Kallberg, Y., Gustafsson, M., Persson, B., Thyberg, J., and Johansson, J. (2001) Prediction of amyloid fibril-forming proteins. J Biol Chem 276, 12945-12950
53. Paivio, A., Nordling, E., Kallberg, Y., Thyberg, J., and Johansson, J. (2004) Stabilization of discordant helices in amyloid fibril-forming proteins. Protein Sci 13, 1251-1259
54. Chen, Y. R., Huang, H. B., Lo, C. J., Wang, C. C., Su, C. L., Liu, H. T., Shiao, M. S., Lin, T. H., and Chen, Y. C. (2011) Abeta40(L17A/F19A) mutant diminishes the aggregation and neurotoxicity of Abeta40. Biochem Biophys Res Commun 405, 91-95
55. Chen, Y. R., Huang, H. B., Lo, C. J., Wang, C. C., Ho, L. K., Liu, H. T., Shiao, M. S., Lin, T. H., and Chen, Y. C. (2013) Effect of alanine replacement of l17 and f19 on the aggregation and neurotoxicity of arctic-type abeta40. PLoS One 8, e61874
56. Lee, E. K., Hwang, J. H., Shin, D. Y., Kim, D. I., and Yoo, Y. J. (2005) Production of recombinant amyloid-beta peptide 42 as an ubiquitin extension. Protein Expr Purif 40, 183-189
57. Wallace, B. A. (2000) Conformational changes by synchrotron radiation circular dichroism spectroscopy. Nature structural biology 7, 708-709
58. Krebs, M. R., Bromley, E. H., and Donald, A. M. (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149, 30-37
59. Sabate, R., Gallardo, M., and Estelrich, J. (2003) An autocatalytic reaction as a model for the kinetics of the aggregation of beta-amyloid. Biopolymers 71, 190-195
60. Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S., and Sykes, B. D. (1995) (1)H, (13)C and (15)N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. Journal of biomolecular NMR 5, 332
61. Neidig, K. P., Geyer, M., Gorler, A., Antz, C., Saffrich, R., Beneicke, W., and Kalbitzer, H. R. (1995) AURELIA, a program for computer-aided analysis of multidimensional NMR spectra. J Biomol NMR 6, 255-270
62. Wishart, D. S., and Sykes, B. D. (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4, 171-180
63. Wishart, D. S., and Sykes, B. D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol 239, 363-392
64. Wishart, D. S., and Nip, A. M. (1998) Protein chemical shift analysis: a practical guide. Biochem Cell Biol 76, 153-163
65. Wang, C. C., Huang, H. B., Tsay, H. J., Shiao, M. S., Wu, W. J., Cheng, Y. C., and Lin, T. H. (2012) Characterization of Abeta aggregation mechanism probed by congo red. J Biomol Struct Dyn 30, 160-169


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top